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enabling less memory consumptions and time. Since PSO 
combines proteins datasets in fuzzy values, the compact-
ness or integration of similar proteins are strong. On the 
other hand, Bounding Box uses the Crisp value. Therefore, 
it needs more space to organize the whole data. Without 
SOMs, swarm intelligence also results are poor due to the 
excessive time consuming and required storage area. Moreo-
ver, for almost all classification and clustering tools, it is 
observed that the overall classification task becomes slow, 
time consuming, space consuming and also less sensitive 
because of noises, irrelevant data in input datasets. Thus, 
the proposed SOM based PSO approach achieved less time 
consuming with efficient classification into secondary and 
tertiary proteins.

Keywords  Proteins · Self-organizing map · Swarm 
intelligence · Bounding box · Tertiary proteins

Abstract  Proteins have a significant role in animals and 
human health. Interactions among proteins are complex 
and large. Proteins separations are challenging process in 
molecular biology. Computational tools help to simulate 
the analysis in order to reduce the training data into small 
testing data. Large proteins have been mapped using self-
organizing maps (SOMs). Neural network based SOMs has 
a significant role in reducing the irregular shapes of proteins 
interactions. Iterative checking enables the organizations of 
all proteins. In next stage, particle swarm intelligence is 
applied to classify the proteins’ families. In the current work, 
secondary (Two dimensional) and tertiary proteins (Three 
dimensional) proteins have been grouped. Two dimensional 
proteins contain fewer hydro-carbons than three dimensional 
proteins. For faster analysis, the angles of the proteins are 
taken into account. The SOMs is compared with Bounding 
Box approach. In final, the experimental evolutions show 
that swarm intelligence achieved faster processing through 
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1  Introduction

In the current epoch, large number of biological PROTEINS 
and DNA (Deoxyribonucleic acid) datasets are build. The 
main obstacle facing the biologists is to discover manipu-
lating knowledge from such complicated datasets. Devel-
opment of highly scalable computational and quantitative 
approaches in order to keep pace with the rapid biotechnol-
ogy improvements and to discover the inside of the complex 
biological datasets became essential. Bioinformatics and 
computational biology is the field for knowledge discovery 
by manipulating large biological data using computer sci-
ence, computer architecture and information technology. It 
requires highly observed and sensitive components to deal 
with such kinds of huge data. The technologies advancement 
for sorting or searching DNA sequences indicates improve-
ment. Recently, data mining and bioinformatics assist the 
researchers to interpret the huge amount of data. A vast num-
ber of developed algorithms lead to more reliable and sup-
portive bioinformatics. Recently, a quite challenging for the 
researchers is to handle data partitioning and current transac-
tion system [1] as well as language modeling [2] due to the 
huge number of parameters and high dimensions. However, 
these challenging issues achieve key knowledge for using 
various bioinformatics algorithms, including data partition-
ing [1], gene co-expression networks [3] or gene expres-
sion graph (GEG) based classifier [4] to separate the genes. 
These genes are responsible for various dangerous diseases 
including cancer. The bioinformatics development allows 
the detection of cleft in organs including lungs, pancreas, 
kidneys, salivary and mammary glands because of branching 
morphogenesis process [5]. However, the imperfect/noisy 
datasets cause the main obstacle to classify the real-world 

data set [6] as they may the weaken system processing speed 
along with increasing complexity [7]. Thus, bioinformatics, 
information technology, computer science and architecture 
become significant to resolve such drawback and broad 
range of problems in different fields [8] as well as to detect 
symptoms of crucial diseases, such as dyslexia, the FURIA 
classification algorithm [9]. Further, in the field of bioin-
formatics, computational biology classification of positive 
unlabeled data [10], and improvement of mine organization 
rules on various data [11] paves bioinformatics a step ahead 
to solve difficult problems that was hard to solve yet.

Over the past decade, researchers are interested with 
genomics and proteomics analysis and classification. They 
developed different approaches for classification techniques 
of biological data and for using computational data on biol-
ogy. Generally, proteins are structural and functional unit of 
human cell. Proteins are the key feature for performing thou-
sands of reactions while constituting human cell. Most of the 
time transferring the molecules through the plasma mem-
brane, which plays the main role to create the protective wall 
around the human cell, is completed by membrane proteins. 
Approximately 25–75% of the membrane mass consists of 
proteins [12]. In addition, proteins are very important for 
being enzymes and for helping in execute necessary reac-
tions that required for creating the human cell. Structurally, 
proteins have three kinds, namely: primary, secondary, and 
tertiary, as illustrated in Fig. 1. Various proteins are sepa-
rated because of their simple pursuit on the human body, 
such as keratin, elastin, and collagen, which are significant 
types of support proteins.

Consequently, from the last decade there had been various 
attempts to classify proteins using several effective algo-
rithms. Moreover, proteins identification using supervised 

Fig. 1   Graphical representa-
tions of proteins types [13]
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learning techniques become a new research trend. Besides 
the researches have been largely attacked by the vast number 
of data from which it is required to differentiate primary, 
secondary and tertiary protein using efficient algorithm. 
Furthermore, the separation of two-dimensional (2D) and 
three-dimensional (3D) proteins from huge dataset becomes 
an emerging task. Recently, the improvement in the field 
of proteomics is proceeding rapidly, which generates a 
large amount of biological data sets. In order extract useful 
information and knowledge from this massive data amount, 
high performance computers and more innovative software 
tools become in dispensable to manipulate more efficient 
and time consuming algorithms. The main contravention for 
the researchers is to achieve accurate findings using various 
classification algorithms [14]. The resultant findings need to 
be refined again to achieve the desired data. In addition, for 
various complex and complicated datasets it is required to 
identify the functions of each protein, which is an interesting 
topic in bioinformatics in recent years [15, 16] as well as the 
main contribution of the current work.

Basically, identification of proteins from any combined 
and ever growing set of available 2D or 3D data definitely 
requires usually efficient, time consuming and automatic 
clustering algorithms. Therefore, for protein classification 
several techniques can be used including support vector 
machine (SVM), Self-organizing maps (SOMs), Particle 
swarm optimization (PSO), Bounding box algorithms, and 
sequential minimal optimization (SMO). These algorithms 
can basically handle complex and complicated huge data-
sets and discover the required findings. Generally, the clas-
sification algorithms can be categorized into: (1) pair-wise 
sequence algorithm, (2) discriminative classifier, and the (3) 
generative models for proteins classification.

In the current work, algorithms are developed for supe-
rior performance compared to other algorithms, namely 
the bounding box algorithm, particle swarm optimization 
(PSO), self-organizing maps (SOMs) and particle swarm 
optimization (PSO), and PSO centric-SOMs. Those algo-
rithms have been commonly mentioned because of their 
capabilities of efficiently handling large number of data 
using low memory in shortest possible time. Therefore, the 
key contribution of the current work is introducing impro-
vised version of clustering and identification methodology 
on complex, complicated and large imbalance dataset. In 
order to reduce the runtime and amount of memory to com-
plete action along with ensuring faster classification than 
previously opposed algorithms. Since the data size is huge, 
it takes time to attain concluding results, thus the current 
work machine based unsupervised learning was involved to 
handle large data size in limited time. Since single method 
cannot resolve these issues successfully in all cases, thus 
a more sensible way is to combine multiple methods [17]. 
Consequently, the proposed method is more preferable as 

it is mainly combine two methods. Thus, a new framework 
was designed to manipulate any size of data within shortest 
possible time and using low machine memory. A combina-
tion of the particle swarm optimization (PSO) with self-
organizing map (SOMs) is proposed in the current work, 
which interpreted better accuracy and less time consump-
tion along with shortest memory loss. Moreover, The SOMs 
based particle swarm optimization approach is proposed in 
the present work for better performance compared to the 
SOMs only as well as other common algorithms, such as 
bounding box algorithm and the support vector machine. 
The key advantage of using mapping based algorithm is to 
omit noises, irreverent data and also diminish higher dimen-
sion to lower one for visualization of higher dimensional 
input datasets. Thereafter, PSO is applied to manipulate the 
noise free data for detecting secondary and tertiary proteins. 
Although, there are several alternatives for the optimization 
algorithms, such as genetic algorithms and cuckoo search 
algorithm, however the PSO ability regarding interpretation 
of faster and easier computation, better performance with 
the number of datasets increasing, working with fuzzy logic 
has motivated the current work. Additionally, the proposed 
PSO-centric SOMs is capable of providing best performance 
on any size of the data set most fluently. Therefore, in the 
present work, huge and complex datasets were gathered from 
the National Center for Biotechnology Information (NCBI) 
database. Basically, several databases related to proteins data 
are present among which proteins data bank (PDB), struc-
tural classification of proteins (SCOP), protein information 
resource, database of interacting proteins, and the national 
center for biotechnology information (NCBI). Meanwhile, 
the present work extracted the datasets from NCBI database 
because the services of this dataset are compared to other 
databases. Moreover, NCBI offers a wide range of data with 
faster analytical tools. In general, NCBI also has the feature 
of offering a sizeable quantity of information people need 
to extract and in general it’s free for all. Although, bioin-
formatics data are increasing in an exponential rate, NCBI 
helps researchers to limit the search-times and to increase 
the simplicity of making query by maintaining its services 
efficiently through its website. Moreover, the pipeline of data 
extraction from NCBI is easier. Because of this phenom-
enon, the NCBI database is used for collection of data in this 
work. Despite of this, datasets from any of proteins database 
is trustworthy. The actual result never varies too much for 
collecting data from different databases.

