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1 Introduction

As one of important issues in computer vision, object track-
ing plays a vital role in computer vision and has wide appli-
cations, such as image compression, video surveillance, 
activity recognition, human–computer interaction, and so on 
[1]. While much progress has been made in the past decades 
[2], designing a robust tracking algorithm is still a challeng-
ing problem due to multitudinous factors such as occlusion, 
illumination change, motion blur, and background clutter.

In order to track objects, many algorithms have been pro-
posed to model object appearance, which can be divided into 
discriminative approaches [3–10] and generative approaches 
[11–18]. Discriminative methods regard the object tracking 
as a classification problem which concentrates on finding a 
decision boundary to distinguish the target from its back-
ground. Grabner et al. utilize an online boosting algorithm 
to select discriminative features for object tracking [4] and 
later in [5] a semi-online boosting algorithm is presented to 
alleviate the drifting problem. Babenko et al. [6] introduce 
multiple instance learning (MIL) to learn a discriminative 
model. Zhuang et al. [9] present a discriminative sparse 
similarity map generated from a multi-task reverse sparse 
coding approach with Laplacian term for visual tracking. For 
the purpose of utilizing the discriminative information ade-
quately, we construct a discriminative model based on sparse 
representation which can select discriminative features adap-
tively and provide more precise classification results.

Generative tracking methods aim to learn an appearance 
model and search for the most similar image region to the 
target. Adam et al. [11] present a patch-division representa-
tion (Frag) that incorporates spatial-color features. The incre-
mental visual tracking (IVT) method [12] applies a principal 
component analysis (PCA) subspace to represent the tracked 
object and updates the PCA subspace online to account for the 
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dynamic environment. Mei and Ling [14] use a set of target 
and trivial templates to sparsely represent the target object for 
designing a ℓ1 tracker. However, the ℓ1 tracker needs to solve 
a series of ℓ1-minimization problems with expensive com-
putational complexity. In addition, several methods are pro-
posed to improve the original ℓ1 tracker by using accelerated 
proximal gradient algorithms [15], utilizing orthogonal basis 
vectors [16] instead of templates. To exploit the strength of 
both subspace learning and sparse representation, we propose 
a generative model via combining ℓ1 regularization term with 
PCA reconstruction, which is more robust to handle outliers 
and able to process high resolution images.

Recently, several hybrid generative discriminative tracking 
algorithms have been presented to integrate the advantages of 
both generative and discriminative models [19–22]. Zhong 
et al. [21] design two independent sparsity-based models and 
exploit the information from both models to construct a robust 
collaborative model. Zhao et al. [22] propose a hybrid genera-
tive-discriminative appearance model, which utilizes the fea-
tures of the color, texture and SIFT descriptor. To our knowl-
edge, most hybrid generative discriminative tracking methods 
adopt straightforward joint mechanism via multiplying the 
scores or confidence values computed by discriminative 
model and generative model directly. It can be the bottleneck 
to restrict the robustness of the trackers since the deviation is 
accumulated gradually when inaccuracy occurred in either 
module of the collaborative model. To solve this problem, we 
present a novel adaptive selection scheme to ensure that the 
proposed collaborative model does not undergo deterioration 
in tacking process.

In this paper, we present a robust tracking algorithm 
based on a collaborative model with adaptive selection 
scheme. The main work of this paper is as follows. First, 
we develop a sparse discriminative model (SDM) that is 
aimed to distinguish the target from the background. After 
sampling positive and negative templates to constitute the 
dictionary, we formulate a feature selection scheme to select 
discriminative features adaptively. Then a confidence meas-
ure is given to evaluate the candidates. Second, a sparse gen-
erative model (SGM) is presented with subspace representa-
tion, which models the target object and noises explicitly. 
Then we present an effective iterative algorithm to obtain 
optimal coefficients and introduce a distance function to 
measure the distinction between a candidate and the tar-
get. Third, we propose a novel adaptive selection scheme as 
the joint mechanism for our collaborative model, which is 
designed to detect whether the SDM or SGM is degraded 
and formulate appropriate likelihood function accordingly. 
Numerous experiments on challenging image sequences 
compared with state-of-the-art tracking methods demon-
strate the effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. Sec-
tion 2 and Sect. 3 introduce the proposed SDM and SGM 

respectively in details. Section 4 presents our collaborative 
model with the proposed adaptive selection scheme. Sec-
tion 5 shows the proposed tracking method including online 
update scheme. Extensive experimental results and analysis 
are discussed in Sect. 6. Section 7 concludes this paper.

2  Sparse discriminative model

Motivated by recent advances of sparse representation for 
vision tasks [17, 23–25], we propose a sparse discriminative 
model for object tracking.

