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1  Introduction

Kernel methods such as support vector machines (SVM) 
and kernel Fisher discriminant analysis (KFDA) have deliv-
ered extremely high performance in a wide variety of learn-
ing tasks [1, 2]. Basically, kernel methods work by map-
ping the data from the input space to a high-dimensional 
(possibly infinite) feature space, which is usually chosen to 
be a reproducing kernel Hilbert space (RKHS), and then 
building linear algorithms in the feature space to imple-
ment nonlinear counterparts in the input space. The map-
ping, rather than being given in an explicit form, is deter-
mined implicitly by specifying a kernel function (or simply 
a kernel), which computes the inner product between each 
pair of data points in the feature space. Since the geo-
metrical structure of the mapped data in the feature space 
is totally determined by the kernel function, choosing an 
appropriate kernel function and thus an appropriate feature 
space has a crucial effect on the performance of any kernel 
method. Kernel design and optimization is often considered 
as the problem of kernel learning, which is one of the cen-
tral interests in kernel methods [3–5].

Measuring dependence of random variables is one 
of the main concerns of statistical inference. A typical 
example is the inference of a graphical model, which 
expresses the relations among variables in terms of 
independence and conditional independence [6]. A gen-
eralization of this idea in kernel methods is to embed 
probability distributions into RKHSs, giving us a linear 
method to infer properties of the distributions, such as 
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independence and homogeneity [7–9]. In the last decade, 
various kernel statistical dependence measures have been 
proposed for statistical analysis, such as kernel general-
ized variance [10], kernel constrained covariance [11] 
and Hilbert–Schmidt independence criterion (HSIC) 
[12]. These measures differ in the way they summarize 
the covariance operator spectrum and the normalization 
they use. Among these measures, HSIC is the most well 
known, which is defined as the Hilbert–Schmidt norm of 
the cross covariance operator between RKHSs. With sev-
eral key advantages over other classical metrics on distri-
butions, namely easy computability, fast convergence and 
low bias of finite sample estimates, HSIC has been suc-
cessfully applied in statistical test of independence [7, 9]. 
More interestingly, HSIC is a very useful tool for many 
machine learning problems. For instance, clustering can 
be viewed as a problem where one strives to maximize 
the dependence between the observations and a discrete 
set of labels [13, 14]. If labels are given, feature selec-
tion can be achieved by finding a subset of features in the 
observations which maximize the dependence between 
features and labels [15, 16]. Similarly in subspace learn-
ing, one looks for a low dimensional embedding which 
retains additional side information such as class labels 
and distances between neighboring observations [17, 18].

Although HSIC has been widely applied in machine 
learning, there is as yet no application in kernel learning. 
The core objective of kernel learning is to guarantee good 
generalization performance of the learning machine (pre-
dictor). Kernel learning is usually implemented by mini-
mizing the generalization error, which can be estimated 
either via testing on some unused data (hold-out testing 
or cross validation) or with theoretical bounds [19, 20]. 
The notion bounding the generalization error provides 
approaches not only for selecting single optimal kernel but 
also for combining multiple base kernels [4, 21]. There 
are mainly two limitations for these methods. Firstly, they 
are dependent of the predictor. For instance, the radius-
margin bound [19, 20] is only applicable to SVM. Second, 
they require the whole learning process for evaluation. For 
example, usually the most sophisticated techniques for ker-
nel learning based on the radius-margin bound are gradi-
ent descent algorithms. However, these algorithms, at each 
iteration, require training the learning machine and solving 
an additional quadratic program to compute the radius of 
the smallest ball enclosing the training data in the RKHS 
[3]. Many universal kernel evaluation measures have 
been proposed to address these limitations, such as kernel 
alignment [22–24], kernel polarization [3, 25, 26], feature 
space-based kernel matrix evaluation measure [27] and 
class separability [28]. From geometric points of view, ker-
nel learning with these measures actually searches for an 
optimal RKHS, in which data points associated with the 

same class come close while those belonging to different 
classes go apart.

In this paper, we investigate the kernel learning problem 
from a statistical viewpoint: given the input data (such as 
features) and outputs (such as labels), we aim to find a ker-
nel such that the statistical dependence between the input 
data and outputs is maximized. Specifically, we first pre-
sent a general kernel learning framework with the HSIC 
based on the observation that rich constraints on the out-
puts can be defined in RKHSs. We will see that this frame-
work is directly applicable to classification, clustering and 
other learning models. As a special case of kernel learn-
ing, we propose a Gaussian kernel optimization method by 
maximizing the HSIC, where two forms of Gaussian ker-
nels (spherical kernel and ellipsoidal kernel) are consid-
ered. Using the derivatives of HSIC with respect to kernel 
parameters, gradient-based optimization techniques can be 
employed to address these maximization formulations. The 
relationship between the proposed approach and the cen-
tered kernel alignment method [23], which is an improved 
kernel evaluation technique based on the popular kernel 
target alignment method [22], is also discussed.

The rest of the paper is structured as follows. We review 
the basics of HSIC in Sect. 2. In Sect. 3, we first present 
a general kernel learning framework that can be applied 
to different learning models, and then propose a Gaussian 
kernel optimization method for classification in this frame-
work. We also discuss the relationship between the HSIC 
and centered kernel alignment measure. In Sect.  4, the 
empirical results are provided, followed by the conclusion 
and future work in Sect. 5.

