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1 Introduction

The iron and steel production is an important pillar indus-
try of national economy in China, including mining, benefi-
ciation, sintering, iron-making and steel-making et al. [1]. 
The blast furnace (BF) iron-making process is the most sig-
nificant step in the manufacture of iron and steel. The BF 
is a huge reaction vessel, which converts iron oxides into 
liquid iron (hot metal) through many chemical and physi-
cal reactions [2]. The iron-making process pursues stable 
operation. Anterograde blast furnace can not only prolong 
life, but also raise productivity. It is a prerequisite to keep 
proper temperature in BF for the stable operation of iron-
making process. The over-cold and over-hot situation in BF 
will affect the production process, and even lead to produc-
tion failures [3, 4].

The density of silicon in hot metal has always been an 
important instruction of the blast furnace operation. The 
silicon content is not only an important parameter and basis 
for the heat in BF, but it also is a direct response to the sta-
tus and trend of hot metal [5–7]. In iron-making produc-
tion, the operators often adjust the temperature in BF based 
on the change amplitude, trends and frequency of silicon 
content, resulting of the reduce of the volatility of furnace 
conditions. In the smelting process, if we can grasp the sili-
con contents as well as its trend in a timely manner, it can 
well improve the quality of pig iron and reduce the coke 
rate through the corresponding operation.

Taking into account of the complex ‘black box’ charac-
ter in the measurement of silicon content, the mechanism 
modeling becomes impractical. In such case, the data-
driven technique is a good choice. There are many methods 
for the prediction of silicon content based on data-driven 
methods. We summarize that the prediction model of sili-
con content can be divided into linear-time series models 
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and non-linear-time series models. For the linear models, a 
state-space model was developed for the prediction of hot 
metal silicon content, using the blast furnace pressure and 
the over-all heat loss as input variables [8]. Bhattacharya 
[3] established the hot metal silicon prediction model using 
partial least squares (PLS) algorithm. Other linear predic-
tion model can be referred to [10–12]. There are many 
non-linear time-series models employed in the prediction 
of hot metal silicon content [5] applied a pruning algo-
rithm to find relevant inputs and an approximate network 
connectivity based on feedforward neural network, and 
then made prediction for the silicon content in BF. Support 
vector machine (SVM) and its variant least square support 
vector machine (LS-SVM) are often employed in not only 
the value prediction, but also the change trend classifica-
tion of the silicon content in BF [1, 6, 13]. Tang applied 
the chaos particle swarm optimization to select the optimal 
parameters of support vector regression (SVR) for the pre-
diction of hot metal silicon content [14]. Other nonlinear 
time-series models, such as wiener models [15] and chaos 
models [16], are also applied in the prediction of hot metal 
silicon content.

Extreme learning machine (ELM) is a novel single hid-
den layer neural networks algorithm [9, 17]. It has drawn 
more and more attention because of the fast training speed 
and good generalization performance. The essence of ELM 
algorithm is the random selection of model learning param-
eters, while the output weights can be calculated by the 
ordinary least square (LS) method despite of some iterative 
ways [18, 19]. Huang has proved the universal approxima-
tion capability and classification capability of ELM model, 
which makes a support for the improvement of ELM algo-
rithm [20]. Since proposed, ELM algorithm has experi-
enced a period of rapid development, such as from batch 
learning to online sequential learning, from sigmoid and 
RBF activation functions to almost any nonlinear piece-
wise activation function, from single hidden layer feedfor-
ward networks to multi hidden layers feedforward networks 
etc [21, 22]. Nowadays, ELM algorithm has been widely 
employed in many real applications such as regression, 
classification, clustering, feature learning and so on [23].