2.1  Templates extraction

The dictionary is formed by nm positive templates and nn 
negative templates. Firstly, we extract nm image patches from 
the manually labeled target location in the first frame (e.g., 
within a rectangular region). After being normalized to the 
same size, each sampled image patch is put together to con-
stitute the set of positive templates. Similarly, we sample nn 
negative templates further away from the marked location 
(e.g., within an annular region away from the target object) 
to form the negative template set.

2.2  Feature selection

In general, the original feature space is rich yet redundant, so 
it is necessary to adopt dimension reduction strategy. In this 
way, the subsequent computational cost can be decreased 
effectively and the determinative features can be extracted. 
The discriminative features are selected by following 
formula:

where � ∈ ℝd×(nm+nn) contains nm positive templates �+ and 
nn negative templates �−, d denotes the dimension of the 
original features. Each element of the vector � ∈ ℝ(nm+nn)×1 
indicates the label of each template in the dictionary. The 
nonzero elements in the sparse solution vector s correspond 
to discriminative features which we want to select (i.e., the 
features that facilitate better classification results between 
the background and the target object). It is noteworthy that 
the feature selection strategy can choose suitable number 
of discriminative features adaptively in dynamic tracking 
environments.

The features are projected to a new subspace by a projec-
tion matrix S. Initially, a diagonal matrix �′ is constructed as 
follows:

(1)min
�

����
T� − �

���
2

2
+ �‖�‖1,

(2)��
ii
=

{
0, �i = 0

1, otherwise.
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The dimension of the diagonal matrix �′ is d × d. The 
vector s is the solution of Eq. (1). After deleting all-zero 
rows in the diagonal matrix �′, we can obtain the projec-
tion matrix S. Both the dictionary A and the candidates x 
are projected to the discriminative feature space as � = �� 
and � = ��.

2.3  Confidence metric

The proposed SDM is designed based on the assumption that 
the linear combination of positive templates can represent the 
target better while the span of negative templates can repre-
sent the background better. Given a candidate x, it is repre-
sented by the dictionary with the coefficients � computed by

where y and D are the projected matrix of the candidates x 
and the dictionary A, respectively. � is a weight parameter.

The reconstruction error reflects the similarity between a 
candidate and the template set. Thus, the confidence value 
Lc of the candidate x is formulated as follows:

where �n = ‖‖�c − �−�−
‖‖22 and �p = ‖‖�c − �+�+

‖‖22 are the 
reconstruction error of the candidate �c corresponding to 
the negative template set �− and positive template set �+, 
respectively. The variable � is a small constant that measures 
the importance of the SDM module and the SGM module. 
With this confidence measure, candidates are evaluated in 
two criterions: both similarity to the foreground and differ-
ence from the background.

3  Sparse generative model

Despite the sparse discriminative model is successful, it is 
not sufficient in some challenging situations when we need 
to characterize the target object itself. Motivated by the 

(3)min
�

‖� − ��‖2
2
+ �‖�‖1,

(4)Lc = exp
((
�n − �p

)
∕�

)
,

success of sparse coding for object tracking [16, 26, 27], we 
present a sparse generative model which maintains holistic 
appearance information and handles outliers effectively.

3.1  Appearance model with subspace learning 
and sparse representation

In the proposed SGM, both subspace learning and sparse 
representation are applied to model the target appearance. It 
also can be regarded as a combination of ℓ1 regularization 
and PCA reconstruction. Specifically, PCA basis vectors and 
trivial templates are utilized to model the target appearance 
and outliers respectively. Given orthogonal PCA subspace 
� ∈ ℝd×k, where d and k denote the feature dimension and 
the number of basis vectors, respectively. The target region 
� ∈ ℝd×1 can be represented by an image subspace with target 
coefficient � ∈ ℝk×1 and an additional error term � ∈ ℝd×1:

where � ∈ ℝd×d indicates the trivial template set (an iden-
tity matrix). Note that the error term s indicates the noise 
with arbitrary and sparse properties, so we can formulate the 
objective function as follows:

where � is the regularization parameter. As the illustration 
in Fig. 1, target coefficients are dense while the trivial coef-
ficients are sparse.

3.2  Iterative optimization algorithm

The  op t ima l  so lu t i on  can  be  ob t a ined  a s 
[�∗, �∗] = argmin

�,�
L(�, �). The objective function in Eq. (6) 

can be viewed as a combination of the linear regression 
and a ℓ1 regularization term. To the best of our knowledge, 

(5)� = �� + � = [� �]

[
�

�

]
,

(6)L(�, �) =
1

2
‖� − �� − �‖2

2
+ �‖�‖1,

Fig. 1  Object represented by our generative model
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it is convex but not differentiable everywhere. Thus, there 
is no direct solution for this minimization problem, so an 
iterative algorithm within linear regression and soft-
threshold operation is presented to compute �∗ and �∗.

Step 1 Fixing the coefficient �, the problem of solv-
ing Eq.  (6) can be converted to the optimization of 
G(�) =

1

2
‖(� − �) − ��‖2

2
. It is straightforward to obtain 

the optimal value by the ordinary least squares solution 
�∗ = �T(� − �).