2 � Hilbert–Schmidt independence criterion

Let X and Y be two domains from which we draw a set 
of samples D = {(xi, yi)}

n
i=1

 jointly from some probabil-
ity distribution Pxy. The HSIC [12] measures the depend-
ence (or independence) between x and y by computing the 
norm of the cross-covariance operator over the domain 
X × Y in RKHS. Formally, let F and G be the RKHSs 
on X and Y with feature maps �:X → F and �:Y → G, 
respectively. The associated reproducing kernels are 
defined as k(x, x�) = ⟨�(x),�(x�)⟩ for any x, x� ∈ X and 
l(y, y�) = ⟨�(y),�(y�)⟩ for any y, y� ∈ Y, respectively. The 
cross-covariance operator between feature maps � and � is 
defined as a linear operator Cxy:G → F, such that:

where ⊗ is the tensor product, and the expectations Exy, Ex, 
and Ey are taken according to some probability distribution 
Pxy and the marginal probability distributions Px and Py, 

(1)Cxy = Exy{(𝜙(x) − Ex[𝜙(x)])⊗ (𝜙(y) − Ey[𝜙(y)]}
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respectively. The HSIC is then defined as the square of the 
Hilbert–Schmidt norm of Cxy:

where Exx′yy′ is the expectation over both (x, y) ∼ Pxy and 
an additional pair of variables (x�, y�) ∼ Pxy drawn indepen-
dently according to the same law. It is easy to see that if 
both feature maps are linear (i.e., �(x) = x and �(y) = y), 
HSIC is equivalent to the square of the Frobenius norm of 
the cross-covariance matrix. Given D, an empirical estima-
tor of HSIC is given by

where tr( ⋅ ) is the trace operator, � = (1, ⋅ ⋅ ⋅, 1)T ∈ Rn, and 
�,� ∈ Rn×n (R denotes the set of real numbers) are respec-
tively the kernel matrices defined as �i,j = k(xi, xj) and 
�i,j = l(yi, yj). Moreover, � = � − ��T

/
n ∈ Rn×n is a center-

ing matrix, where � ∈ Rn×n is the identity matrix.
The attractiveness of HSIC stems from the fact that the 

empirical estimator can be expressed completely in terms 
of kernels. For a particular class of kernels, i.e. the so-
called universal or characteristic kernels [6, 29] such as 
Gaussian and Laplace kernels, HSIC is equal to zero if and 
only if two random variables are statistically independent. 
Note that non-universal and non-characteristic kernels can 
also be used for HSIC, although they may not guarantee 
that all dependence is detected [16]. In general, the larger 
HSIC is, the larger the dependence between two random 
variables.

3 � Kernel learning with HSIC

3.1 � A general kernel learning framework

As a typical kernel method, HSIC used by previous work 
requires us to choose kernels manually because no objec-
tive model selection approaches are available. In practice, 
using Gaussian kernel with width parameter set to the 
median distance between samples is a popular heuristic 
[7, 12], although such a heuristic does not always work 

(2)

HSIC(F,G,Pxy) = ||Cxy||2HS
= Exx�yy� [k(x, x

�)l(y, y�)]

−2Exy{Ex� [k(x, x
�)]Ey� [l(y, y

�)]}

+Exx� [k(x, x
�)]Eyy� [l(y, y

�)]

(3)

HSIC(F, G,D) =
1

n2
tr(��) −

2

n3
�T��� +

1

n4
�T���T��

=
1

n2

[
tr(��) −

1

n
tr(����T) −

1

n
tr(����T) +

1

n2
tr(���T���T)

]

=
1

n2

{
tr

[
��

(
� −

1

n
��T

)]
−

1

n
tr

[
K��T�

(
� −

1

n
��T

)]}

=
1

n2
tr

[
�

(
� −

1

n
��T

)
�

(
� −

1

n
��T

)]

=
1

n2
tr(����)

well [30]. Different from previous work, we here use the 
HSIC as an evaluation criterion to assess the quality of a 
kernel for kernel learning. For machine learning, X and Y 
can be seen as the input space and output space, respec-
tively. Correspondingly, � and � are the kernel matrices 
for input data and output labels, respectively. Intuitively, 
good kernels should maximize the statistical depend-
ence between the kernel for input data and the kernel for 
output labels. Hence kernel learning can be cast into the 
dependence maximization framework in the following 
way:

That is to say, kernel learning can be viewed as maxi-
mizing the empirical HSIC subject to constraints on � 
and �, for particular Hilbert spaces on the inputs and 
labels.

There are several advantages of this framework. First, 
the empirical HSIC is stable with respect to different 
splits of the data since it is sharply concentrated around 
its expected value (the empirical HSIC asymptotically 
converges to the true HSIC with O(1

�√
n) [12]). This 

means that the same kernels should be consistently 
selected to achieve high dependence when the data are 
repeatedly drawn from the same distribution. Second, the 
empirical HSIC is easy to compute (it can be computed in 
O(n2) time [12, 16]) since only the kernel matrices � and 
� are needed and no density estimation is involved. Fur-
thermore, evaluating the empirical HSIC is independent 
of the specific learning machines. These mean that we 
can use only the training data to select the good kernels 
in an efficient way prior to any computationally intensive 
training of the kernel machines. Finally and most impor-
tantly, rich choices of kernels can be directly applicable 
to the inputs and labels. This freedom of choosing ker-
nels allows us to generate a family of kernel learning 
models via simply defining appropriate kernels (in some 
sense, these kernels incorporate prior knowledge of the 
leaning tasks at hand) on the inputs and outputs, respec-
tively. Some examples are given as follows:

1.	 Kernels on inputs. Kernels on the input data can be 
either the popular used kernels, suchas polynomial 
kernel and Gaussian kernel, or kernels defined on non-
vectorial data, such as string kernel, tree kernel and 
graph kernel. Moreover, instead of using a single ker-
nel, we can use kernel combinations. A popular tech-
nique addressing this issue is multiple kernel learning 
(MKL) [4, 26], which aims to learn an optimal com-
bination of a set of predefined base kernels. If we con-
sider the convex combination of the base kernels, the 

(4)
�∗ = max

�
tr����

s.t. constraints on � and�
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problem of kernel learning can be transformed to the 
problem of determining the combination coefficients:

	

 where �i (i = 1,… ,m) are the base kernels and 
� = (�1,… ,�m)

T is the weight coefficient vector of the 
given base kernels.