Raw data with imbalanced class distribution can be found 
almost everywhere, especially in industrial applications 
[24]. In iron-making process, stable production is the com-
mon goal of the operator, in which case, BF is often in an 
anterograde state. In most of the production condition, the 
dramatic change of silicon content often seldom occur. Thus 
the obtained data contains a large amount of unbalanced 
classes. Weighted ELM algorithm (W-ELM) can well deal 
with data with unbalanced class distribution, which is suit-
able for the silicon content trend prediction [20]. In addition, 
outliers occur frequently in the complex industrial process 
and can have serious unsatisfied consequences [30] presents 

an outlier-robust extreme learning machine algorithm, where 
the �1-norm loss function is used to enhance the robustness. 
However, it is very suitable to the regression applications. 
In this paper, we modify ELM and W-ELM algorithms and 
propose two schemes to deal with outliers. One is the outlier 
detection method based on W-ELM model, where a statis-
tic method is employed to detect the outliers in real BF data. 
Then the enhanced ELM and W-ELM algorithms (named 
E-ELM and EW-ELM) are proposed respectively for regres-
sion and classification applications in the prediction model of 
silicon content in hot metal.

The rest of this paper is organized as follows. Section 2 
presents a review of the related works including the ordinary 
ELM and W-ELM algorithms. In Sect. 3, we present the out-
lier detection method, and propose two robust ELM frame-
works for regression and classification applications. The 
prediction model for silicon content is presented in Sect. 4. 
Simulation results will be shown in Sect. 5, and Sect. 6 is the 
conclusion of our work.

2  Brief Review of ELM and W‑ELM

2.1  ELM

The ELM algorithm was originally proposed by Huang and 
it can be regarded as a general single hidden layer network 
(SLFNs) [17]. ELM gets rid of human tuning with random 
initialization of SLFNs learning parameters. Then the out-
put weights can be determined by the theory of least square 
method [18].

Given a training set consisting of N arbitrary distinct sam-
ples S =

{(
xi, ti

)|xi ∈ Rn, ti ∈ Rm, i = 1, 2,… ,N
}
, where xi 

and ti represent the features of model input and output respec-
tively, the SLFNs network function with Ñhidden nodes can 
be formulated as

where aj and bj are the learning parameters which will be 
determined randomly. �j is the output weight matrix con-
necting the jth hidden and the output nodes. G

(
aj, bj, xi

)
 is 

a nonlinear piecewise continuous function which satisfies 
ELM universal approximation capability.

The above Ñ equations can be written in matrix form as

where H =

⎡⎢⎢⎣

G
�
a1, b1, x1

�
⋯ G

�
aÑ , bÑ , x1

�
⋮ ⋱ ⋮

G
�
a1, b1, xN

�
⋯ G

�
aÑ , bÑ , xN

�
⎤⎥⎥⎦N×Ñ

is called 

output hidden layer matrix. � represents the white noise, 
� ∈ N

(
0,�2

)
.

(1)fÑ =

Ñ∑
j=1

𝛽jG
(
aj, bj, xi

)
= ti, i = 1, 2,… ,N

(2)H�+� = T
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ELM aims to minimize the training error as well as the 
norm of the output weights. Then ELM model with a sin-
gle-output node can be formulated as:

where ei represents the training error of the ith observation. 
h(xi) is the ith row of output hidden layer matrix. C is a use-
specified parameter and it can provide a tradeoff between 
the training error and the norm of the output weights.

The output weights of ELM algorithm can be calcu-
lated by LS method. In the case where the number of train-
ing observations is larger than that of the hidden nodes, 
it means that H is of full column rank. Then the output 
weight should be estimated as follows:

where IÑ is an identity matrix with dimensionÑ (simi-
larly hereinafter). When the number of training patterns 
is smaller than the hidden nodes’ number, H has more 
columns than rows. H has the full row rank and HHT is 
nonsingular. Then we have

Notably, IÑ
C

 or IN
C

 is called the regularization parameter, 
which sets up the connection between ELM with other 
statistical theories like matrix theory and ridge regression 
[20].

2.2  W‑ELM

The unbalanced datasets often appear in many real world 
applications, especially in many industrial areas with the 
pursuit of “stable production”. The unbalanced distribution 
of training and testing datasets would deteriorate the ELM 
performance, which motivates the emergence of W-ELM 
algorithm [20]. Here we modify the performance index of 
ELM model as

where W is an N × N diagonal weighted matrix associ-
ated with every training sample. The ith element wi on the 
diagonal represents the weight allocated to the ith sample 
xi. Generally, one can put relatively larger weights on the 
minority classes, and vice versa.