Thereafter, the proposed PSO centric SOMs approach 
was applied. In general, PSO centric SOMs refers to first 
step classification of two dimensional (2D) and three dimen-
sional (3D) proteins using SOMs as SOMs groups all the 
similar data together. Afterward, the PSO is used to enclose 
the resultant proteins as much as possible consuming less 
memory along with time complexity. For comparison 
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purpose, various single algorithms were also applied on 
same datasets, such as bounding box algorithms, PSO alone, 
SOMs alone and the overall findings were compared, which 
shows superiority of PSO centric SOMs (Sect. 4). Basically, 
from the perspective of the current work, different alterna-
tives of SOMs as well as PSO could be used for mapping 
as well as classification task. Some of those alternatives are 
ISOMAP [18], manifold alignment [19], supervised kohonen 
network (SKN) [20], counter propagation artificial neural 
network [21], support vector machine (SVM) [22] and, prin-
ciple component analysis (PCA) [23]. Such algorithm can 
be employed to estimate the SOMs, which proved that the 
SOMs outperforms all the mapping based algorithms where 
PSO shows better performance with the increasing number 
of complex as well as complicated datasets. Also, bounding 
box algorithm performs well compared to other alternatives 
but bounding box algorithm seems to be slow with increas-
ing datasets, which is depicted graphically and practically 
as well in the result section. Based on the performance of 
all the alternatives here for this work, several approaches are 
considered for comparison purpose. In general, for almost 
all classification and clustering tools, it is obvious that the 
overall classification task becomes slow, time consuming, 
space consuming and also less sensitive because of noises, 
irrelevant data in input datasets. Thus, for achieving better 
identification from these types of datasets it is required to 
remove the noise form the relevant data to boost the clas-
sification process speed for less time and space consuming. 
For this circumstance, the current work proposed mapping 
based particle swarm optimization which will initially filter 
the input data, remove the noises from there and map the 
data within a certain range. Thereafter, the PSO is used to 
easily classify secondary (2D) as well as tertiary (3D) pro-
teins from the filtered data. This process outperforms all 
other previous works along with other mapping approaches 
which have been illustrated in Sect. 4. Comparisons along 
with performance evolution of our proposed work with vari-
ous present algorithms have been shown there theoretically, 
practically and graphically as well. Therefore, the current 
work presents several practical experiments conducted to 
evaluate the performance of the algorithms under study for 
protein classification.

Generally, the secondary protein, only one angle is gen-
erated with the Hydrocarbon. However, the tertiary pro-
teins generate two different angles. In the current work, 
Otsu method [24–26] is applied to check the angles of both 
these protein types. Basically, Otsu method helps to con-
vert Secondary and tertiary proteins to binary values form 
where we get the idea about the angles of the both proteins 
classes. Essentially, for multidimensional data processing, 
various algorithms [27], such as Otsu’s method, the adaptive 
binarization method, Lloyd method, Macqueen method are 
widely used. However, Otsu’s method is the most preferable 

for image or multidimensional data processing because of its 
key feature regarding separating an image into two classes 
according to threshold which diminish the variance between 
each class. Additionally, Otsu’s is an automatic threshold 
selection region based segmentation method along with its 
simpler way of calculation. Moreover, others algorithms 
execute with lots of irreverent combinations of input image. 
Thus, the process becomes slow and it detects less combi-
nation taking much time. Consequently, the present work 
employed Otsu’s method for faster and efficient calculation 
which affects further mapping based particle swarm opti-
mization process. Therefore, the overall process becomes 
memory and time efficient. Basically, in bioinformatics, 
most web based tools allow limited number of inputs and 
output formats and also the input formats cannot be editable, 
which is the main obstacle for the researchers to broaden 
knowledge. Therefore, for better improvement a machine-
learning based method is proposed in the current work. 
In addition, we have built our own database. For further 
comparative study, both in web based and manually created 
database were involved and our solution presented the best 
accuracy in both experiments. The proposed method was 
compared to other classical methods that work with direct 
protein and its machine based. Hence, in consequence, the 
proposed solution demonstrated a great energetic and less 
time consuming.

The organization of the remaining sections is as follows. 
Section 2 includes related work to protein classification tech-
niques. Section 3 includes the methodology of the proposed 
approach for protein classification. Section 4 demonstrates 
the results in details with extensive discussion. Finally, the 
conclusion is addressed in Sect. 5.

2 � Literature review

Nowadays, researchers are interested in developing new 
algorithms for protein classification. For stepping forward 
to discover new algorithms in [28], for protein classification 
the authors mostly concentrated on chemical reactions and 
proposed high quality protein classifications with external 
nucleic acid research (NAR) database. A set of chemicals 
were applied on proteins that are costly along with high risk 
for human health, whereas the proposed approach is totally 
machine based and automated based on unsupervised learn-
ing. Therefore, huge number of data can be manipulated 
using less memory and less time which is impossible fol-
lowing chemical reactions approach. Besides that, from [29] 
it can be realized that the amino-acid substitution matrices 
have been used to represent the similarities between motifs 
as well as to prepossess the protein sequences for further 
protein classification. Since this approach process 20 amino-
acids inside each protein, where the proteins data size is 
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extra-large and complicated it cannot process using short 
time along with low memory size. Thus, this process was 
time consuming and used large machine memory space. 
Consequently, the process cannot be efficient enough. Com-
pared to this work, the proposed method is focused on angels 
of proteins presenting numerically as it is machine based 
that is why any size of datasets can be manipulated easily in 
shortest possible time compared to all the discovered algo-
rithms. In the context of structural descriptor database [30], 
the web-based tools have been used to predict the function of 
proteins. Basically, in bioinformatics, most web based tools 
allow a limited number of inputs and output formats and 
also the input formats cannot be editable, which is the main 
obstacle for the researchers to broaden knowledge. Hence, 
for better improvement, machine-learning based methods 
can be employed, thus the present proposed algorithm is 
fully machine-based approach. Moreover, it has practically 
been discovered that machine-learning dependent algorithms 
are powerful in developing new fold recognition tools [31].
Thus, it was established that using machine learning-based 
database achieved noticeable performance, time of execu-
tion, memory usage than using web based tools for various 
algorithms.

Attempts have been conducted to explore methods for 
better detection and prediction of protein functions though 
they failed sometimes to fulfill the requirement for pro-
tein–protein reaction in order to determine aspects of func-
tions like sub-spongy localization, tone down after transla-
tion and protein–protein cooperation [32]. In addition, this 
approach required long time to complete the full process. 
Since single method cannot resolve these issues success-
fully in all cases, a more sensible way is to combine mul-
tiple methods [17]. For proteins classification, Baugh et al. 
[33] preferred manual experimental data collecting lots of 
various proteins with known effects on protein function 
from multiple organisms and curated structural models for 
each variant from crystal structures and homology models. 
Afterward, a single method variant interpretation and pre-
diction using rosetta (VIPUR) has been used to integrate the 
proteins manually, which was costly, time consuming and 
unpredictable whereas being machine-based and combina-
tion of two strong algorithms, without doubt the PSO centric 
SOMs illustrates superiority.

For protein classification using multi-class protein 
structure prediction, the study performed in [34] illus-
trated superior accuracy, while using data from protein 
data bank (PDB). In general, this work provided poor 
accuracy level for outside PDB data. Consequently, this 
process fully depends on the PDB [35]. The current work 
is the combination of two classification algorithms and 
based on unsupervised machine-based approach that is 
why it depicts the capability of high accuracy from any 
source of data because of high sensitivity. The authors in 