Step 2 Fixing the coefficient �, Eq. (6) can be rewritten 
as J(�) = 1

2
‖� − (� − ��)‖2

2
+ �‖�‖1. The optimal �∗ can be 

obtained as �∗ = S�(� − ��), where S�(x) is a soft-threshold 
operator [28] expressed as S�(x) = sgn (x)max (|x| − �, 0) 
and sgn (⋅) is the sign function.

The whole iterative method for solving Eq. (6) is sum-
marized in Algorithm 1.

Algorithm 1 Algorithm for solving Eq. (6) to obtain c* and s*

Input: The candidate sample y, the PCA subspace U, a constant τ .
1: Initialization: s0 = 0 and i = 0
2: Iterate

3:  ( )T
1i i+ = −c U y s

4:   ( )1 1i iSτ+ += −s y Uc

5:   1i i← +
6: Until convergence or termination
Output: c* and s*

3.3  Distance function

The distance is often formulated to vary inversely to the 
probability of a candidate being the target state. Therefore, 
a candidate with smaller distance indicates it is more likely 
to be a target object. Thus, we define the distance between 
y and U as,

where �∗ and �∗ are calculated by Algorithm 1. As introduc-
ing the ℓ1 penalty term into the formulation, our distance 
function is able to reject outliers, which facilitates designing 
a robust generative model for tracking task.

To maintain consistency with the confidence measure 
in SDM, we formulate the similarity function based on 
Eq. (7) to measure the likelihood of the candidates by

where �c denotes the c-th candidate, and � is a constant that 
determines the distribution of the function.

(7)d(�;�) =
1

2
‖� − ��∗ − �∗‖2

2
+ �‖�∗‖1,

(8)Gc = exp
(
−�d

(
�c;�

))
,

4  Collaborative model with adaptive selection 
scheme

4.1  Ordinary collaborative model

Based on the demonstrated success of the collaborative 
model in [21, 22], we can find that most of the collabo-
rative models are constructed by straightforward multi-
plicative operation. We denote them as the ordinary col-
laborative model (OCM). So both the confidence metric 
computed by the SDM and the similarity function of the 
SGM are combined to a unified appearance model. Thus, 
the likelihood function of the OCM within the proposed 
SDM and SGM is computed by

The confidence value Lc assigns higher scores to the 
candidates regarded as positive samples and penalizes the 
others [21].

4.2  Adaptive selection scheme

Although OCM has been demonstrated to be effective 
for some challenging factors, it is not always reasonable 
to construct the likelihood function of the collaborative 
model by simple multiplicative formula. As we empirically 
observed, when we use OCM without detecting scheme, 
slight inaccuracy occurred in either module of the collabo-
rative model will degrade the whole model gradually. To 
address this problem, we propose a novel adaptive selec-
tion scheme (ASS) to supplement the drawbacks of OCM.

Based on the empirical observations that the differ-
ence between the target states in consecutive frames is 
expected to be small, we consider setting a threshold TH to 
determine whether the single model (e.g., SDM or SGM) 
is degraded or not. And then we can adopt appropriate 
strategies accordingly. Specifically, we measure the dis-
tance between the current tracking result and the previous 
target state by applying the Euclidean distance. Then we 
compare the distance with the threshold TH. Before intro-
ducing the proposed adaptive selection scheme, we firstly 
define two kinds of distance as follows:

where �max_dt  and �max_gt  denote the best candidate with maxi-
mum probability for SDM and SGM in the current frame, 
respectively. And �∗

t−1
 is the estimated target state in the pre-

vious frame.

(9)
Hc = LcGc

= exp
((
�n − �p

)
∕�

)
exp

(
−�d

(
�c;�

))
.

(10)dd =
|||�

max_d
t

− �∗
t−1

|||,

(11)dg =
||�max_gt − �∗

t−1
||,
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If dd ⩽ TH  and dg ⩽ TH , it indicates that both SDM 
and SGM are not degraded, so the results computed by the 
two mentioned models are both reliable. The collaborative 
model can be treated as OCM. Thus, the likelihood func-
tion is formulated by multiplicative operation [i.e., Eq. (9)]. 
If dd > TH and dg < TH, it means that SDM is likely to be 
degraded by incorrectly labeled training examples. It will 
result in deviation accumulation when we construct the 
collaborative model as OCM without any handling meth-
ods. Thus, we reserve the results from SGM and discard 
the results computed by SDM (i.e., Hc = Gc). Similarly, if 
dd < TH and dg > TH, the confidence values from SDM are 
selected to be the final measure and the results computed 
by SGM can be negligible (i.e., Hc = Lc). If dd > TH and 
dg > TH, it indicates that both SDM and SGM are likely 
to be degraded in varying degrees. Thus, the model with 
smaller bias is supposed to be selected for representing 
the collaborative model (e.g., if dd < dg, Hc = Lc, and vice 
versa). The steps of our adaptive selection scheme are pre-
sented in Algorithm 2.