(3)
minimize JELM =

1

2
‖�‖2 + C

1

2

N∑
i=1

��ei��2

subject to: h(xi)� = ti − ei

(4)𝛽 =

(
IÑ

C
+ HTH

)−1

HTT

(5)𝛽 = HT

(
IN

C
+ HHT

)−1

T

(6)
minimize JELM =

1

2
‖�‖2 + CW

1

2

N∑
i=1

��ei��2

subject to: h(xi)� = ti − ei

Modeled on the above derivation, one can obtain the fol-
lowing solutions:

W-ELM imports the weighted matrix W into the perfor-
mance index and establishes a balance between the majority 
and minority sample classes. The suitable weights pushed 
toward different samples are necessary for the generaliza-
tion performance. In general, each weight is inversely pro-
portional to the error variance, which can reflect the infor-
mation in that observation. An observation with small error 
variance has a large weight since it contains relatively more 
information than an observation with large error variance 
(small weight). In the classification applications, W is often 
determined based on the number of observations belonging 
to the same class. So

where #ni represents the number of samples belong to the i
th class. The majority classes with relatively large number 
of observations have relatively small weights, while large 
weights are assigned on the minority classes. Such weight 
determination can well exclude the imbalanced phenom-
enon among the samples.

3  Outlier detection and robust ELM framework

In this section, we present two schemes to deal with the 
outliers. One is focused on the outlier detection from a 
statistical point. Then we propose an enhanced (weighted) 
extreme learning machine algorithm (E-ELM and EW-
ELM). E-ELM can be well applied in the value prediction 
of silicon content in hot metal, while EW-ELM is a good 
choice to make the change trend classification of silicon 
content.

3.1  Outlier detection

An outlier is an observation point that appears to deviate 
markedly from other observations. Compared with the nor-
mal samples, the outlier often presents some non-interpret-
able and non-coordination features. Visual inspection is a 
generally helpful tool for outlier detection from a global 
perspective. However, considering the large and complex 
datasets, the automated outlier detection procedures are 
necessary [26].

In this subsection, we present a statistical scheme to 
detect the outliers subject to W-ELM algorithm [20]. In 

(7)

⎧
⎪⎨⎪⎩

𝛽 =
�

IÑ

C
+ HTWH

�−1

HTWT , Ñ < N

𝛽 = HT
�

IN

C
+WHHT

�−1

WT , Ñ > N

(8)wi = 1
/
#ni
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most complex industrial applications, data tends to be con-
taminated. The W-ELM model introduced in the above sec-
tion can be modified as:

where �w ∈ N
(
0, �2

/
W
)
 and W is the weighted matrix 

defined above.
Then the output estimation value can be calculated as 

following:

where Qw = H
(
HTWH

)−1
HT, and we omit the regulariza-

tion factor Cfor simplicity. It is easy to get that Qw is sym-
metric (QT

w
= Qw) and idempotent (QwWQw = Qw).

Next one can define the estimated error as 
e = T − T̂w =

(
W−1 − Qw

)
WT . So the corresponding vari-

ances can be calculated as:

Since

One can get the unbiased estimation of �2:

In the outlier detection method, the internally and exter-
nally studentized weighted residuals are taken into consid-
eration. A relative lemma is presented as following:

Lemma 1 Considering the data sequential without the ith 
observation, �̂�2

i
denotes the estimation of square deviation 

for the remaining samples, which can be calculated as

where ei = ti − hT
i
𝛽w and qw,i = hT

i

(
HTWH

)−1
hi, where hT

i
 

is the ith row vector of hidden layer matrix H. And we pre-
sent the main proof in Part A in the Appendix.

Then for the outlier detection procedure, we present the 
following theorem:

Theorem  1 For a data sequence with normal distri-
bution, the outlier can be detected with relative large 
internally and externally studentized weighted residuals 

(9)T = H� + �w

(10)T̂w = H𝛽w = H
(
HTWH

)−1
HTWT

Δ
=QwWT

(11)

⎧⎪⎨⎪⎩

V
�
𝛽w

�
= 𝜎2

�
HTWH

�−1
V
�
T̂w

�
= V

�
QwWT

�
= 𝜎2Qw

V(e) = 𝜎2
�
W−1 − Qw

�

(12)
E
(
eTWe

)
=E

[
tr
(
eTWe

)]
=𝜎2

⋅ tr
{
W
(
W−1 − Qw

)}
=𝜎2

(
N − Ñ

)