[36] have illustrated the SVM, which is a web-server for 
machine learning, competence to acquire best prediction 
results from a sequence of proteins for protein classifi-
cation. For the development of SVM models, sometimes 
the cost parameter rise very high which is unexpected for 
getting best performance [36]. Nor only for SVM, but 
also in present situation, the cost that most of the algo-
rithms demand for classification purpose is extremely 
high. Besides, since some low sequence similarity pro-
teins appear, then the sequence similarity E-value of this 
low sequence similar proteins is meaningfully high than 
the globally accepted value which is 0.05 rather generally 
it does not happen in PSO-centric SOM. Besides, using 
SVM allows the verification of the known structured pro-
teins [37], which can be considered as the constraint of the 
SVM algorithm. On the contrary, the proposed approach 
avoids this kind of risks because of being unsupervised 
learning as well as machine-based fastest process. In [38], 
the SVM method was applied for the prediction of bac-
terial Hemoglobin-like proteins. The authors backed up 
for the SVM to identify the desired proteins. In addition, 
amino acid composition process has been used to deal 
with the class of proteins. Although, for large number of 
data like 1 billion proteins, then there is almost 20 amino 
acid inside each protein, thus, the proposed method needs 
to compete with 20 billion which is terrible to execute 
along with wastage of time and memory. The proposed 
algorithm never go through this type of process as it clas-
sifies proteins considering angles of proteins converted to 
numerical values initially. In [39], a new method called 
protNN has been implemented, which was quite fast with 
less time consuming. In the first stage, this protNN took 
almost 3 h for the classification of each protein against all 
entire PDB. Moreover, this method worked tremendously 
for three dimensional (3D) proteins where-as quite low 
for one dimensional (1D) as well as two dimensional (2D) 
proteins. From the perspective of the work, a secondary-
structure matching (SSM) was used as a new tool for fast 
protein structure alignment in 3D [40]. The authors fully 
preferred 3D proteins for classification using SSM algo-
rithms. Traditionally, the secondary-structure protein algo-
rithm is a long-term process as it is mainly illustrated by 
graphical comparison which is quite hard to implement. 
It is mostly a structure based algorithm and the methods 
which are mostly dependent on structures are seen to be 
approximately 2–4 times slower than the sequence neigh-
borhood based algorithm [41]. Basically, the structural 
neighborhood based classification of nodes in a network 
[42] is one of the structural based classification algo-
rithms. The memory requirement and computational com-
plexity of this algorithm is very high [43, 44].Therefore, 
proposed approach in [39] handled efficiently 3D proteins 
whereas provided low performances while 1D (primary) 
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or 2D (secondary) proteins but ours is universal for all. It 
worked tremendously for both 2D as well as 3D proteins. 
In [45], proteins identification was performed using the 
SCOP (Structural Classification of Proteins) algorithm 
[46] for proteins function classification, which is fully 
manual process. Consequently, the process is long term, 
time consuming and huge memory allocation method, 
on the contrary to the proposed approach that illustrates 
dynamically short time discovery ability along with poor 
memory consumption. Moreover, various recent work 
regarding real life applications of different contemporary 
computing techniques associated with fuzzy logic as well 
as artificial intelligence techniques have been proposed 
successfully [27, 47–57].

3 � Methodology

In previous research work, bounding box [58–60] was imple-
mented by combining the whole datasets into a specific area 
and dividing the data into specific order until it reach to a 
certain length. This process allows managing the datasets 
easily and in a simple way for faster data classification and 
grouping. In this research, proteins structures are verified 
and justified with SOM and particle swarm optimization. 
The pivotal impact of SOMs in this analysis is to connect 
all the edges of proteins. Since proteins interactions are 
complex [61], SOMs neural networks manages all of these 
interactions. Back propagation facilities permit to handle the 
deficiency among proteins group verifications. Interactions 

among proteins are mapped by the neural networks input 
weights with associated edges. Consequently, particle swarm 
analysis counts all the datasets of proteins under fuzzy val-
ues [61, 62]. These fuzzy values allow combining greater 
limits of the total proteins with specific hydrocarbons angles 
associated with nitrogen bonds. One file contains all the 
proteins as training datasets. Based on the situations, these 
datasets can be divided into other files. These files are initial 
database for overall data processing. Some training datasets 
have been collected from online databases [63–66]. These 
databases allow collecting any proteins structures for better 
experimental analyses. There are various options to collect 
proteins from online databases (Fig. 2). The prime consid-
erations of online databases are variations of input with lat-
est timing.

3.1 � Self‑organizing maps

In various aspects of computer science, lower time con-
sumption and higher efficiency are essential requirements 
[67–69]. All contended learning techniques, such as the 
SOMs that aim to learn rapidly and helps to work reliably. 
Such efficient SOMs algorithms have several real time and 
practical applications in the field of bioinformatics includ-
ing data mining, speech analysis, and medical diagnostics. 
The SOMs-based algorithms are efficient to cluster biologi-
cal data which diminish input space and dimensions. These 
algorithms are considered a vital biological tool with high 
sensibility that allow it to control frequent input of data eas-
ily rather than other algorithms. The SOMs can classify the 
data properties and can group the similar data together, thus 
it can be used with biological components, such as proteins, 
DNA, and neurons as well as it can introduce new ways to 
relate new datasets. Thus, these algorithms can serve as a 
bunch analyzing tool of high dimensional data. The SOMs 
concept is shown in Fig. 3.

Figure 3a displays the phase before applying self-organ-
izing feature map, where the input data is in high dimension 
and it takes a lot of space along with unclassified data. Fig-
ure 3b represents the phase after applying the SOMs, where 
the colors are now in the right position as they should be just 
like the yellow colors are on the bottom of right side, and the 
black colors are in the top of right side. The other colors also 
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Fig. 2   Structure of the complete adopted design and analysis

Fig. 3   Before applying SOMs 
(a) and after applying SOMs (b)
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classified with their similar pattern together. In Fig. 3b, the 
dimension is also less than that illustrated in Fig. 3a, which 
was hard to preview because of high dimensional data, while 
the SOMs has shorten the dimension, thus it become visible. 
The SOMs network architecture is structured as illustrated 
in Fig. 4 for a 3 × 3 size 2D network.

Generally, in every network, there is numerous numbers 
of nodes, which depends on the architecture size. In the 
case of 3 × 3 size network of 2D architecture, there are nine 
nodes. Each node is directly associated with the input layer 
to place the input as demonstrated in Fig. 4. Each and every 
node consists of two appointed co-ordinates (x, y), which 
contains the data input vector. The dimension and type of 
the vector data are mostly similar to the ones of the corre-
sponding node. Basically, similar data indicates that if the 
training data contains vector A of N dimension, which is rep-
resented by A = [A1, A2, A3,…An], then the node will also 
contain the same weight vector S of dimension N, which is 
expressed as: S = [S1, S2, S3,… , Sn]. The SOMs algorithm 
deals with several datasets by arranging them in secondary 
or 2D rectangular or hexagonal grids to form architecture 
of input space W ∈ Rn, where the common algorithm steps 
are as follows:

The preceding SOM algorithm steps can be used to solve 
any classification problem co-efficiently. Since there are four 
types of proteins, namely: primary, secondary, tertiary and 
quaternary, the protein classification using the SOM is as 
follows:

•	 The protein data is used as input to the SOM, and then 
automatically classify them and bound similar data 
together with specific space. As the input is taken the 
structure of input data as illustrated in Fig. 5.

•	 All the nodes are initialized using initializing statement 
that is given by: 

∑n

i= 0
Wi = init (Wi).

•	 For the input, measure D represented in Eq. (2) that rep-
resents the difference between the nodes initialized pro-
tein and the user input protein.

•	 Determine the BMU, which is the input protein which 
is the most similar to the nodes protein in that constant 
time.

•	 Find the radius of the neighborhood of BMU protein 
using the Gaussian neighborhood exponential decay 
function given in Eq. (3). Furthermore, the SOMs algo-
rithms exponential decay function has been applied to 
calculate the neighborhood size. In lieu of this exponen-
tial decay function, radioactive decay function is used to 
calculate the size of the neighborhood as well. Nonethe-
less, for simplicity exponential decay function is used, 
where the datasets may increase exponentially and for 
manipulation of those datasets the decay function has 
been used which performs well for large and complicated 
datasets. Better manipulation of this function will work 
faster in case of mapping and that must affect the results 
in the final stage in a positive manner.

•	 Although, in first stage the radius was large, and large 
proteins were detected within the radius, but after nec-
essary iteration only one protein will remain and that 
protein will be the only neighborhood. So, now the 
neighborhood protein and its radius expansion of neigh-
borhood are known. Thus, it is simple to easily iterate 
through all the nodes for detecting which proteins are 
within the range of neighborhood.

•	 Now, Eq. (4) is applied to update the detected protein.
•	 Currently, all the obtained proteins that completed the 

above mentioned procedure are altered depending on 

Fig. 4   A simple Kohonen network
Fig. 5   SOM applied proteins structure
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their distance and similarities with the neighborhood 
radius and then altered automatically. This procedure 
illustrates the steps of the SOM for protein classification.

Basically, the SOMs is preferable due to its elevated fea-
tures regarding vector projection, vector quantization, reduc-
tion of input data set’s dimension along with visualization 
of those datasets, and faster clustering with less space and 
memory consumption. In addition, increasing input data-
sets size decreases the percentage error compared to other 
clustering methods. Moreover, other alternative algorithms 
of SOMs, such as ISOMAP [18], and Manifold alignment 
[19] are mostly based on assumptions as well as probabili-
ties of various parameters associated with those methods. 
Alongside, SOMs lead to higher sensitivity for clustering 
and projection purpose. Also, manipulation of input data 
under SOMs is unsupervised and automatic, while coun-
ter propagation artificial neural network (CP-ANN) [21], 
and supervised kohonen networks (SKN) [20] are based on 
supervised learning. This is the key advantage for SOMs 
because it can automatically adjust its parameters for any 
kinds of input data and no further supervision is necessary. 
Self-organizing map also supports parallel computing using 
less inter-neuron contact. Its interpretation of faster map-
ping, easier computation, manipulation of large and complex 
data consuming less space and time outperforms other map-
ping and clustering algorithms, which is illustrated in results 
section of this work.