Based on the steps mentioned in Algorithm 2, we can for-
mulate the likelihood function of the proposed collaborative 
model with adaptive selection scheme (CM-ASS) as follows:

Compared with the simple multiplicative operation, the 
proposed adaptive selection scheme provides a more flexible 
method tending to choose the better candidate. It can avoid 
introducing the deterioration of the whole collaborative 
model which caused by the loss in SDM or SGM, thereby 
enabling the proposed algorithm to alleviate the tracking 
drift problem. The experimental results presented in Sect. 6 
demonstrate the effectiveness of the proposed adaptive selec-
tion scheme. And the setting method for threshold value TH 
is also discussed in Sect. 6.

Algorithm 2 Adaptive Selection Scheme 
Input: the predefined threshold TH, the pre-computed distance dd  and gd  

1: if andg d gd TH d d> <  

2:   c cH L=  

3: else if andd d gd TH d d> ≥  

4:       c cH G=  
5:    else 
6:       c c cH L G=  
7:    end 
8: end 
Output: the likelihood function cH  

(12)Hc =

⎧⎪⎨⎪⎩

LcGc dd ⩽ TH and dg ⩽ TH

Lc dg > TH and dd < dg
Gc dd > TH and dd ⩾ dg

.

5  Proposed tracking method

5.1  Model update

As the appearance of the target usually changes signifi-
cantly during the tracking process, it is necessary to adopt 
online update scheme to alleviate drifting problem. Our 
model update strategy is categorized into two respects: 
SDM update and SGM update.

For the SDM module, the negative templates are 
updated every several frames, and they are all sampled 
from the image regions away from the current tracking 
result as mentioned in Sect. 2. The positive templates are 
unchanged during the tracking process to avoid introduc-
ing imprecise samples.It is important to sample the cor-
rect and distinct templates to maintain the discriminative 
properties of SDM.

For the SGM module, we introduce an effective update 
scheme based on the observation that the non-zero ele-
ments in the error term can be used to detect outliers. So 
we obtain the observation vector of the best candidate state 
in each frame which is represented by �o and infer its cor-
responding error term �o. Then the observation vector is 
reconstructed by using the mean vector � to substitute the 
outliers,

where yi
r
, �i and si

o
 denote the ith element of the recon-

structed vector, the mean vector, and the error vector, respec-
tively. After cumulating enough reconstructed samples, an 
incremental PCA method [12] is applied to update the SGM 
(i.e., the PCA subspace U in Sect. 3).

5.2  Tracking with Bayesian inference

In this paper, SDM and SGM are unified into the Bayesian 
inference framework to develop a robust tracker. Given a 
series of observed vectors �1:t =

{
�1, �2, ..., �t

}
, the objec-

tive is to estimate the target state variable �t by using 
maximum a posteriori estimation:

where �i
t
 represents the ith sample of the state �t. We esti-

mate the posterior probability p
(
�t|�1:t

)
 by the Bayesian 

theorem recursively:

where p
(
�t|�t−1

)
 indicates the motion model and p

(
�t|�t

)
 

denotes the observation model. The motion model p
(
�t|�t−1

)
 

(13)yi
r
=

{
yi
o
si
o
= 0

�i otherwise
,

(14)�∗
t
= argmax

�it

p
(
�i
t
|�1:t

)
,

(15)

p
(
�t|�1:t

)
∝ p

(
�t|�t

)
∫ p

(
�t|�t−1

)
p
(
�t−1|�1:t−1

)
d�t−1,
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describes the state transition between consecutive frames. 
We use the affine motion model and random walk to for-
mulate the state transition, i.e., p

(
�t|�t−1

)
= N

(
�t;�t−1,Σ

)
,  

where �t =
{
lx, ly, �, s, �,�

}
 include the x, y translations, 

rotation angle, scale, aspect ratio and skew of tracked object 
respectively. Σ is a diagonal covariance matrix of these affine 
parameters. The observation model p

(
�t|�t

)
 indicates the 

likelihood of the observation �t at state �t. Based on the pro-
posed collaborative model with adaptive selection scheme 
in Sect. 4, the likelihood function is formulated by Eq. (12) 
as p

(
�t|�t

)
∝ Hc.

The details of the proposed tracking method are sum-
marized in Algorithm 3. The flowchart of our tracking 
algorithm is shown in Fig. 2.