(13)�̂�2=
eTWe

N − Ñ

(14)�̂�2
(i)
=

(
N − Ñ

)
�̂�2 − wie

2
i

/(
1 − wiqw,i

)

N − Ñ − 1

(denoted by Sw,i and S′
w,i

). And the Sw,i andS′
w,i

 for the ith 
observation can be obtained as

Note: In statistics, a studentized residual is the quotient 
resulting from the division of a residual by an estimate of its 
standard deviation, which is an important technique in the 
detection of outliers. The ordinary calculation of studentized 
residual is Si = ei

��
�̂�
√
1 − qi

�
. In Theorem 1, we added the 

corresponding weight to every observation. Then the calcula-
tions of studentized weighted residuals are modified as (15). 
The basic idea is to delete the observations one at a time, each 
time fitting the regression model on the reminding N − 1 
observations. Then we compare the observed response values 
to their fitted values based on the models with the ith obser-
vation deleted. The outliers would present the characteristic 
of non-random draft. The observations with relative large stu-
dentized residuals would be regarded as the outliers. More 
detail information about this theorem can be referred in [27, 
31].

3.2  E‑ELM and EW‑ELM

In the above subsection, we present the outlier detection 
schemes based on the statistics analysis. It is very essential 
and useful to mark the outliers in the data preprocessing 
stage. Now we improve the ordinary ELM and W-ELM algo-
rithms in order to make a double guarantee for effect attenua-
tion of the outlier.

In the data mining and modeling process, it is necessary 
to define a cost function or performance index to meas-
ure the performance of the trained model [32]. As shown in 
(weighted) ELM theory, the output weights are calculated 
analytically based on the minimum of least mean squares 
(LMS) of the residuals. However, data modeling through 
the LMS method is often affected by the abnormal points, 
providing the incorrect results. Here we propose a robust 
error measure for ELM and W-ELM algorithm with outliers 
through the modification of cost function and performance 
index.

For brief description, we present the abbreviated form of 
the cost function in ELM algorithm by omitting the minimum 
term of ‖�‖2 and revising the squared error to mean value. 
That is

(15)
Sw,i =

√
wiei

�̂�i
√
1−wiqw,i

S�w,i =

√
wiei

�̂�
√
1−wiqw,i

(16)� =
1

2N

N∑
i=1

‖‖ei‖‖2 = 1

N

N∑
i=1

�i
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where �i =
1

2
‖‖ei‖‖2 called the error function, which is sensi-

tive to the training error of outliers. Next we present the 
modified least mean log squares(LMLS) method subject 
to ELM cost function, and the modified cost function and 
error function are as follows [24]:

Then the following theorem for the proposed E-ELM and 
EW-ELM algorithms is presented subject to interference 
elimination of outliers.

Theorem  2 Considering the ordinary ELM algorithm, 
the cost function with LMLS method is more robust than 
with LMS subject to the gross errors for the outliers. In 
other words, LMLS method presents less sensitive to the 
residuals of outliers than the ordinary LMS method.

Proof In most neural network structure including ELM 
model, we aim to search for the optimal output weights. We 
define ⇀

v as the modifiable network parameter vector and 
the directional differentiating with respect to ⇀v for the LMS 
method yields:

where �
(
ei
)
=

��i

�ei
= ei, which tends to zero with the itera-

tive optimization. One can call �
(
ei
)
 the influence function 

because it reflects the influence degree of the ith individual. 
Similarly, one can calculate the influence function for the 
LMS and LMLS methods as follows:

Figure  1 presents the influence function of LMS and 
LMLS methods subject to different model errors. Obviously, 
the influence function of LMS method changes monotoni-
cally, which is more sensitive to the model error. However, 
the magnitude of LMLS influence function reaches its maxi-
mum and starts to decrease for relatively large residuals. 
From the extreme perspective, the outliers have no effect to 
the ELM model with LMLS influence function due to.