3.2 � Particle swarm optimization

From the perspective of computer science and engineer-
ing, PSO is an optimization process for solving the prob-
lem under concern in cyclic order as well as for establish-
ing improved view of previously given solution compared 
to a given quality [70]. PSO is an intelligent optimization 
process to find the parameters that provide the maximum 
value and is easy to use and implement dynamically to any 
necessary aspects using a few numbers of parameters. This 
algorithm was inspired from the behavior of animals, such 
as fish schooling or birds flocking and the evolutionary com-
putational fields like the genetic algorithms.

PSO can be easily used without any disturbances or 
impersonations regarding the problem that need to be opti-
mized and can explore very large space of region. As illus-
trated in Fig. 6, the PSO algorithm is initialized randomly 
using the common built in function rand (.). Afterward, 
the maximum or minimum value of the given function is 
determined. Meanwhile, all the particles in the PSO algo-
rithm are always trying to find to the best known position 
and also being guided by the best known local particle’s 
position. Whenever the best position is gained by a particle, 
then the local best known position is updated depending on 

the particles [71]. The PSO algorithm aims to bind all the 
given particles within the optima of a specific dimensional 
space. The velocity and position of individual particles are 
assigned randomly as follows considering ‘n’ particles in a 
vector form as V = [V1, V2, V3,… ,Vn] in the vector space. 
Initially, pseudorandom numbers are used to initialize the 
velocity and position vector of each particle. Here, all the 
position vectors are dihedral angles which are considered 
as phi and psi. Rather than that the velocity vectors step 
forward to get best known position by changing these angles. 
Therefore, these angles enriches the flexibility of obtain-
ing global best known position. Based on the global best 
known position and velocity, each and every particle turns 
and updates their velocities along with positions to cover the 
optima in the content of time. The following equation is used 
to update the velocity:

Here, vi(t + 1) is the new updated velocity of each parti-
cle, vi(t) is the particle vector before update, pi(t) is the posi-
tion of each particle, pbest

i
 is the kn own best position, and 

p
gbest

i
 is the global known best position. In addition,m1 and 

m2 are the weights of each particle’s personal best known 
position and global best position. In addition to the velocity 
update, another update of each particle position in every iter-
ation is required to cover the optima of the desired position:

where,pi(t + 1), is the updated position for all individual par-
ticles, pi(t) is the previous position of that instant updated 
particle, and vi(t + 1) is the updated velocity of that particle. 
The theoretical representation of the PSO algorithm is illus-
trated in Fig. 7.

Figure  7 illustrates that if f (pi) > f (pi(t + 1)), then 
the best known position is automatically assigned to 
pi (i.e. Pi = pi(t + 1)), while if f (pi) < f (g), and then g is the 
best solution. In order to represent the geometrical analysis 
for the PSO algorithm, a 2-dimensional space is considered 
for experimental purpose where the particles are moving 
with their initial velocity and positions.

From each iteration, the velocity, positions as well as 
values of Gbest and Pbest are changed to converge to the best 
optimum position:

Thus, the particles will reach the Gbest to obtain optimum 
coverage. The nominated PSO parameters’ values [72] are 
as follows:

(1)

vi(t + 1) = vi(t) + (m
1
× rand() × (pbest

i
− pi(t)))

+ (m
2
× rand() × (p

gbest

i
− pi(t))).

(2)pi(t + 1) = pi(t) + vi(t + 1)

(3)
Gbest = min {pt

best
, i}, where i 𝜀 [1, 2, 3,… , n], n > 1
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1.	 The theoretical range of the particles is 25–40, which is 
large enough to get perfect result. Sometimes for better 
results more number of particles is used.

2.	 There is a limit of changing the velocity and position for 
every particle. This criterion is used as stopping crite-
rion.

3.	 There is a conceptual limit of the weight coefficients m1 
and m2 which are generally within [0, 2].

4.	 The stopping criterion depends on the problem to be 
optimized, but it is terminated when no improvement 
occurs over some consecutive iterations, then the algo-
rithm stops using:

where, Tmax is the maximum radius and diametr(S) is 
the initial swarm’s diameter. In addition,

The pseudo code for the PSO algorithm is as follows.

(4)Tnorm =
Tmax

diameter (S)

(5)
Tmax = ||P

m
− G

best
|| with ||P

m
− G

best
||

⊇ |P
i
− G

best
||, as i = 1, 2, 3,… , n

Fig. 6   Overview of particle swarm optimization
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Generally, the PSO algorithm can be used to automati-
cally classify biological large number of data for example 
protein classifications. Moreover, the PSO refers to efficient 
classification as well as clustering tools compared to all 
the alternative algorithms that are used for classification 
of various bioinformatics components, such as DNA, and 
Proteins. It is practically examined that genetic algorithm 
(GA) is perfect alternative of PSO algorithm and the main 
differences between these two algorithms are computational 
efficiency as well as effectiveness of less space consumption. 
Thus, the PSO algorithm outperforms the GA; even they are 
quite similar from the perspective of using a combination of 
deterministic and probabilistic procedure in each iteration. 
However, PSO is better than genetic algorithm in terms of 
efficiency as well as space purpose.

3.3 � PSO‑centric SOMs

Generally, the classification of 2D (secondary) and 3D (ter-
tiary) proteins are much more complicated as it requires 
more sensitive, less time consuming, and less memory 
consumption algorithms. It is practically proved that one 
single algorithm cannot deal appropriately with this situ-
ation (Sect. 4). Therefore, a reliable and fast way to gain 
better performance is required. Thus, combining two bio-
informatics algorithms can outperform all the methods dis-
covered previously mentioned, such as the PSO, SOMs, and 
Bounding Box algorithms. Therefore, for achieving superior 
approach, the current work introduces a combination of the 

PSO and SOMs algorithms that performs efficiently. Here, 
the proposed PSO centric SOMs illustrate the effectiveness 
of both SOMs and PSO on vast complex and complicated 
datasets. The SOMs usually diminishes the input space as 
well as dimensions and represents lower preview facility of 
higher dimensional data. It has also capability of differen-
tiating all the similar data and group them like 2D and 3D 
proteins. Therefore, in the first phase, SOMs are applied on 
the proteins datasets to diminish the dimensions and visu-
alize them as well as differentiating 2D (secondary), 3D 
(tertiary) and noise data, thereafter, the PSO algorithm is 
applied. Generally, the PSO algorithm manipulates dynami-
cally movable data using fuzzy logic. It usually follows a 
dynamic process to bind all the similar data within a certain 
limit. After the execution of SOMs, the grouped proteins 
dynamically move around. Afterwards, for acquiring best 
performance and not to let the movable proteins out of range, 
immediately the PSO algorithm is applied. This clarifies the 
reason of the superiority of the proposed PSO-centric SOMs 
compared to the other algorithms. The overall process is 
illustrated in Fig. 8.

In Fig. 8, various colors indicate different properties 
of proteins like 1D (primary), 2D (secondary), and 3D 
(tertiary).

3.4 � Datasets collection process

In the current work, the real-world datasets of Secondary 
(two dimensional) and tertiary (three dimensional) pro-
teins were excerpted from the NCBI database. In general, 
for exploration purpose the overall operation of the data 
excerption is a mobilized process which in greater terms 
helps gathering data from Google. Usually, for extracting 
data there are some steps which are mandatory to follow. 
Therefore, initially, the user logs into Google using author-
ized entry towards the world class 2D experiment as well 
as to the 3D proteins’ datasets. Afterward, those datasets 
are excerpted from the NCBI database proteins part, which 
contains various types of primary, secondary, and tertiary 
proteins along with different properties of proteins. Moreo-
ver, all the datasets are public and downloadable. Thereafter, 
the necessary file format is selected to gather the desired 

Fig. 7   Theoretical representa-
tion of particle swarm optimiza-
tion
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proteins and mark them all to send to a particular file as 
well as for downloading. Then, the datasets will be trained 
using various bioinformatics algorithms for extraction of 
pure and noise-free data because the noise full data slow 
down the overall process. Till now and then, enormous num-
ber of researchers, biologists, academician, and trainers are 
interested with finding an efficient and faster process for 
detecting the secondary and tertiary proteins from a large 
number of datasets. Moreover, automatic and unsupervised 
identification procedure helps a lot for efficient classification 
of desired proteins. Especially, large proteins datasets along 
with high frequency make a barrier to the way of desired 
exploration. The overall collection process for the dataset is 
illustrated in Fig. 9.