6  Experiments

The proposed tracker is implemented in MATLAB and 
runs at 2.5 frames per second on a 3.3 GHz CPU with 8 GB 
memory without using parallel framework. The location of 
the target object is manually marked in the first frame for 
each sequence. To evaluate the performance of our tracker, 
we implement experiments on fifteen challenge image 
sequences that contain most challenging factors in object 

Algorithm 3 Collaborative model with adaptive selection scheme for visual tracking

Input: initial target state 0x
1: for t=2 to the final frame do
2:  draw the candidate samples by motion model ( )1|t tp −x x , where 1t−x is the previous object state.
3:  represent each candidate with SDM and SGM.
4:  measure the similarity between the candidates and dictionary A or PCA subspace U using Eq. (4) and 

Eq. (8).
5:  calculate the likelihood function according to Eq. (12) and obtain the best object state *

tx .
6:   sample new negative templates from the image regions away the current tracking result to update the 

dictionary A in SDM every five frames.
7:  reconstruct the observation vector by Eq. (13), and use an incremental PCA method to update the SGM 

after cumulating enough reconstructed samples.
8: end for
Output: Tracking result *

tx for each frame

tracking (e.g., severe occlusion, illumination variation, 
background clutter, motion blur). The proposed tracker is 
evaluated against eight state-of-the-art algorithms, contain-
ing IVT [12], WLCS [29], SCM [21], DSST [9], ASLSA 
[17],  L2-RLS [30], OTSP [16], and  L0-RT [31]. Moreover, 
we combine the proposed SDM and SGM by straightforward 
multiplicative operation as an OCM tracker to observe the 
effectiveness of the proposed adaptive selection scheme in 
Sect. 6.4.

6.1  Implementation details

Each observation is normalized to 32 × 32 pixels, and 16 
PCA basis vectors are utilized for PCA representation. To 

balance the accuracy and speed, 600 particles are adopted 
and the tracker is updated every five frames. The numbers 
of positive templates nm and negative templates nn are 50 
and 200 respectively, since the background usually changes 
more frequently than the foreground. In order to balance the 
sparse representation and discriminative power, the weight 
parameter � of Eq. (1) is fixed to be 0.001, and the variable 
� in Eq. (3) is set to be 0.01. In addition, the regularization 

Fig. 2  Flowchart of the proposed tracking algorithm
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constants � in Eqs. (6) and (7) are set to 0.1 in all experi-
ments empirically.

6.2  Quantitative evaluation

There are two typical criteria in quantitative evaluation of 
object tracking: the center location error and the overlap 
rate. The center location error is defined as the average dis-
tance between the predicted center locations and the ground 
truth. The overlap rate involves the size and pose of the tar-
get to evaluate the stability of the tracker. Given the tracking 
result RT and the corresponding ground truth RG, the overlap 
rate is computed by the PASCAL VOC [32] criterion, 
score =

area(RT∩RG)
area(RT∪RG)

. Note that a smaller center error or a big-

ger overlap rate means a more favorable result. Tables 1 and 
2 report the average overlap rates and average center errors 
of the evaluated algorithms. Figure 3 further shows the 
center error curve of each tracking algorithm.

6.3  Qualitative evaluation

Severe Occlusion We test several sequences (Occlusion1, 
Occlusion2, Caviar1, Caviar2, Caviar3, DavidOutdoor) 
with severe partial occlusion, rotation and pose change. Fig-
ure 4 demonstrates that the proposed algorithm performs 
well when the target undergoes severe occlusion. It can be 
explained by three reasons: (1) the SDM utilizes the discrim-
inative information of the target object and the background 
to obtain better classification results; (2) the SGM handles 
outliers effectively and exploits subspace representation to 
provide sufficient generative information; and (3) the adap-
tive selection scheme is aimed to avoid degrading the collab-
orative model by discarding inaccurate model temporarily. 
The IVT method achieves poor performance under occlu-
sion situation as the weak ability of handling outliers. In the 
Caviar3 sequence, the targets undergo heavy occlusion and 
the interference of similar objects. The  L0-RT method does 
not perform well since the lack of enough representative 

Table 1  Average center location error (in pixel)
Sequence IVT WLCS SCM DSST ASLSA L2-RLS OTSP L0-RT OCM SDM SGM CM-ASS(Ours)

Occlusion1 12.5 4.3 3.3 17.1 9.5 4.7 4.7 5.2 5.4 6.7 5.3 4.6
Occlusion2 7.8 4.7 4.7 8 4.5 7.7 4 3.7 3.6 7 3 3

Caviar1 87.1 1.2 1 1.9 1.6 1.5 1.7 1.6 1.6 1.9 1.5 1.3
Caviar2 4.3 2.7 2.3 3.6 1.7 2.3 2.2 1.9 2.2 3.9 2.2 2.2
Caviar3 62.7 75.2 2.8 61.5 2.2 3.2 4.4 62.6 2.8 2.8 2.6 2.6

DavidOutdoor 52.4 240.6 67.1 73.3 86.5 8.9 8.5 7.9 52.4 6.8 52.4 6.6
DavidIndoor 35.9 8.5 43.5 13.2 19.9 129.3 3.2 152.9 5.7 108.9 3.8 3