(17)

⎧
⎪⎨⎪⎩

� =
1

N

N∑
i=1

log
�
1 +

1

2
��ei��2

�
=

1

N

N∑
i=1

�i

�i = log
�
1 +

1

2
��ei��2

�

(18)
��

⇀

v

=
1

N

N∑
i=1

�
(
ei
)�ei

⇀

v

(19)

⎧⎪⎨⎪⎩

�ELM
�
ei
�
=

��ELM− i

�ei
= ei

�E−ELM
�
ei
�
=

��E−ELM−i

�ei
=

ei

1+
1

2
‖ei‖2

(20)lim
ei→∞

�E−ELM
(
ei
)
= lim

ei→∞

ei

1 +
1

2
‖‖ei‖‖2

= 0

The proposed E-ELM and EW-ELM algorithms apply-
ing the cost function with LMLS method can respectively 
deal with the regression and classification applications 
with outliers. One can employ the ordinary gradient decent 
method to train the proposed ELM frameworks. In part B 
of the “Appendix”, the E-ELM and EW-ELM algorithms, 
compared with the ordinary ELM algorithm and the OR-
ELM algorithm proposed in [30], present more robust and 
satisfied performance. However, the proposed algorithms 
take the relatively long training time. Thus E-ELM and 
EW-ELM algorithms can be well applied in the applica-
tions with serious outliers and no strict requirement for the 
training time.

4  The silicon content forecast model

The iron-making process in BF strives for stable produc-
tion. The silicon content in hot metal can well reflect the 
production status in the interior of BF. Here we propose the 
prediction scheme for the silicon content in hot metal based 
on the real production data.

The influence parameters selection of the silicon con-
tent prediction model is an important link. Suitable fea-
ture parameters are necessary to improve the prediction 
accuracy [29]. There are two categories of blast furnace 
parameters influencing the silicon content. One is the state 
parameters, including blast volume, feeding speed et  al., 
while the other one is the control parameters, such as blast 
temperature, blast pressure et  al. Here, we carry out the 
correlation analysis among the silicon content with other 
blast furnace parameters, and choose the input parameters 
with relatively high correlation with the silicon content. 
Based on the operating experience, we chose 9 parameters 
as shown in Table 1.
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LMLS method
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As described above, the trend of change of silicon con-
tent is also very important for the blast furnace opera-
tion. Based on the operation experience, we classify the 
silicon content change range into five categories as shown 
in Table 2. The range boundaries of silicon content varia-
tion are delineated based on the operators’ experience. The 
last row in Table 2 shows the number of real data in each 
category of silicon content. Apparently, most of the sili-
con contents are in slight changes, while the sharp descent 
and assent situations rarely occur. ELM algorithm can not 
obtain the satisfied prediction results subject to such imbal-
anced data.

In the prediction model of silicon content in BF, we 
employ the outlier detection method described in Theo-
rem 1 to identify the abnormal data. The proposed E-ELM 
and EW-ELM algorithms are applied to make prediction 
for the value and change trends of silicon content.

5  Simulation results

In this section, we present the simulation results based on 
the real iron-making data. All the simulations have been 
conducted in Matlab 7.8.0(2009a) running on a desktop 
PC with AMD Athlon(tm) II X2 250 processor, 3.00-GHz 
CPU and 2G RAM. All the simulation results are averaged 
50 times.

5.1  Data preprocessing

The real production data collected in a blast furnace with 
2500 m3 are employed in the experiment. We choose 1205 
sets of silicon content data. Because of the complex opera-
tion environment in BF production, the sampled data tent 
to be contaminated by various forms of noise, such as pro-
cess noise and measurement noise. Denoising operation 
is necessary in data preprocessing. In addition, there exist 
big delays in iron-making process in BF. The uncoordi-
nated input variables tend to destroy the accuracy of pre-
diction model. In the data preprocessing, we carry out the 
correlation analysis between the silicon content and inputs 
of prediction model at different time, and determine the 
delay time under the condition of maximum correlation. 
The value of silicon content in hot metal and the inputs of 
prediction model are not in the same order of magnitude. 
Some indicators have big difference. For instance, the blast 
temperature is about 1000 °C, while the change of silicon 
content is very slight. It is necessary to make standardiza-
tion for data procession.