2.	 Kernels on outputs. Generally speaking, kernels on the 
output labels can be as general as those defined on the 
input data. However, in kernel learning, prior knowl-
edge of the learning models should be more considered 
to define such kernels. We can define different kernels 
according to different leaning models, such as classifi-
cation and clustering. For classification, the kernel can 
be defined as

	

This definition reveals the ideal pairwise similarities 
between samples, i.e. the similarities from the same class 
are set to +1 while those from different classes are −1. 
For clustering, since the labels are not provided, the defi-
nition of kernels is somewhat more complex. Song et al. 
[13] proposed a method to define such kernels. They first 
chose a symmetric positive semidefinite matrix A of size 
b × b (b denotes the number of clusters and b ≪ n) defin-
ing the similarities between samples in Y, and then used 
a partition matrix � of size n × b to parameterize the ker-
nel matrix of the outputs as

(5)

�∗ = max
�

tr����

s.t. � =

m∑
i=1

�i�i, �i ⩾ 0,

m∑
i=1

�i = 1,

and constraints on �

(6)l(yi, yj) =

{
−1 yi = yj

+1 yi ≠ yj

Each row of � contains all zeros but a single entry of 1. 
Actually, the partition matrix � constrains us to assign each 
sample to a particular cluster by putting 1 in an appropriate 
column, which means each sample should be assigned to 
one and only one cluster.

To summarize, our formula (4) is very general: we can 
obtain a family of kernel learning algorithms by combin-
ing a kernel for the input space and another for the output 
space. For instance, we can have a model of multiple kernel 
classification [23] by combining the formulas (5) and (6), 
and obtain an algorithm of multiple kernel clustering [31] 
by combining the formulas (5) and (7).

3.2 � Gaussian kernel optimization for classification

In this section, we will illustrate a special case of kernel 
learning in the proposed framework, i.e. the kernel on the 
inputs is the Gaussian kernel and that on the outputs is 
defined as (6). Our objective is to learn the parameters of 
the Gaussian kernel for classification. Two forms of Gauss-
ian kernel are considered. One is the spherical kernel and 
the other is the ellipsoidal kernel, which are given by (8) 
and (9), respectively:

For the spherical kernel, the � (𝜎 > 0) is the kernel 
width parameter. For the ellipsoidal kernel, d denotes the 
number of dimensions, and xiz and �z (𝜎z > 0) are respec-
tively the zth component of the sample xi and the width for 
the zth dimension.

Let 𝐋̄ = 𝐇𝐋𝐇 and � denotes the kernel parameter set, 
we have � = {�} and � = {�1,… , �d} for the spherical ker-
nel and ellipsoidal kernel, respectively. The optimal �∗ can 
be obtained by

(7)� = �A�T

(8)k(xi, xj) = exp

⎛⎜⎜⎜⎝
−

���xi − xj
���
2

2�2

⎞⎟⎟⎟⎠

(9)k(xi, xj) = exp

⎡⎢⎢⎢⎣
−

d�
z=1

⎛⎜⎜⎜⎝

���xiz − xjz
���
2

2�2
z

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

(10)

�∗ = max
�

tr𝐊𝐇𝐋𝐇 = max
�

tr𝐊𝐋̄ = max
�

n∑
i=1

n∑
j=1

𝐊i,j𝐋̄i,j

= max
�

n∑
i=1

n∑
j=1

𝐊i,j

(
𝐋i,j −

1

n
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i=1

𝐋i,j−
1

n
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j=1

𝐋i,j+
1

n2
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i=1
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j=1

𝐋i,j

)

= max
�

n∑
i=1

n∑
j=1

k(xi, xj)

[
l(yi, yj) −

1

n

n∑
i=1

l(yi, yj)−
1

n

n∑
j=1

l(yi, yj)+
1

n2

n∑
i=1

n∑
j=1

l(yi, yj)

]
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The first and second derivatives of tr���� with respect 
to � can be formulated as (11) and (12), respectively.

For the spherical Gaussian kernel, the first and second 
derivatives of k(xi, xj) with respect to � can be computed by 
(13) and (14), respectively.

For the ellipsoidal Gaussian kernel, the first and second 
derivatives of k(xi, xj) with respect to � are given by (15) 
and (16), respectively.

According to (11)–(16), the optimal kernel parameter 
set �∗ can be found by using gradient-based optimization 
techniques.

3.3 � Relation to centered kernel alignment method.

The notion of kernel alignment, which measures the degree 
of agreement between a kernel and a learning task, is widely 
used for kernel learning due to its simplicity, efficiency and 
theoretical guarantee [22, 24]. Mathematically, with two 
kernel matrices � and �, kernel alignment is given by:

(11)�tr����

��
=

n∑
i=1

n∑
j=1

�k(xi, xj)

��

[
l(yi, yj) −

1

n

n∑
i=1

l(yi, yj)−
1

n

n∑
j=1

l(yi, yj)+
1

n2

n∑
i=1

n∑
j=1

l(yi, yj)

]

(12)
�2tr����

��2
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�2k(xi, xj)

��2
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1

n
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n
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1

n2
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j=1

l(yi, yj)

]

(13)
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��
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���
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(17)KA(�,�) =
< �,�>F√

< �,�>F < �,�>F

where < ⋅ , ⋅>F denotes the Frobenius inner product 
between two matrices.