4 � Results and discussion

In the present work, huge and complex datasets were gath-
ered from National Center for Biotechnology Information 
(NCBI) database to evaluate the proposed PSO centric 
SOMs approach. In general, PSO centric SOMs ensure faster 
identification of both secondary (2D) and tertiary (3D) pro-
teins. Initially, the SOMs manipulate the input data and for 
efficiency of upcoming level it removes noises, irreverent 
data and maps the whole data within a certain range so that 
the PSO algorithm can be applied easily. Afterward, PSO 
is used to enclose and group similar resultant proteins as 
much as possible consuming less memory along with con-
suming less time. For comparison purpose, various single 
algorithms, such as the bounding box algorithms, PSO 
alone, SOMs alone have been applied on same datasets and 
the overall findings have been compared, which showed the 
superiority of PSO centric SOMs (Sect. 4). All the findings 
of those algorithms along with PSO centric SOMs have been 
illustrated graphically and mathematically in the following 
results section. Moreover, the performance evolution of 
those algorithms based on their findings has been depicted 

in the bottom of the result section. Therefore, the current 
work included several practical experiments to evaluate the 
performance of many algorithms for proteins classifica-
tion. Various complex and large datasets have been used 
for the comparative purpose with the findings of proposed 
approach. The PSO-centric SOMs algorithm is opted out for 
its noticeable capability of time saving, high performance 
in memory reduction, and faster processing. Other applied 
algorithms are capable of reaching concluding points slower 
compared to the PSO-centric SOMs. A comparison among 
findings of various algorithms in terms of the time, memory 
usage, and possible number of secondary (2D) and tertiary 
(3D)proteins have been described in details to the follow-
ing sections (Sects. 4.1–4.7.4). These evaluation parameters 
associated with 2D and 3D proteins have been represented 
for bounding box algorithm, PSO, and PSO-centric SOMs 
using 3D graph. In addition, the comparisons of different 
algorithms have been illustrated using multiple 3D graphs. 
In order to implement the proposed approach, Java pro-
gramming language along with NetBeans platform has been 
used for this work. Java development Kit (JDK) version 1.7 
has been adopted to compile the overall process. Since the 
adopted JDK system has independent platform of its own, 
thus it consumes less space and perform efficiency for clas-
sification. The overall configuration of the system to execute 
those algorithms includes 8 GB of RAM, 1000 GB HDD, 
Core i5 Processor with Windows 7. Moreover, the system 
can be easily adjusted with Linux, Vista and Windows 10 
also. In the proposed work, the Bounding box algorithm, 
Self-organizing maps algorithm, particle swarm optimiza-
tion algorithm with the help of java Netbeans IDE along 
with the features described above to convert it to source 
code. For obtaining accurate result the output has been 
evaluated for each and every specific input vectors many 
times. Similar tasks have been executed for every algorithm 
and stored the output for that particular algorithm. After 
that, to evaluate the correctness of the present work con-
tribution, an online database is considered for comparison 

Fig. 8   Overall PSO-Centric SOMs process over a higher dimensional and complex dataset
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evaluation. That is how we had created our own database. 
The comparisons, performance evaluation, findings of vari-
ous algorithms are illustrated graphically, mathematically 
and theoretically in the following Sects. (4.1–4.7.4). These 
evaluation parameters associated with 2D and 3D proteins 
have been represented for bounding box algorithm, parti-
cle swarm optimization, and PSO-centric SOMs using 3D 
graph. In addition, the comparisons of different algorithms 
have been illustrated using multiple 3D graphs. In order to 
implement the proposed approach, Java programming lan-
guage along with NetBeans platform has been used for this 
work. Java development Kit (JDK) version 1.7 has been 
adopted to compile the overall process. Since the adopted 
JDK system has independent platform of its own, thus it 
consumes less space and perform efficiency for classifica-
tion. Moreover, java programming language along with net-
beans IDE is used to implement the proposed algorithms 
in the current work. Python, C++ and C language can be 
used for this purpose. Basically, java is used for its built-
in key feature of Java Virtual Machine, which is language 
independent. On the contrary, python interpreter is language 
dependent, which is more sophisticated than JVM. Addition-
ally, java programming language guarantees accurate and 
faster manipulation of input data. This will definitely bring a 
positive effect on the findings of the proposed approach. The 
overall configuration of the system to execute those algo-
rithms includes 8 GB of RAM, 1000 GB HDD, Core i5 Pro-
cessor with Windows 7. Moreover, the system can be easily 
adjusted with Linux, Vista and Windows 10 also. We have 
executed Bounding box algorithm, Self-organizing maps 
algorithm, particle swarm optimization algorithm with the 
help of java Netbeans IDE along with the features described 
above to convert it to source code. For obtaining accurate 
result the output has been evaluated for each and every 
specific input vectors many times. Similar tasks have been 
executed for every algorithm and stored the output for that 
particular algorithm. After that, to evaluate the correctness 
of our contribution, we have considered online database to 

compare with ours and outcome of both seems to be similar 
and accurate. That is how we had created our own database. 
The comparisons, performance evaluation, findings of vari-
ous algorithms are illustrated graphically, mathematically 
and theoretically in the following Sects. (4.1–4.7.4).

4.1 � Bounding box algorithm for proteins separations

Bounding box approach [59, 60] is data processing mecha-
nisms that allow all the datasets under specific sizes. This 
process is helpful for limited datasets. In this process, whole 
DNA sequences are grouped into row and column modules 
where each row contains eighty DNA base pairs and col-
umns contains sixty DNA base pairs. A significant step of 
Bounding Box is that it sub divide the whole datasets until 
it reach a satisfied DNA segments. The number of proteins 
in various dimensions using Bounding box algorithm for 
proteins separation was determined as reported in Table 1, 
where the significant values are in bold. The algorithm 
returned different values for different sizes of data in 2D 
space as well as 3D space.

Table 1 reports that for 100 MB proteins data, 77 two-
dimensional proteins along with 4 three-dimensional pro-
teins were obtained. In the case of simplicity, the constant 
experimental number of proteins were considered as 1000 
p r o t e i n s  o f  v a r i o u s  t y p e s ,  t h e n  ex a c t l y 
number of 2Dproteins× 100

total number of proteins
 = 77× 100

1000
 = 7.7% of 2D proteins and 

number of 3Dproteins× 100

total number of proteins
 = 4× 100

1000
 = 0.4% of 3D proteins were 

obtained. Respectively, the same procedure is perceived 
for the remaining data as resumed by third and fifth col-
umns in Table 1. From these results, it could be realized 
that the possibilities of getting 2D and 3D data from same 
number of proteins is in increasing order. The determina-
tion of only 2D protein is clear in the case of the 900 MB 
having 134.3% for 2D protein, and 11.5% for 3D protein 

Fig. 9   Data collection overall 
process
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as well as with the 950 MB having 132.1% for 2D protein, 
and 12.5% for 3D protein.

However, using the bounding box algorithm, the dif-
ferences of resultant data for 2D and 3D proteins were 
(10.3 − 7.7)% = 2.6%, and (0.5 − 0.4)% = 0.1% for 100 
and 150 MB data, respectively. The differences seem to 
be huge with the increasing size of data to be experi-
mented. For more simplicity, the differences and details 
relationships between the experimented and resultant data 
is exhibited are Fig. 10. In Fig. 10, X-axis shows the pro-
teins data size, Y-axis exhibits the findings of both 2D and 
3D proteins and Z-axis shows the number of difference 
between the 2D and 3D findings compared to data size.

In Fig. 10, the black and red stairs indicate resultant 
number of secondary (2D) and tertiary (3D) proteins 
experimented by bounding box algorithm. The black stair 
represents the findings number of 2D proteins, whereas 
the red stair defines findings of 3D proteins. The red stair 
is quite low than the black which indicates the findings of 
2D proteins were higher than to the 3D as the initial points 
of X-axis and Y-axis were 100 and 0 MB. In addition, the 
topmost points were 1150 MB and 1800 although the top-
most resultant point of 2D proteins was 15. Consequently, 
the above designed graph represents three dimensional 
views of findings of experimented data for the bounding 
box algorithm.

4.2 � Self‑organizing maps for proteins separations

By applying the SOMs for proteins classification were 
obtained the values indicated in Table 2 as to 2D and 3D 
proteins. The SOMs algorithm detected various numbers of 
2D as well as 3D proteins.

The data in Table 2 suggests that from the aspects of 
SOMs algorithm, the difference between the two findings of 
2D or 3D protein was quite large for 100 MB size of data as 
109 for 2D along with 6 for the 3D were detected. Consider-
ing 10,000 proteins as constant experimented value for 100, 
150, 200  MB and so on, it was observed that 
number of 2Dproteins× 100

total number of proteins
 = 109× 100

10000
 = 1.09% for 2D along with 

number of 3Dproteins× 100

total number of proteins
 = 6× 100

10000
 = 0.06% for 3D. Consequently, 

applying same process for 150, 200, 650, 800, 1000 MB it 
could be obtained 1.88, 2.99, 12.99, and 25.67% of 2D pro-
teins as well as 0.09, 0.17, 1.57, 2.43, and 3.78% of 3D 
proteins. For self-organizing maps the findings were increas-
ing with the increasing rate of data size. Initially, the rising 
rate was low, but gradually its increment were large to be 
observed as for the 100 and 150 MB resultant difference of 
2D proteins, which were (188 − 109) = 79 in 2D proteins 
and (9 − 6) = 3 in 3D proteins; whereas when the data size 
was 950 and 1000 MB, then the difference was 267 for the 
2D proteins and 43 for the 3D proteins. The differences seem 
to be huge with the increasing experimented data size and 

Table 1   Bounding box for proteins separation

Proteins data size 
(MB)

Bounding box number of 
2D proteins

% of 2D proteins for 1000 total 
number of proteins (%)

Bounding box number of 
3D proteins

% of 3D proteins for 1000 
total number of proteins (%)

100 77 7.7 4 0.4
150 103 10.3 5 0.5
200 155 15.5 9 0.9
250 204 20.4 13 1.3
300 244 24.4 21 2.1
350 301 30.1 28 2.8
400 367 36.7 35 3.5
450 434 43.4 41 4.1
500 554 55.4 49 4.9
550 612 61.2 55 5.5
600 743 74.3 62 6.2
650 823 82.3 70 7.0
700 932 93.2 78 7.8
750 1077 107.7 85 8.5
800 1188 118.8 94 9.4
850 1265 126.5 103 10.3
900 1343 134.3 115 11.5
950 1321 132.1 125 12.5
1000 1465 146.5 141 14.1
1150 1589 158.9 154 15.4
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there is no break of this rising rate of the data results. Fur-
thermore, a graph regarding the relationship, differences, 
and data sizes is provided in Fig. 11 within which both of 
black and red staircases perform the role of determined 2D 
and 3D proteins after applying the SOM algorithm.