Singer1 12.8 3.6 3.3 8.8 3.8 24.9 4.8 3.6 3.5 3.5 5.4 3.4
Car4 9.3 3.6 2.9 5.8 4.3 3.5 4 3.1 3.1 5.7 3.3 2.8

Car11 1.7 1.8 1.8 3.5 1.8 1.7 2.2 1.9 1.6 2.8 1.5 1.5
Deer 16.5 9.8 15 10.3 7 9.8 11.3 12.4 9.8 15.9 9.8 9.6

Football 17.3 171.8 15.2 66.2 14.7 11 33.7 7.5 23.3 155.3 23 7.5
Jumping 5 95.9 3.9 6.8 5.2 5.2 5 4.5 4.7 5.4 4.8 4.4

Owl 126.7 10 8.5 6 5.6 7.2 47.4 186.8 111.3 233.8 119.2 5.9
Face 14.9 89.5 46.9 13.6 89.8 14.1 24.1 12.5 12.6 12.9 12.3 12

Average 31.1 48.2 14.8 20.0 17.2 15.7 10.7 31.2 16.2 38.2 16.7 4.5

The best three results are shown in red, blue, and green fonts. (Color table online)

Table 2  Average overlap rate
Sequence IVT WLCS SCM DSST ASLSA L2-RLS OTSP L0-RT OCM SDM SGM CM-ASS(Ours)

Occlusion1 0.80 0.92 0.94 0.74 0.85 0.91 0.91 0.90 0.89 0.86 0.89 0.91
Occlusion2 0.73 0.82 0.82 0.73 0.83 0.74 0.84 0.83 0.82 0.72 0.86 0.86

Caviar1 0.28 0.90 0.90 0.87 0.90 0.89 0.89 0.87 0.89 0.85 0.88 0.89
Caviar2 0.62 0.77 0.80 0.76 0.83 0.69 0.71 0.76 0.81 0.77 0.81 0.81
Caviar3 0.14 0.14 0.85 0.14 0.85 0.82 0.81 0.15 0.85 0.84 0.86 0.86

DavidOutdoor 0.52 0.11 0.38 0.30 0.46 0.74 0.74 0.72 0.57 0.74 0.57 0.75
DavidIndoor 0.44 0.69 0.33 0.57 0.45 0.23 0.76 0.27 0.71 0.36 0.75 0.77

Singer1 0.57 0.85 0.84 0.66 0.82 0.47 0.82 0.81 0.83 0.82 0.78 0.83
Car4 0.68 0.88 0.90 0.77 0.88 0.91 0.91 0.91 0.92 0.88 0.91 0.92

Car11 0.82 0.75 0.80 0.75 0.83 0.83 0.81 0.81 0.84 0.78 0.84 0.85
Deer 0.54 0.61 0.56 0.62 0.63 0.60 0.58 0.55 0.61 0.54 0.61 0.63

Football 0.58 0.27 0.61 0.48 0.59 0.66 0.62 0.64 0.50 0.27 0.51 0.70
Jumping 0.61 0.04 0.73 0.61 0.67 0.67 0.69 0.64 0.67 0.67 0.67 0.67

Owl 0.22 0.77 0.77 0.78 0.79 0.78 0.48 0.23 0.50 0.19 0.48 0.82
Face 0.71 0.47 0.56 0.75 0.30 0.72 0.68 0.75 0.75 0.76 0.75 0.76

Average 0.55 0.60 0.72 0.64 0.71 0.71 0.75 0.66 0.74 0.67 0.74 0.80

The best three results are shown in red, blue, and green fonts. (Color table online)
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Fig. 3  Quantitative evaluation of the trackers in terms of center location error (in pixel). a Occlusion1, Occlusion2 and Caviar1. b Caviar2, 
Caviar3, and DavidOutdoor. c DavidIndoor, Car4 and Singer1. d Car11, Deer and Football. e Jumping, Owl and Face
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power. In the DavidOutdoor sequence, most trackers lose 
the target while our tracker performs stably during the whole 
sequences. The IVT, WLCS, SCM and ASLSA methods 
are susceptible to appearance changes caused by occlusion 
and pose (e.g., #085, #155), whereas the trackers  L2-RLS, 
OTSP, and  L0-RT perform better since they all take outliers 
into consideration.

Illumination change Fig. 5 illustrates the tracking results 
in the sequences (DavidIndoor, Car4, Singer1) with drastic 
illumination change and pose variation. Due to the use of 
discriminative features from SDM and incremental PCA 

method in SGM, the proposed method performs well in 
handling the illumination change. In the singer1 sequence, 
the stage light and scale change drastically. Likewise, in the 
DavidIndoor sequence, when the person walks from a dark 
room into a bright area with pose variation, his appearance 
changes drastically. The  L2-RLS tracker is less effective 
in both of the two sequences (e.g., DavidIndoor #252 and 
Singer1 #264) for the weak sparse projection coefficient 
causing the features redundant. The SCM tracker does not 
perform well in the DavidIndoor sequence (e.g., #380 and 
#580) as it is susceptible to deformation.