A limitation of kernel alignment is that it does not con-
sider the unbalanced class distribution which may cause the 
sensitivity of the measure to drop drastically. Cortes et al. 
[23] proposed to center kernels (or kernel matrices) before 
computing the alignment measure to cancel the effect of 
unbalanced class distribution. Let 𝐊̄ = 𝐇𝐊𝐇, built upon 
the kernel alignment, centered kernel alignment (CKA) is 
defined as

Although this improved definition of alignment may 
appear to be a technicality, it is actually a critical differ-
ence. Without that centering, the definition of alignment 
does not correlate well with the performance of learning 
machines [23].

Comparing (3) with (18), since < 𝐊̄, 𝐋̄>F = < 𝐊̄,𝐋>F =

< 𝐊, 𝐋̄>F = tr𝐊𝐋̄ = tr𝐊𝐇𝐋𝐇, the CKA is simply a 
normalized version of HSIC. However, for computational 
convenience the normalization is often omitted in practice 
[32]. Despite this similarity between HSIC and CKA, CKA 
has mainly been used for kernel selection and kernel learn-
ing, areas of application rather dissimilar to the applica-
tions of HSIC mentioned in Sect. 1.

4 � Experiments

This section evaluates the effectiveness and efficiency of 
the proposed Gaussian kernel optimization method for 
classification. Since this Gaussian kernel optimization is a 
special case of the proposed general kernel learning frame-
work, such evaluation can also demonstrate the benefits of 
the proposed general kernel learning framework to a cer-
tain degree. Two forms of Gaussian kernel, i.e. the spheri-
cal kernel and ellipsoidal kernel, are respectively used to 
evaluate the performance of the proposed method in deal-
ing with small- and large-sized kernel parameter sets.

(18)CKA(𝐊,𝐋) =
< 𝐊̄, 𝐋̄>F√

< 𝐊̄, 𝐊̄>F < 𝐋̄, 𝐋̄>F
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4.1 � Data sets

We selected 10 popular data sets, i.e., Zoo, Sonar, Ecoli, 
Ionosphere, Dermatology, Australian Credit Approval, 
Vehicle Silhouettes, Yeast, Image Segmentation and Wave-
form, from the UCI machine learning repository [33]. 
Among them, Sonar, Ionosphere and Australian Credit 
Approval are binary-class data sets and the others are mul-
ticlass data sets. Table  1 provides the statistics of these 
data sets. It presents, for each data set, the ID number, the 
number of samples, the number of features, the number of 
classes, and the minimum, maximum and average numbers 
of samples per class. All the benchmark examples consid-
ered are small data sets ranging in sample number from 101 
to 5000, and in dimension from 7 to 60. Some of them are 
characterized by unbalanced class distribution, such as Zoo, 
Ecoli, Dermatology and Yeast. These data sets form a good 
test bed for evaluating different algorithms.

For each data set, we partitioned it into a training set 
and a test set by stratified sampling (by which the object 
generation follows the class prior probabilities): 50% of the 
data set serves as the training set and the remaining 50% 
as the test set. For the training set of each data set, feature 
values along each dimension were linearly scaled to [0, 1]. 
Suppose mz and Mz are respectively the maximal and mini-
mal values of the zth dimension. Scaling to [0, 1] means 
x�
iz
= (xiz − mz)∕(Mz − mz). The test set was also scaled 

accordingly.

4.2 � Implementation details

4.2.1 � 4.2.1 Optimization

From (10)–(12), the HSIC has the first and second deri-
vates with respect to the model parameters as long as 
the employed kernel has. There are many choices of 
gradient-based optimization techniques to efficiently 
solve the maximization the HSIC. In this experiment, 

the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-
Newton algorithm was used because it generally takes 
a smaller number of iterations before convergence [20]. 
In numerical optimization, the BFGS algorithm is an 
iterative method for solving unconstrained nonlinear 
optimization problems. To avoid the constraint of 𝜎 > 0 
(𝜎z > 0 for the ellipsoidal Gaussian kernel), the criterion 
was optimized according to ln (�), where ln ( ⋅ ) denotes 
the natural logarithm. Once the optimum is reached, the 
value of the parameters can be obtained by taking the 
exponential operation, which is always positive. Thus, the 
maximization of HSIC becomes an unconstrained optimi-
zation problem. The initial value of � (𝜎z > 0 for the ellip-
soidal Gaussian kernel) was set as � = 1∕num_features, 
where num_features is the number of the features. Sup-
pose BFGS starts an optimization iteration at �, then suc-
cessfully completes a line search and reaches the next 
point 𝜃̄. Optimization is terminated when the inequality 
f (𝜃̄) − f (𝜃) ⩽ 10−5f (𝜃) is met, where f (�) and f (𝜃̄) are the 
corresponding values of the objective function, respec-
tively. In other words, the optimization will be terminated 
if the difference of the values of the objective function 
in two consecutive iterations is less than a predetermined 
tolerance. Lastly, the BFGS quasi-Newton algorithm was 
implemented by using the function fminunc() in Matlab.