In Fig. 11, the black stairway indicates the 3D number 
of proteins, while the red stairway represents 2D number of 
proteins, X-axis shows the data size, Y-axis defines the find-
ings both (2D and 3D), and Z-axis indicates the difference 
level of 2D and 3D proteins like here black stair is higher 
than red. From Table 2, it can be realized that the initial 
value of data size was 100 MB, so in graph the initial level 
was defined as 100 MB and topmost value was seemed to be 
1150 MB, similarly for both findings, the initial value was 
zero and topmost was defined as 3000 to cover the experi-
mented last value 2654. Finally, the designed graph illus-
trates three dimensional views of findings of experimented 
data for self-organizing maps algorithm.

4.3 � Bounding box algorithm versus the self‑organizing 
maps

The increasing rate of 2D proteins with the increasing num-
ber of input data size for both the bounding box and SOMs 
algorithms is reported in Table 3.

Table 3 depicts that for 2D proteins, when the data 
size was100 MB, the number of findings in SOMs was 
greater than the Bounding Box. For 150 MB data, it was 
(188 − 103)/100 = 0.85% rise of Bounding box algorithm. 

Consequently, for 200, 250, 450, 700, 900, and 1150 MB 
data size, the increasing rate was 1.44, 1.61, 3.51, 5.76, 
8.75, and 10.65%, respectively, for the SOMs from the 
Bounding Box algorithm. Initially, the rising rate was 
low, but with the increasing amount of input data size, 
the rate seemed to be large such as from 150 to 200 MB 
data, the rising rate was(1.41 − 0.85)% = 0.56%, whereas 
for 450–700 MB data, the rising rate was approximately 
(5.76 − 3.51)% = 2.25%, which is obviously greater than 
0.56%.

The same indications can be perceived from the data in 
Table 3 for 3D proteins region. Initially, the difference was 
[(6 − 4)/100 − (9 − 5)/100] which is exactly 0.02% increase 
of SOM, where for 1150 MB data, the difference seemed 
to be exactly (421 − 154)/100 − (378 − 141)/100 which is 
0.3% increase of SOMs from Bounding Box algorithm for 
3D data. Thus, for both the 2D and 3D findings, the SOMs 
provided better results than the Bounding box algorithm 
although in initial stage the difference was poor; afterwards, 
it increased with the increasing data size.

Figure 12 illustrates the varieties of both 2D and 3D find-
ings between SOMs and Bounding Box algorithms. The 
green staircase represents secondary (2D) SOMs findings, 
the red one defines findings of Bounding Box algorithm for 
2D proteins, and the blue stairway shows the Bounding Box 
detected tertiary (3D) protein, whereas cyan colored mount 
is presenting experimented result of SOMs number of 3D 
proteins. In Fig. 12, X-axis is defined as input data size, 
Y-axis is indicated as findings of SOMs and Bounding Box 

Fig. 10   2D and 3D proteins 
regions determined by the 
bounding box algorithm



243Int. J. Mach. Learn. & Cyber. (2019) 10:229–252	

1 3

Table 2   Self-organizing maps for proteins separation

Proteins data size 
(MB)

SOMs for number of 2D 
Proteins

% of 2D proteins for 10,000 total 
number of proteins (%)

SOMs for number of 3D 
Proteins

% of 3D proteins for 10,000 
total number of proteins (%)

100 109 1.09 6 0.06
150 188 1.88 9 0.09
200 299 2.99 17 0.17
250 365 3.65 23 0.23
300 476 4.76 36 0.36
350 513 5.13 44 0.44
400 701 7.01 59 0.59
450 785 7.85 78 0.78
500 945 9.45 87 0.87
550 1002 10.02 104 1.04
600 1221 12.21 133 1.33
650 1299 12.99 157 1.57
700 1508 15.08 179 1.79
750 1600 16.00 204 2.04
800 1843 18.43 243 2.43
850 1932 19.32 275 2.75
900 2218 22.18 304 3.04
950 2300 23.00 335 3.35
1000 2567 25.67 378 3.78
1150 2654 26.54 421 4.21

Fig. 11   2D and3D proteins 
regions determined by self-
organizing maps algorithm
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algorithm, and the Z-axis shows the experimented results 
differences between them.

In Fig. 12, Z-axis demonstrates that the green mount and 
Cyan colored mount are higher for both secondary (2D) and 
Tertiary (3D) findings than the red and blue one. This hap-
pened because of the efficiency, sensitivity, and time-con-
sumption that the SOM depicted much. Although initially it 
is hard to differentiate as the difference is reduced, but with 
the context of increasing number of data the perspective or 
view is changed. Consequently, clear graphical views after 
rising of data size can be obtained. Consequently, Fig. 12 
suggests that for large number of input data the SOM algo-
rithm definitely had better ability than the bounding box 
algorithm for separating proteins.

4.4 � Time comparisons among bounding box, SOMs 
and PSO centric SOMs

A comparative study for the three algorithms under compari-
son, namely bounding box algorithm, self-organizing map 
and PSO Centric-SOMs algorithm, led to the values report 
in Table 4 in terms of the time consuming in nanoseconds. 
Generally, the bounding box algorithm is a linear time meas-
urement algorithm, which is simple, efficient, and requires 
less time consuming. It takes approximately O(n) times to 
be completed, though the implementation is little bit com-
plicated. Besides, the SOM is also very easy to understand 
and to implement. It can easily classify any type of data in 

an effective manner even faster. Also, it can differentiate 
the similarities and dissimilarities between data fluently. 
The SOMs is more sensitive, thus it can go through higher 
dimensional data and evaluate them. The time complexity 
of the SOMs is quite stable of order O(S2), where S is com-
putational time indicated in Table 4.

The hybrid proposed algorithm (PSO centric-SOMs) 
(Fig. 2) is basically the combination of two methods, namely 
the PSO and the SOM. This process was most reactive and 
also the best less time erosive algorithm. In this proposed 
solution, the SOMs is applied to classify the data and then 
PSO encloses the classification results as much as possible 
in the shortest possible time. The effectiveness of PSO cen-
tric with SOMs algorithm can be noticeable from the data 
in Table 4 regarding the time consuming of both 2D and 
3D proteins for Bounding Box algorithm, SOMs algorithm 
and PSO centric with SOMs algorithm in nanoseconds for 
specific size of data.

Table 4 establishes that the proposed algorithm was the 
most proficient compared to the other algorithms. Thus, the 
SOMs algorithm enhanced the capability and the perfor-
mance of the PSO algorithm, where the significant values are 
in bold. Table 4 suggests large difference between the execu-
tion time of the different algorithms. For example, in the 
case of 100 MB proteins data, the Bounding Box algorithm 
detected the 2D and 3D proteins in 1654 (ns), and the SOM 
took 1209 (ns), while the proposed PSO centric-SOMs algo-
rithm took 784 (ns). A big difference in the time consuming 

Table 3   Bounding box and 
SOMs algorithms

Proteins data 
size (MB)

Bounding box number 
of 2D proteins

SOMs number of 
2D proteins

Bounding box number 
of 3D proteins

SOMs number 
of 3D proteins

100 77 109 4 6
150 103 188 5 9
200 155 299 9 17
250 204 365 13 23
300 244 476 21 36
350 301 513 28 44
400 367 701 35 59
450 434 785 21 78
500 554 945 49 87
550 612 1002 55 104
600 743 1221 62 133
650 823 1299 70 157
700 932 1508 78 179
750 1077 1600 85 204
800 1188 1843 94 243
850 1265 1932 103 275
900 1343 2218 115 304
950 1321 2300 125 335
1000 1465 2567 141 378
1150 1589 2654 154 421
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when using the proposed PSO centric-SOM solution over 
that required when using the Bounding Box is obtained, 
where the proposed method was(1654 − 784) = 870 times 

or (1654− 784)

1654
 = approximately 52.59% faster than Bound-

ing Box. In addition, the proposed PSO Centric-SOM was 
(1209 − 784) = 425 times or (1209− 784)

1209
 = approximately 

35.15% more efficient than the SOMs algorithm. Similarly, 
for 200 MB proteins data, the PSO centric-SOM was almost 
1823 time or 50.59% faster than the bounding box and 898 
times or 33.87% more fluent than the SOM. Consequently, 
when the increasing data size was up to 500 MB, such as in 
the case of 650 MB, then the PSO centric-SOM was 13126 
times or 56.54% and 8567 times or 45.92% efficient than 
bounding box and SOM, respectively. Therefore, for 850 MB 
data, it was 55.52 and 39.41% and for 1150 MB data, the 
PSO centric with SOM was approximately 62 and 48.49% 
more fluent than the others.