Fig. 4  Sample tracking results of evaluated algorithms on six image sequences with severe occlusion, in-plane rotation and pose variation. a 
Occlusion1. b Occlusion2. c Caviar1. d Caviar2. e Caviar3. f DavidOutdoor

Fig. 5  Sample tracking results of evaluated algorithms on three image sequences with illumination changes. a DavidIndoor. b Car4. c Singer1
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Background clutter Fig. 6 shows the tracking results in 
the sequences (Car11, Deer and Football) with background 
clutters. Since SGM maintains holistic information and the 
proposed SDM provides accurate classification results, the 
proposed algorithm performs better against other methods 
in these sequences (e.g., Deer #029, Football #320). In Deer 
sequence, it is difficult to locate the target accurately as the 
background are similar to the foreground (e.g., #029). In 
Football sequence, there are many players with similar 
equipments as the target person in court field. Our tracker 
locates the target accurately during the sequence whereas 
most of the other trackers drift away from the target (e.g., 
#320). The WLCS tracker does not perform well (e.g., #114) 
since it concentrates on local model and ignores holistic tem-
plate. The OTSP tracking algorithm loses the target (e.g., 
#320) since the lack of background information makes its 
discriminative power poor.

Motion Blur Fig. 7 demonstrates the tracking results on 
the sequences (Jumping, Owl and Face) with motion blur. 
When the tracked target undergoes motion blur, it is a chal-
lenging task to estimate the location of the target precisely. 
Due to the strong discriminative power provided by SDM 
and the use of PCA representation in SGM, the proposed 
method performs more stably than the other approaches 
(e.g., Owl #568 and Face #302). The WLCS tracker fails 
to track the target at the beginning of the Jumping sequence 
(e.g., Jumping #067). In Owl sequence, frequent motion 
of the camera results in blurred appearance. The OTSP 
tracker can capture the target in some frames (e.g., #280) 
but drifts when drastic motion occurs (e.g., #444). For the 
Face sequence, the ASLSA method does not perform well 
(e.g., #248) since it only focuses on foreground information.

6.4  Analysis and discussion

Effect of threshold value TH Since an appropriate threshold 
value TH is important to our adaptive selection scheme, we 
conduct experiments on four representative image sequences 
to explore the effects of the threshold value TH in a reason-
able range. Figure 8 shows the overlap rate curve of the pro-
posed algorithm with different threshold values. Generally, 
very small value of TH leads to a poor performance, because 
the joint mechanism is sensitive to the difference between 
two consecutive frames. Thus, in most cases, the tracker is 
supposed to select a single model (SDM or SGM) as the 
final measure, which is unable to utilize superiority of the 
collaborative model. When TH is too large, the performance 
starts to degrade as the constraint is relaxed. So the selection 
scheme is not able to find the degraded model, and the likeli-
hood function of the collaborative model tends to be OCM 
[i.e., Eq. (9)] in most cases. It is observed that when TH 
is equal to 0.12, our tracker achieves the best performance 
over all used image sequences. So we set TH = 0.12 for the 
proposed CM-ASS.

Effectiveness of adaptive selection scheme As aforemen-
tioned, we propose SDM and SGM respectively, and then 
combine the proposed SDM and SGM using ASS strategy. 
To reveal the effectiveness of ASS strategy, we compare the 
tracker that integrating the proposed SDM and SGM using 
straightforward multiplicative operation (named as OCM) 
with the proposed CM-ASS. For fair comparison, these two 
trackers are evaluated with appropriate parameter settings 
and the best experimental results for each tracker are pre-
sented. Figure 9 illustrates the different tracking centroids 
in y direction on two sequences DavidOutdoor and Football 

Fig. 6  Sample tracking results of evaluated algorithms on three image sequences with background cluttered. a Car11. b Deer. c Football
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using OCM/CM-ASS. If the target undergoes partial occlu-
sion as shown in Fig. 9a, the OCM method will drift away 
from the target. When the football player undergoes cluttered 
background situations (e.g., Fig. 9b), the tracker with OCM 
loses track of the target. While the proposed CM-ASS is able 

to locate the target successfully and approach to the ground 
truth curve. This can be attributed to the effectiveness of 
ASS. The proposed ASS is able to detect whether the SDM 
or SGM is degraded timely by a distance metric. Then it 
helps the tracker discard inaccurate model temporarily and 

Fig. 7  Sample tracking results of evaluated algorithms on three image sequences with motion blur. a Jumping. b Owl. c Face

Fig. 8  Overlap rate curve of the 
proposed algorithm with dif-
ferent threshold values on four 
representative image sequences. 
a Caviar3. b DavidIndoor. c 
Deer. d Owl
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construct a more reasonable likelihood function to evalu-
ate the candidates for the current frame. Thus, the proposed 
ASS is effective to avoid introducing unreliable results.