4.2.2 � Multiclass classification

For kernel methods, the kernel is the only domain specific 
module, while the learning algorithm is a general purpose 
component. Potentially any kernel can work with any ker-
nel-based algorithm. However, the SVM is employed as 
the classifier in this experiment, due to its great popularity 
in kernel methods and delivering very impressive perfor-
mance in real applications [1]. The LIBSVM software [34] 
was used to train and test the SVM classifier. SVM was 
originally proposed for binary classification tasks. There 
are several methods available to extend binary SVM to 

Table 1   Statistics of the 
selected ten data sets from UCI

ID Data set #Samples #Features #Classes #Min/max/average

1 Zoo 101 16 7 4/41/14.4
2 Sonar 208 60 2 97/111
3 Ecoli 336 7 8 2/143/42
4 Ionosphere 351 34 2 126/225
5 Dermatology 366 34 6 20/112/61
6 Australian Credit Approval 690 14 2 307/383
7 Vehicle Silhouettes 846 18 4 199/218/211.5
8 Yeast 1484 8 10 5/463/148.4
9 Image Segmentation 2310 19 7 330/330/330
10 Waveform 5000 21 3 1647/1696/1666.7
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multiclass SVM [35]. LIBSVM implements “one-against-
one” multiclass method, hence there are c(c − 1)∕2 binary 
SVMs, where c is the number of classes. There are two 
ways to conduct kernel parameter optimization. (1) For 
any two classes of data, a parameter optimization pro-
cedure is first conducted and each decision function then 
has its own optimal kernel parameters. In other words, this 
method locally applies different parameter values for dif-
ferent binary SVMs independently. (2) The same param-
eters are globally used for all c(c − 1)∕2 binary SVMs and 
the parameters that achieve the highc(c − 1)∕2est overall 
performance are selected. Intuitively, both methods have 
drawbacks. On the one hand, the same parameter set for 
all binary classifiers may not be uniformly good for all 
c(c − 1)∕2 decision functions. On the other hand, optimiz-
ing very well each classifier individually does not ensure 
that they will perform well together. However, it is a wiser 
choice to share the same parameter set in practice because 
of the following considerations: (1) much less parameters 
need to be optimized. (2) Chen et al. [36] have experimen-
tally shown that these two methods give similar perfor-
mance. (3) From the definition of the output kernel shown 
as (6), it is clear that the HSIC simultaneously encodes 
the multiclass information, and is unified for both binary 
and multiclass classification problems. Lastly, it should 
be noted that independent parameter set implies a higher 
degree of tuning and so a higher chance of over-fitting. 
Therefore, in terms of both classification performance and 
computational efficiency, the second method that considers 
the same parameter set for all binary SVMs was employed 
in this experiment.

4.2.3 � Comparison approaches

The following four kernel learning approaches are com-
pared in this experiment:

•	 The cross-validation method [19, 20] denoted as ‘CV’, 
which is regarded as a benchmark here since it is prob-
ably the most simplest and prominent approach for 
general kernel learning and optimization. Because of 
the high computational complexity, this method is only 
suitable for the adjustment of very few parameters. For 
the SVM classifier with the spherical Gaussian kernel, 
there are two parameters, i.e. the kernel width param-
eter � and the regularization parameter C, to be opti-
mized. We performed the five-fold cross-validation to 
find the best � and C on the training set. A grid search 
over two dimensions, i.e., � = {2−15, 2−14,… , 23} and 
C = {2−5, 2−3, ⋅ ⋅ ⋅, 215}C, where � = 1∕�2, is applied. 
For the ellipsoidal Gaussian kernel, since different 
width values are assigned to each dimension, the num-
ber of kernel parameters amounts to the feature dimen-

sionality. In this case, it becomes intractable using the 
five-fold cross-validation method for kernel optimiza-
tion, even for a data set with low-dimensional features.

•	 The kernel alignment (KA) [22] and BFGS quasi-
Newton method. We first optimized the kernel param-
eters using the BFGS quasi-Newton method with 
KA on the training set. After the kernel optimiza-
tion, the regularization parameter C was selected 
using the five-fold cross-validation (a line search over 
C = {2−5, 2−3,… , 215}).

•	 The centered kernel alignment (CKA) [23] and BFGS 
quasi-Newton method. We first optimized the ker-
nel parameters using the BFGS quasi-Newton method 
with CKA on the training set. After the kernel opti-
mization, the regularization parameter C was selected 
using the five-fold cross-validation (a line search over 
C = {2−5, 2−3,… , 215}).

•	 The proposed HSIC and BFGS quasi-Newton method. 
We first optimized the kernel parameters using the 
BFGS quasi-Newton method with HSIC on the train-
ing set. After the kernel optimization, the regularization 
parameter C was selected using the five-fold cross-vali-
dation (a line search over C = {2−5, 2−3,… , 215}).

All experiments are conducted on a PC with 2.6  GHz 
CPU and 4 GB RAM.

4.3 � Results and discussion

The average classification error rates (test error rates) and 
running time over 10 trials are summarized in Tables 2, 3, 
4 and 5. The bold font denotes the best result across the 
approaches compared. For more reliable comparison, we 

Table 2   Classification error rates of the compared four approaches 
with the spherical Gaussian kernel

ID Data set Classification error (%)

CV KA CKA HSIC

1 Zoo 7.7295 8.2106 7.8924 7.9218
2 Sonar 10.0623 11.3634 11.6357 11.2246
3 Ecoli 13.4467 14.6871 13.6736 13.2213
4 Ionosphere 8.1843 10.0398 10.1321 9.2145
5 Dermatology 2.7716 3.8246 2.9863 3.0526
6 Australian credit 

approval
25.2587 24.9827 24.1253 24.5760

7 Vehicle silhouettes 16.7913 18.8105 17.9753 17.8924
8 Yeast 39.9421 43.1327 41.7740 41.9306
9 Image segmentation 3.4268 4.3531 4.5249 4.4375
10 Waveform 11.8733 12.0217 11.6402 11.7089
W–T–L 0–7–3 3–7–0 0–10–0 –



1714	 Int. J. Mach. Learn. & Cyber. (2018) 9:1707–1717

1 3

performed two-tailed t-test [37] with a significant level 
of 0.05 to determine whether there is a significant differ-
ence between the proposed method and other approaches. 
Based on the t-test, the win–tie–loss (W–T–L) summariza-
tions are also attached at the bottoms of tables. A win or a 
loss means that the proposed method is better or worse than 
other method on a data set. A tie means that both methods 
have the same performance.