Furthermore, with the increasing size of data, the work-
ing capability of PSO centric with SOMs raised and so the 
finding time was also raised in a large rate. For PSO centric 
with SOM, when the data size was 150 MB, the time con-
suming was 1230(ns). Similarly, for 200, 250, 300, 350, and 
400 MB, the execution time was 1753, 2387, 2765, 3365, 
and 3987 ns, respectively, this suggests increasing rate of 
times. In addition, it could be established that the SOM was 
more efficient than the Bounding Box algorithm as in every 
increasing size of data like 100, 150, 200, 250, 600, 700, 
and 750 MB, the SOM was respectively 26.90, 30.08, 25.58, 
26.69, 26.64, 23.90 and 27.75% faster than the bounding 
box algorithm.

From the extensive preceding results, it could be estab-
lished that the PSO centric with SOMs was efficient and 

Fig. 12   2D and 3D findings 
after applying both SOMs and 
bounding box algorithm along 
with data size

Table 4   Time comparisons of the Bounding Box, SOMs and PSO 
centric SOMs algorithms

Proteins data 
size (MB)

Bounding box 
time (ns)

SOMs time (ns) SOMs 
based PSO 
(ns)

100 1654 1209 784
150 2908 2012 1230
200 3576 2651 1753
250 4876 3562 2387
300 6213 4231 2765
350 8642 5987 3365
400 9876 6876 3987
450 10,254 8654 4564
500 14,629 10,976 5432
550 17,652 13,871 6543
600 20,987 15,431 8543
650 23,213 18,654 10,087
700 26,543 20,198 12,076
750 30,987 22,456 13,098
800 33,300 24,541 14,565
850 37,412 27,654 16,754
900 40,987 30,987 18,765
950 44,567 32,765 19,876
1000 49,876 36,432 20,981
1150 56,986 42,876 21,654
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less time consuming than both the bounding box algorithm 
and self-organizing map algorithm. The relations, differ-
ences between results, and the time comparisons reported 
in Table 4 are exhibited in Fig. 13. In Fig. 13, X-axis repre-
sents the data size in Megabyte and each unit differences is 
20 MB of data so 5 means 5 × 20(MB) = 100 MB, similarly 
10 is 200 MB, 15 is 300 MB and so on. Y-axis exhibits the 
time required by each algorithm compared to a specific size 
of data.

In Fig. 13, the blue line indicates the time needed for 
Bounding Box algorithm, for example in the case of 100 MB 
data, 1656 ns time were required, which is figured in the 
graph as point (100, 1656). Similarly, the red line shows the 
time consumed by the SOMs algorithm. The other green 
line represents the consuming time for PSO Centric-SOMs. 
From the graph shown, it is clear that the PSO Centric with 
SOMs was efficient with less time consuming compared 
to SOMs. Moreover, SOMs required less time consuming 
compared to the Bounding Box algorithm. Consequently, 
for increased size proteins data, the proposed PSO Centric 
with SOMs is efficient, requires less time consuming, and 
is more capable than SOMs and Bounding Box algorithm. 
The proposed approach is concerned with the angles and 
hydrocarbon bonds of the proteins during separations. How-
ever, interactions among proteins are not considered. These 
interactions among proteins are complex and significant for 
drug design and disease investigation, which can be studied 
further in the future.

4.5 � Particle swarm optimization for proteins 
classification

Proteins are biologically complicated in nature but exe-
cute a number of significant accessories in human body as 

well as for any kind of living cell. From the last decades, 
proteins have drawn the attention of both the researchers 
and biologists to discover the uncovered knowledge. In 
this current work PSO has been implemented to optimize 
the input datasets. For optimization purpose, the particle 
swarm optimization algorithm was used here considering 
various remarkable benefits in classification:

1.	 The particle swarm optimization can easily manipulate 
the dynamic movements of input proteins. While each 
node of PSO takes proteins as input the proteins are 
movable. Basically, PSO itself follow dynamic process 
to bring all the similar proteins within a particular limit. 
Figure 14 shows dynamic movements of proteins. After 
a certain time, all the moving proteins will be bound 
within a limit following fuzzy logic.

2.	 It always helps to step forward to a solution using less 
number of parameters as well as efficient enough com-
pared to other algorithms. Furthermore, the PSO algo-
rithm is employed to work on fuzzy logic which bind 
each and every proteins within the limit of fuzzy logic 
whereas others algorithms works with crisp logic which 
is almost straightforward.

3.	 The information sharing system PSO follow quite excep-
tionally different from others like in PSO the input lay-
ers are connected with enormous other nodes. Informa-
tion regarding various proteins is transferred not only 
for some exact known values but also each and every 
possible fraction values of proteins.

Therefore, the basic particle swarm optimization algo-
rithm (PSO) is quite easy to implement and a few parame-
ters are required to be evaluated. It also has no overlapping 

Fig. 13   Time comparisons 
among bounding box, SOM and 
PSO centric SOM algorithms
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and mutation calculation along with the ability of better 
performance.

4.6 � Impact self organization mapping on particle 
swarm optimizations

Mapping plays significant role in large dataset processing. 
Self-Organization mapping enables whole datasets into spe-
cific format with the mapping functions as well as feed for-
ward learning. As a result, SOM centric PSO outperforms 
only PSO performances in proteins classifications. This 
research work only considers the number of proteins in both 
the cases (Table 5), where the significant values are in bold.

Table 5 indicates the differences of resultant findings 
for both 2D and 3D proteins by PSO algorithm and SOMs 
based particle swarm optimization (PSO).A large differ-
ence is noticeable while using SOMs based PSO and while 
using only PSO. For the simplicity of manipulation, if we 
consider the constant experiment data as 10,000 proteins, 
then from Table 5, we can notice that for 100 MB data, the 
number  o f  resu l t an t  2D prote ins  were  109 (
109× 100

10000
= 1.09%

)
 after demonstrating only PSO, whereas 

while using SOMs based PSO the finding, was 177, (
177× 100

10000
= 1.77%

)
 2D proteins. The difference is approxi-

mately (1.77 − 1.09)% = 0.68%. Similarly, for 3D proteins, 
the PSO algorithm found about 6, 

(
6× 100

10000
= 0.06%

)
 pro-

teins, meanwhile, SOMs based PSO detected 9, (
9× 100

10000
= 0.09%

)
,  led to  a  dif ference of  about 

(0.09 − 0.06)% = 0.03%. Following same procedure for 
150 MB, 200 MB, 250 MB, 300 MB, the resultant 2D 
proteins for only PSO were 188,

(
188× 100

10000
= 1.88%

)
, 299 

(
199× 100

10000
= 2.99%

)
,  3 6 5  

(
165× 100

10000
= 3.65%

)
,  4 7 6 

(
476× 100

10000
= 4.76%

)
. On the contrary, while SOMs based 

PSO was used, the 2D protein findings were remarkable in 
amounts and for 150, 200, 250, 300 MB the findings were, 
r e s p e c t i v e l y ,  2 4 5  

(
245× 100

10000
= 2.45%

)
,  3 0 1 

(
301× 100

10000
= 3.01%

)
, 489 

(
489× 100

10000
= 4.89%

)
, and 603 

(
603× 100

10000
= 6.03%

)
. The noteworthy differences were 

about (2.45 − 1.88)% = 0.57%, (3.01 − 2.99)% = 0.02%, 
(4.89 − 3.65)% = 1.24%, (6.03 − 4.76)% = 1.27%, which 
represents the effectiveness of proposed algorithm com-
pared to particle swarm optimization (PSO). If we pay 
attention to 3D findings for 150, 200, 250, 300 MB, we get 
0.09, 0.17, 0.23, and 0.36% from PSO alone and also 
0.14%, 0.20%, 0.27%, 0.44% from SOMs based PSO, 
respectively. Therefore, the SOMs based PSO solution led 
to 0.05, 0.03, 0.04, 0.08% better results for 3D proteins 
than PSO alone. Increasing data sizes enlarge the effec-
tiveness of SOMs based PSO than PSO alone. If we con-
sider the data size of 950 MB, 1000 MB and 1150 MB, 
then we get, respectively 23, 25.67, 26.54% of 2D proteins 
and 3.35, 3.78, 4.21% of 3D proteins while experimenting 
by PSO alone. Rather than that while using SOMs based 
PSO on same data set, we get 45.09, 57.80, 70.21% num-
ber of 2D proteins and 16.09, 23.21, 32.14% of 3D pro-
teins. Therefore, the difference which is most remarkable 
was obtained by the proposed algorithm (SOMs based 
PSO),which was approximately 22.09, 32.13, 43.67% 
faster in 2D protein classification than PSO, and also 
12.74, 19.43, 27.93% faster in 3D protein classification 
compared to PSO alone. Here, one thing which also draws 
our attention is the classification process was getting faster 
with the increasing size of data set for proposed approach, 
where PSO alone could not maintain that efficiently. Fig-
ure 15 illustrates the findings comparison while using 
SOMs centric PSO and PSO alone. In Fig. 15, X-axis indi-
cates the data size and Y-axis depicts the findings value of 
both 2D and 3D proteins. Also, the dark salmon curve 
illustrates the findings of 2D proteins after using SOMs 
centric PSO, whereas the deep sky blue curve represents 
the 2D findings after accomplishing PSO alone. Further-
more, the yellow curve is the presenter of 3D findings for 
SOMs centric PSO and grey curve represents the findings 
of 3D proteins experimented by PSO alone. After evaluat-
ing Fig. 15, it comes to our realization easily that overall 
performance or classification ability of SOMs centric PSO 
was (177 − 109) = 68 2D and (9 − 6) = 3, 3D proteins 
faster than PSO alone which was approximately 38.41% 
2D and 33.3% 3D proteins.