CM-ASS vs SCM SCM is a typical tracking algorithm 
based on collaborative model. As shown in Tables 1 and 2, 
CM-ASS achieves better performance than SCM in most 
cases. Since the integration of holistic information and part-
based representation, SCM can perform well when there are 
no drastic changes in the appearance of the object or less 
disturbed factors (e.g., Caviar1 and Singer1). Nevertheless, 
we find out that SCM degrades when the target undergoes 
large appearance changes, especially in the case of abrupt 
motion (e.g., #304 of Face in Fig. 7c), illumination variation 
(e.g., #252 of DavidIndoor in Fig. 5a) and pose change (e.g., 
#155 of DavidOutdoor in Fig. 4c). This can be explained by 
the fact combining the discriminative model and the genera-
tive model directly without any detecting mechanism is not 
always reliable. Inaccuracy occurred in one of the collabora-
tive model can deteriorate the whole model gradually with 
drifts. The proposed CM-ASS tracker is well designed to 
address this problem and performs more stably against SCM.

CM-ASS vs SDM/SGM Since the proposed CM-ASS is 
based on two modules:SDM and SGM, we further demon-
strate how they complement each other and the merits of 
CM-ASS. The experimental results in term of SDM and 
SGM are also presented in Tables 1 and 2. When the target 
object undergoes severe occlusion and drastic illumination 
change (e.g., DavidOutdoor and Singer1), the SDM tracker 
achieves better performance than SGM tracker. The reason 
is that the SDM is designed to differentiate the target from 

the background and has strong discriminative power. On the 
other hand, in some cases (e.g., Occlusion2, DavidIndoor 
and Deer), the SGM tracker is more effective than the SDM 
tracker. This can be attributed to the fact that SGM han-
dles outliers effectively and maintain enough representative 
power. Over all, the collaborative model performs better than 
or equal to the SDM and SGM individually. As shown in 
Fig. 10, both SDM and SGM tracker lose the target in Owl 
sequence whereas the proposed CM-ASS performs well. 
This can be attributed to that the proposed ASS enables the 

Fig. 9  Centroids of objects using different joint mechanism, i.e., OCM vs ASS. a centroid in y direction on DavidOutdoor sequence. b centroid 
in y direction on Football sequence

Fig. 10  Overlap rate of tracking algorithms based on the CM-ASS, 
SDM and SGM on Owl sequence
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collaborative model to integrate the superiority of SDM and 
SGM modules effectively.

6.5  Computational complexity

The most time consuming part of the proposed track-
ing method is to compute the optimal coefficients using 
the templates and PCA basis vectors for SDM and SGM 
respectively. For SDM module, the coefficients are com-
puted by LASSO algorithm, so its time complexity is 
O
(
d2 + d

(
nm + nn

))
, where d denotes the dimension of an 

image observation, nm + nnis the sum of positive and nega-
tive templates. For SGM module, the computational load 
is mainly from step 3 in Algorithm 1, so the complexity is 
O(ndk), where k represents the number of PCA basis vec-
tors, n indicates the number of iterations in Algorithm 1. 
So the computational complexity of our tracking algorithm 
is O

(
d2 + d

(
nm + nn

)
+ ndk

)
. The computational efficiency 

of different trackers is presented in Table 3. For fair com-
parison, the evaluated tracking algorithms are implemented 
in MATLAB using source code. As shown in Table 3, the 
proposed tracker is faster than SCM, DSST, ASLSA tracker. 
The running time of our algorithm can be further reduced by 
parallel computation framework.

7  Conclusion

In this paper, we propose a robust and effective tracking 
algorithm based on a collaborative model with adaptive 
selection scheme. Based on the discriminative features 
extracted from positive and negative template sets, the 
sparse discriminative model differentiates the target from 
the background via the feature selection scheme and con-
fidence measure strategy. The sparse generative model that 
combines ℓ1 regularization with subspace learning is effec-
tive to handle outliers and has strong representation power. 
In addition, a novel adaptive selection scheme based on 
Euclidean distance is presented as the joint mechanism to 
construct a more reliable likelihood function, which facili-
tates better performance compared with the existing hybrid 
generative discriminative tracking algorithms. The pro-
posed discriminative and generative models are integrated 
in a Bayesian inference framework by the adaptive selection 
scheme. Furthermore, the template sets and PCA subspace 
are updated with different schemes to alleviate drift problem 
and enhance the proposed algorithm to handle appearance 

changes during dynamic environments. Quantitative and 
qualitative evaluations validate that the proposed method 
can achieve more robust performance compared with sev-
eral competitive algorithms. In the future, we plan to utilize 
the local features of image patches for more effective object 
tracking.
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