For the spherical Gaussian kernel, from Table 2, it is 
seen that the proposed method ‘HSIC’ gives rise to the 
classification performance comparable to that obtained 
by using the five-fold cross-validation method ‘CV’. 
Although the ‘CV’ method always gives the lowest accu-
racy error rate compared with other approaches, the dif-
ference between the ‘CV’ method and the proposed 
method ‘HSIC’ is not significant in most cases. Compared 
with the ‘KA’ method, it is found that ‘HSIC’ gives a bet-
ter or comparable performance on all data sets. There is 
no significant performance difference between the ‘CKA’ 
method and the ‘HSIC’ method on all data sets. In terms 
of the running time, from Table 3, it is found that ‘HSIC’ 
gives the shortest time on all the data sets. Take the Zoo 
data set for example: ‘HSIC’ achieves the running time of 
0.3295s, which is significant shorter than 26.5720, 0.5943 
and 0.6186s obtained by ‘CV’, ‘KA’ and ‘CKA’, respec-
tively. The reason why ‘HSIC’ is more computationally 
efficient than ‘CKA’ may be that ‘HSIC’ simplifies the 
‘CKA’ criterion by ridding the latter of its denominator, 
making the evaluation considerably easier.

For the ellipsoidal Gaussian kernel, although the five-
fold cross-validation method becomes intractable in this 
case, the ‘KA’, ‘CKA’ and ‘HSIC’ methods can still work 
well. From Table 4, it can be observed that the proposed 
method ‘HSIC’ gives a better or comparable performance 
to the ‘KA’ method on all data sets. ‘CKA’ and ‘HSIC’ 
give nearly the same classification results on all data 

Table 3   Running time of the 
compared four approaches with 
the spherical Gaussian kernel

ID Data set Running time (second)

CV KA CKA HSIC

1 Zoo 26.5720 0.5943 0.6186 0.3295
2 Sonar 72.3589 0.8391 0.8653 0.5922
3 Ecoli 63.1945 0.6327 0.5969 0.3873
4 Ionosphere 90.1433 2.3015 2.8438 1.2564
5 Dermatology 274.7760 7.9376 10.1605 6.3941
6 Australian credit approval 362.3681 16.7325 17.9854 15.3386
7 Vehicle silhouettes 551.0466 30.3647 36.0775 18.6812
8 Yeast 853.6207 50.9156 48.1163 23.1945
9 Image segmentation 2362.3390 123.8351 226.5194 89.3783
10 Waveform 5498.4162 372.1274 432.4635 241.3056
W–T–L 10–0–0 9–1–0 10–0–0 –

Table 4   Classification error rates of the compared four approaches 
with the ellipsoidal Gaussian kernel

ID Data set Classification error (%)

KA CKA HSIC

1 Zoo 11.5497 9.6023 10.2118
2 Sonar 12.9674 12.8652 12.5139
3 Ecoli 14.1092 13.1356 13.0924
4 Ionosphere 8.6971 9.0012 8.8970
5 Dermatology 3.5194 2.7629 2.8347
6 Australian credit approval 23.2349 22.6591 22.7824
7 Vehicle silhouettes 16.8732 16.506 16.2618
8 Yeast 42.5901 40.0679 39.9251
9 Image segmentation 3.4746 3.3498 3.3900
10 Waveform 11.1391 11.6354 11.2846
W–T–L 3–7–0 0–10–0 –

Table 5   Running time of the compared four approaches with the 
ellipsoidal Gaussian kernel

ID Data set Running time (second)

KA CKA HSIC

1 Zoo 1.9836 2.1573 1.2496
2 Sonar 4.2201 4.8145 3.3694
3 Ecoli 3.8429 4.0276 2.7987
4 Ionosphere 24.5347 30.8413 19.3185
5 Dermatology 73.6030 86.2163 49.2320
6 Australian credit 

approval
75.9523 73.4970 58.2424

7 Vehicle silhouettes 94.7252 134.8469 76.5478
8 Yeast 70.0268 65.4332 40.9745
9 Image segmentation 412.3152 397.6647 255.4603
10 Waveform 1019.2180 1080.2591 587.3326
W–T–L 10–0–0 10–0–0 –
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sets. From Table 5, ‘HSIC’ is seen as the most efficient 
method among the three compared approaches.

In a nutshell, although ‘HSIC’ yields almost the same 
classification performance as those achieved by other base-
line approaches, it takes significantly less computational 
time. This suggests that our proposed method is both effec-
tive and efficient for Gaussian kernel optimization.

Is it necessary to use an ellipsoidal Gaussian kernel 
rather than a spherical Gaussian kernel for classification? 
Before the end of this section, we would like to discuss this 
issue to some extent. Figures 1 and 2 show the comparison 
of classification error rates and running time using ‘HSIC’ 
with these two kinds of Gaussian kernels, respectively. In 

terms of computational efficiency, as shown in Tables 3 and 
5 and Fig. 2, the ellipsoidal Gaussian kernel clearly takes 
much longer running time than the spherical Gaussian ker-
nel because for the former more kernel parameters need to 
be optimized. This is particularly true for the data sets with 
high-dimensional features. In terms of classification effi-
cacy, as shown in Tables 2 and 4 and Fig. 1, lower classifi-
cation error rates are observed on all but the Zoo and Sonar 
data sets for the ellipsoidal Gaussian kernel. This may be 
the benefit of using an ellipsoidal Gaussian kernel where 
different widths of the feature dimensions are adapted. For 
the Zoo and Sonar data sets, it is found that higher clas-
sification error rates are obtained by the ellipsoidal Gauss-
ian kernel. Since the ellipsoidal Gaussian kernel is a gener-
alization that includes the spherical Gaussian kernel, cases 
where the former performs worse than the latter suggest 
that over-fitting, i.e., when the size of the training set is so 
small the kernel parameter optimization may fit data noise 
and fail to capture real patterns there, has occurred. We 
also found that the classification error difference between 
these two kernels is not stably statistically significant.