Fig. 14   Dynamic movements of proteins
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Therefore, the overall comparison confirms the effec-
tiveness of the proposed approach (SOMs centric PSO) 
compared to particle swarm optimization (PSO) alone.

4.7 � Performance evaluation of SOMs over PSO 
and SOMs less PSO

F-measure has been calculated to verify the performances of 
PSO albeit the SOMs and SOMs less PSO. In addition, the 
specificity and precision have been checked along with recall. 
There are few parameters that control the overall processing. 
These are true positive, false positive, false negative and true 
negative. True positive indicates exact result that should be 

Table 5   Outcomes of SOM 
based PSO and SOM less PSO

Proteins data 
size (MB)

SOMs less PSO for 
2D proteins

SOM centric PSO for 
2D proteins

SOMs less PSO for 
3D proteins

SOM centric PSO 
for 3D proteins

100 109 177 6 9
150 188 245 9 14
200 299 301 17 20
250 365 489 23 27
300 476 603 36 44
350 513 712 44 58
400 701 876 59 77
450 785 987 78 92
500 945 1187 87 105
550 1002 1354 104 134
600 1221 1409 133 165
650 1299 1686 157 201
700 1508 1800 179 277
750 1600 2087 204 498
800 1843 2309 243 654
850 1932 2807 275 965
900 2218 3709 304 1007
950 2300 4509 335 1609
1000 2567 5780 378 2321
1150 2654 7021 421 3214

Fig. 15   Comparison between SOMs based PSO and PSO alone

Fig. 16   Relationship between precision and recall for mapping less 
PSO

Fig. 17   Relationship between precision and recall for SOM centric 
PSO
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the real output. True negative indicates the real limitations of 
the analysis. False positive defines about the wrong predic-
tions during the experiments. False negative means the wrong 
outputs are showing as correct one:

In addition, more other feasible alternative indicators are 
sensitivity and accuracy. Specificity measures the desired out-
comes and precision computes the exact values. Sensitivity 
and accuracy will increase the intensity of the outcomes. How-
ever, in the present work, only protein structures have been 
considered. In that case specificity and precision are enough 
to handle the outcome.

Since the current work focuses on the structures, specificity 
and precision are sufficient. In future work, the sensitivity can 
be measured.

4.7.1 � 1F‑measures of SOM less PSO for 3D portions

F-measures reflect the actual facts of the classification for 
SOM less PSO. F-measure is the ratio between precision and 
recall. Precision measures the true classification by consider-
ing ratio between true classification and summation of true and 
false classification. The values obtained as to F-measures of 
SOM less PSO are indicated in Table 6.

4.7.2 � Mapping less PSO Specificity Measurements

Basic experimental results must have two parts as target areas 
and non-target areas. Targeted values are the pivotal part of the 
research concentration. On the other hand, non-focused points 
are very important for its presence in total dataset. In recent 
machine learning analysis, specificity includes both focused 
and non-focused area. Moreover, the specificity defines to the 
exact options of identifying the non-focused points accurately 
from collected dataset. Mathematically, the specificity is cal-
culated using:

(6)Specificity =
True negative

False positive + true negative

(7)Precision =
True positive

True positive + false positive

(8)

F−measure =
2 true positive

2 true positive + false positive + false negative

(9)Sensitivity =
Truepositive

Truepositive + falsenegative

(10)Accuracy =
Truepositive + Truenegative

Positive + negative

Specificity = 1 − false positive predictions

From the specificity analysis performed, the values 
presented in Table 7 were obtained. From these values, 
it can be easily concluded that SOM less PSO accurately 
detected the non-3D proteins area parts of the total data-
sets. Consequently, the specificity of this processing was 
1 − 0.23 = 0.77 = 77% accurate for SOM less PSO.

4.7.3 � 3F‑measures of SOM centric PSO for 3D portions

F-measures define the actual outcomes of the classification 
for SOM centric PSO. This is the ratio between precision 
and recall. The values obtained as to F-measures of SOM 
based PSO were the ones presented in Table 8.

4.7.4 � Mapping based PSO specificity measurements

General outcomes of the processing contain two parts as tar-
get points and non-target points. Targeted parts are the piv-
otal concentration of the research work. On the other hand, 
non-values points are also very important for its presence in 
total dataset. Mathematically, the specificity is calculated 
using:

From the specificity analysis conducted, the values indi-
cated in Table 9 were obtained. From the obtained values, 

Specificit y = 1 − false positive predictions

Table 6   F-measures of SOM less PSO

Predicted 3D 
proteins

False predicted 
3D proteins

Total

Total 3D proteins 3220 421 123 544
Proteins neither 2D nor 3D 1734 12,543

1755

Table 7   Specificity of SOM less PSO

Precision (P) for SOM less PSO = 421/544 = 77%
Recall (R) = 421/1255 = 24%
F-measure = 0.77/24 = 3.20%
The value of F-measures of SOM less PSO indicates the inability of 
PSO. The value 3.20 indicates that mapping less PSO suffers some 
miss-calculations. The graphical relationship presented in Fig.  16 
between precision and recall demonstrates the impact of PSO for 3D 
proteins classification

Prediction

3D proteins Not 3D proteins

Mapping less PSO
 3D proteins 421 123 544
 Non 3D proteins 1734 12,543 14,277

1755 12,666 14,421
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it can be easily concluded that SOM based PSO accurately 
detected the 3D proteins area parts of the total datasets. 
Hence, the specificity of SOM oriented processing was 
1 − 0.018 = 0.9918 = 99.18% accurate for SOM based PSO.

5 � Conclusion

Machine learning base proteins classifications system help to 
separate proteins into two different groups. Training datasets 
were verified with set of mining methods. Self-organizing 
maps (SOMs) process the whole data with exact shape. It 
acts as data mapper as well as organizer. Initially, shape the 
similar data into a certain region by considering relative dis-
tances among proteins. Then, shape the proteins into corner 
according to their angles. Particle Swarm intelligence ena-
bles faster processing by associating features with common 
nature. Experimental result established that swarm bases 
SOM outperform the swarm less SOMs. The experimental 
results established that the proposed PSO-centric with SOM 
approach is faster than the other algorithms process along 
with less time consumption.

Comparing the proposed algorithm with the findings of 
[32, 17], it is possible to notice a remarkable improvement 
by using the proposed algorithm due to the combination of 
the two methods which strengthened the overall process. The 
present contribution refers a trifles representation regarding 

classification of 2D (secondary) and 3D (tertiary) proteins. 
In addition, quite remarkable findings were noticeable after 
manipulating the huge datasets using PSO centric SOMs 
compared to other algorithms. Since computer science gen-
erally addresses numerical data, thus for the manipulation 
purpose, the biological huge datasets were converted to 
binary values by using the Otsu method [24–26] for further 
process. For clear visualization and interpretation purpose, 
the datasets were represented considering the angles of pro-
teins for detection of variation, patters and trends within the 
datasets. Therefore, all experiments presented in the current 
article using various single and multi-classification algo-
rithms were efficient achieved using less time, and allocating 
shortest memory space along with complex, complicated 
data in sophisticated way. The comparisons have been illus-
trated in the results section (Sects. 4.1–4.7.4).

The results established that the proposed combination of 
algorithms detected higher number of secondary and ter-
tiary proteins compared to the findings of bounding box and 
self-organizing maps alone. The performance evolution also 
shows better result for PSO centric SOMs rather than oth-
ers. Meanwhile, the main contribution of the current work 
is focused on the secondary and tertiary proteins data which 
refers to the use of only homogeneous datasets for experi-
mental purpose. Therefore, a long term goal of working 
with both homogeneous along with heterogeneous datasets 
is recommended in future work. For this consequence, the 
proposed algorithm needs to be developed little bit more to 
ensure faster and accurate manipulation of both homoge-
neous and heterogeneous datasets. Moreover, these works 
is quite straightforward for imbalance datasets and ignore 
this type of data while mapping. Thus, the manipulation of 
imbalance data for achieving more accurate and exact result 
is recommended as a future work.
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