In a word, compared with the ellipsoidal Gaussian ker-
nel, the spherical Gaussian kernel can provide more effi-
cient computation and comparable classification perfor-
mances. Hence, from a practical point of view, the spherical 
Gaussian kernel must be preferred, especially in the cases 
where the training samples are not sufficient for avoiding 
over-fitting. Moreover, these results emphasize an impor-
tant property generally related to the use of more powerful 
models: as the capacity of the models increases, so does the 
risk of over-fitting. To avoid over-fitting, it is necessary to 
use additional techniques such as early stopping of train-
ing process, regularization and Bayesian priors on param-
eters. Early stopping can be viewed as regularization in 
time. Intuitively, a training procedure like gradient descent 
will tend to learn more and more complex functions as the 
number of iterations increases. By regularizing in time, the 
complexity of the model can be controlled, improving gen-
eralization. From a Bayesian point of view, many regulari-
zation techniques correspond to imposing certain prior dis-
tributions on model parameters. How to avoid or mitigate 
over-fitting is an active research topic in machine learning 
and the regularization technique [38] seems to be a promis-
ing solution.

5 � Conclusion and further study

We have explored the kernel learning problem from the 
statistical dependence maximization point of view. We first 
proposed a general kernel learning framework with the 
HSIC which is probably the most popular kernel statistical 
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dependence measure for statistical analysis. This frame-
work has been demonstrated to be directly applied in clas-
sification, clustering and other learning models. In this 
framework, we also presented a Gaussian kernel optimiza-
tion method for classification, where two forms of Gaussian 
kernels (spherical kernel and ellipsoidal kernel) were inves-
tigated. Extensive experimental study on multiple bench-
mark data sets verifies the effectiveness and efficiency of 
the proposed method.

Future investigation will focus on the validation of 
the use of the proposed general kernel learning frame-
work for other learning models such as MKL and cluster-
ing. Expanding the proposed model to extreme learning 
machine [39] and non-parametric kernel learning (NPKL) 
[40], as well as investigating the possibility of combining 
the proposed model with fuzzy set theory such as fuzzy 
SVM [41] are also important issues to be investigated. 
Moreover, we intend to use the newly proposed HSIC 
Lasso (least absolute shrinkage and selection operator) [42] 
for kernel learning.

As a final remark, it should be emphasized that, in 
general, by treating various learning models under a uni-
fying framework and elucidating their relations, we also 
expect our work to benefit practitioners in their specific 
applications.

Acknowledgements  This work is supported in part by the 
National Natural Science Foundation of China (No. 61562003), 
the Natural Science Foundation of Jiangxi Province of China (No. 
20161BAB202070), and the China Scholarship Council (No. 
201508360144). The authors also gratefully acknowledge the helpful 
comments and suggestions of the reviewers, which have improved the 
presentation.

References

	 1.	 Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern 
analysis. Cambridge University Press, Cambridge

	 2.	 Gao X, Fan L, Xu H (2015) Multiple rank multi-linear kernel 
support vector machine for matrix data classification. Int J Mach 
Learn Cybern. doi:10.1007/s13042-015-0383-0

	 3.	 Wang T, Tian S, Huang H, Deng D (2009) Learning by local ker-
nel polarization. Neurocomputing 72(13–15):3077–3084

	 4.	 Gönen M, Alpayın E (2011) Multiple kernel learning algorithms. 
J Mach Learn Res 12:2211–2268

	 5.	 Pan B, Chen WS, Xu C, Chen B (2016) A novel framework 
for learning geometry-aware kernels. IEEE Trans Neural Netw 
Learn Syst 27(5):939–951

	 6.	 Fukumizu K, Gretton A, Sun X, Schölkopf B (2007) Kernel 
measures of conditional dependence. Adv Neural Inf Process 
Syst 20:489–496

	 7.	 Gretton A, Fukumizu K, Teo CH, Song L, Schölkopf B, Smola A 
(2007) A kernel statistical test of independence. Adv Neural Inf 
Process Syst 20:585–592

	 8.	 Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A 
(2012) A kernel two-sample test. J Mach Learn Res 13:723–773

	 9.	 Chwialkowski K, Gretton A (2014) A kernel independence test 
of random process. In: Proceedings of the 31th International 
Conference on Machine Learning, Beijing, China, pp 1422–1430

	10.	 Bach FR, Jordan MI (2002) Kernel independent component anal-
ysis. J Mach Learn Res 3:1–48

	11.	 Gretton A, Smola A, Bousquet O, Herbrich R, Belitski A, 
Augath M, Murayama Y, Pauls J, Schölkopf B, Logothetis NK 
(2005) Kernel constrained covariance for dependence measure-
ment. In: Proceedings of the 10th International Workshop on 
Artificial Intelligence and Statistics, Bridgetown, Barbados, 
pp 112–119

	12.	 Gretton A, Bousquet O, Smola A, Schölkopf B (2005) Measur-
ing statistical dependence with Hilbert-Schmidt norms. In: Pro-
ceedings of the 16th International Conference on Algorithmic 
Learning Theory, Singapore, pp 63–77

	13.	 Song L, Smola A, Gretton A, Borgwardt K (2007) A dependence 
maximization view of clustering. In: Proceedings of the 24th 
International Conference on Machine Learning, Corvallis, USA, 
pp 823–830

	14.	 Zhong W, Pan W, Kwok JT, Tsang IW (2010) Incorporating the 
loss function into discriminative clustering of structured outputs. 
IEEE Trans Neural Netw 21(10):1564–1575

	15.	 Camps-Valls G, Mooij J, Schölkopf B (2010) Remote sensing 
feature selection by kernel dependence measures. IEEE Geosci 
Remote Sens Lett 7(3):587–591

	16.	 Song L, Smola A, Gretton A, Bedo J, Borgwardt K (2012) Fea-
ture selection via dependence maximization. J Mach Learn Res 
13:1393–1434

	17.	 Chen J, Ji S, Ceran B, Li Q, Wu M, Ye J (2008) Learning sub-
space kernels for classification. In: Proceedings of the 14th ACM 
SIGKDD International Conference on Knowledge Discovery and 
Data Mining, Las Vegas, USA, pp 106–114

	18.	 Shu X, Lai D, Xu H, Tao L (2015) Learning shared subspace for 
multi-label dimensionality reduction via dependence maximiza-
tion. Neurocomputing 168:356–364

	19.	 Chapelle O, Vapnik V, Mukherjee S (2002) Choosing mul-
tiple parameters for support vector machines. Mach Learn 
46(1):131–159

	20.	 Keerthi SS (2002) Efficient tuning of SVM hyperparameters 
using radius/margin bound and iterative algorithms. IEEE Trans 
Neural Netw 13(5):1225–1229

	21.	 Liu Y, Liao S, Hou Y (2011) Learning kernels with upper 
bounds of leave-one-out error. In: Proceedings of the 20th ACM 
Conference on Information and Knowledge Management, Glas-
gow, United Kingdom, pp 2205–2208

	22.	 Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola J (2001) 
On kernel-target alignment. Adv Neural Inf Process Syst 
14:367–373

	23.	 Cortes C, Mohri M, Rostamizadeh A (2012) Algorithms for 
learning kernels based on centered alignment. J Mach Learn Res 
13:795–828

	24.	 Wang T, Zhao D, Tian S (2015) An overview of kernel align-
ment and its applications. Artif Intell Rev 43(2):179–192

	25.	 Baram Y (2005) Learning by kernel polarization. Neural Com-
put 17(6):1264–1275

	26.	 Wang T, Zhao D, Feng Y (2013) Two-stage multiple kernel 
learning with multiclass kernel polarization. Knowl-Based Syst 
48:10–16

	27.	 Nguyen CH, Ho TB (2008) An efficient kernel matrix evaluation 
measure. Pattern Recognit 41(11):3366–3372

	28.	 Wang L (2008) Feature selection with kernel class separability. 
IEEE Trans Pattern Anal Mach Intell 30(9):1534–1546

	29.	 Steinwart I (2001) On the influence of the kernels on the consist-
ency of support vector machines. J Mach Learn Res 2:67–93

https://doi.org/10.1007/s13042-015-0383-0


1717Int. J. Mach. Learn. & Cyber. (2018) 9:1707–1717	

1 3

	30.	 Sugiyama M (2012) On kernel parameter selection in Hil-
bert-Schmidt independence criterion. IEICE Trans Inf Syst 
E95-D(10):2564–2567

	31.	 Lu Y, Wang L, Lu J, Yang J, Shen C (2014) Multiple kernel 
clustering based on centered kernel alignment. Pattern Recognit 
47(11):3656–3664

	32.	 Neumann J, Schnörr C, Steidl G (2005) Combined SVM-
based feature selection and classification. Mach Learn 
61(1–3):129–150

	33.	 Lichman M (2013) UCI machine learning repository. Irvine, CA: 
University of California, School of Information and Computer 
Science. http://archive.ics.uci.edu/ml/

	34.	 Chang CC, Lin CJ (2011) LIBSVM: a library for support vector 
machines. ACM Trans Intell Syst Technol 2(3):27. http://www.
csie.ntu.edu.tw/~cjlin/libsvm

	35.	 Hsu CW, Lin CJ (2002) A comparison of methods for mul-
ticlass support vector machines. IEEE Trans Neural Netw 
13(2):415–425

	36.	 Chen PH, Lin CJ, Chölkopf B (2005) A tutorial on—support 
vector machines. Appl Stoch Models Bus Ind 21(2):111–136

	37.	 Demšar J (2006) Statistical comparisons of classifiers over multi-
ple data sets. J Mach Learn Res 7:1–30

	38.	 Chen Z, Haykin S (2002) On different facets of regularization 
theory. Neural Comput 14(12):2791–2846

	39.	 Liu P, Huang Y, Meng L, Gong S, Zhang G (2016) Two-stage 
extreme learning machine for high-dimensional data. Int J Mach 
Learn Cybern 7(5):765–772

	40.	 Chen C, Zhang J, He X, Zhou ZH (2012) Non-parametric ker-
nel learning with robust pairwise constraints. Int J Mach Learn 
Cybern 3(2):83–96

	41.	 Lin CF, Wang SD (2002) Fuzzy support vector machines. IEEE 
Trans Neural Netw 13(2):464–471

	42.	 Yamada M, Jitkrittum W, Sigal L, Xing EP, Sugiyama M (2014) 
High-dimensional feature selection by feature-wise kernelized 
Lasso. Neural Comput 26(1):185–207

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Kernel learning and optimization with Hilbert–Schmidt independence criterion
	Abstract 
	1 Introduction
	2 Hilbert–Schmidt independence criterion
	3 Kernel learning with HSIC
	3.1 A general kernel learning framework
	3.2 Gaussian kernel optimization for classification
	3.3 Relation to centered kernel alignment method.

	4 Experiments
	4.1 Data sets
	4.2 Implementation details
	4.2.1 4.2.1 Optimization
	4.2.2 Multiclass classification
	4.2.3 Comparison approaches

	4.3 Results and discussion

	5 Conclusion and further study
	Acknowledgements 
	References