5.2  Parameter configuration

ELM algorithm can apply any nonlinear piecewise 
continuous function which satisfies ELM univer-
sal approximation capability. In the simulation, we 
employ the sigmoidal additive activation function 
G(a, b, x) = 1∕(1 + exp (−(a ⋅ x + b))), where the input 
weights and biases are randomly generated from the range 
[−1, 1]. Based on the theory of ELM algorithm, the model 
becomes more and more accurate with the increase of the 
number of hidden nodes. Taking into account the big delay 
phenomenon of iron-making process and the relatively long 
sampling period, we do not care about the training time of 
ELM prediction model. Figure 2 presents the ELM model 
prediction errors with different number of hidden nodes. 
When the number of hidden nodes is less than 200, the pre-
diction error is relatively large, and not stable. Then with 
the increase of hidden nodes, the prediction error presents a 
downward trend, and the trend gradually flattens out.

Table 1  The inputs of prediction model

Variable name Unit

Blast volume m
3
/
min

Blast temperature °C
Blast pressure kPa
Pulverized coal injection ton
Oxygen enrichment percentage wt%
Feed speed mm/h
Smelting intensity t

/
m

3 ⋅ d

The latest silicon content et%
Gas permeability m

3
/
min ⋅ kPa

Table 2  The change trend class of silicon content

Class Sharp descent Slight descent Steady Slight assent Sharp assent

Silicon change 
range

Δ[Si] ⩽ −0.2 −0.2 < Δ[Si] < −0.05 −0.05 < Δ[Si] < 0.05 0.05 ⩽ Δ[Si] < 0.2 Δ[Si] ⩾ 0.2

No. 132 318 292 335 128
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5.3  Simulation results

1. Outlier detection: The outliers may exist in the 
obtained data, which can deteriorate the performance 
of ELM model. Here we present the simulation results 
of the outlier detection method. The statistical method 
is employed to make outlier detection for the real sili-
con content data. Figure  3 presents partial silicon 
content data, where the data points encircled by red 
crosses are the outliers. Visually, the outliers do not 
meet the overall change trend of the real silicon con-
tent data. Figure 4 shows the internally (the blue line) 
and externally (the green line) studentized weighted 
residuals. The outliers have relatively large internally 
and externally studentized weighted residuals, marked 
by red circles.

2. Silicon content regression: In this simulation, the pro-
posed E-ELM algorithm is employed in the value pre-
diction of silicon content. In order to verify the better 

generalization performance of E-ELM algorithm, we 
compared it with the ordinary ELM algorithm and LS-
SVM algorithm, which is often employed in the predic-
tion of silicon content such as in [1, 6]. For LS-SVM 
algorithm, the famous Gaussian kernel function is 

applied: k
(
xi, xj

)
= exp

(
−�

‖‖‖xi − xj
‖‖‖
2
)

, where � is the 

kernel parameter. In ELM and E-ELM prediction 
model, the number of hidden nodes is set as 800. Fig-
ure  5 presents the simulation results. The blue line 
shows the change of silicon content in hot metal, where 
one can see it has relatively large fluctuations. The out-
put of E-ELM algorithm (represented by the red line) 
can well track the change of silicon content, while the 
performance of ordinary ELM algorithm is not satis-
factory. In addition, LS-SVM algorithm obtains the 
worst performance represents by the green line.
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Fig. 4  The internally and externally studentized weighted residuals
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Table  3 shows the mean square error (MSE) in this 
simulation, where E-ELM algorithm obtains the least 
MSE. Taking into account the special environment in 
iron-making production, the training time of E-ELM 
algorithm can satisfied the demand of iron-making 
operations. From the above simulation, there are some 
outliers in the training data. E-ELM can well get rid of 
the interference of outliers, and obtains the best perfor-
mance in the value prediction of silicon content in hot 
metal.

3. Silicon content classification: In this part, we pre-
sent the simulation results of the classification for 
the change trends of silicon content. The proposed 
EW-ELM algorithm is employed, while the weighted 
matrix Wis selected based on Eq. (8). In order to ver-
ify the better classification performance of EW-ELM 
algorithm, we compared EW-ELM algorithm with 
SVM algorithm. The same as above, kernel function 
is employed in SVM algorithm. SVM is an excellent 
binary classification algorithm, while one should take 
approximate measures in data preprocessing subject to 
multi classification applications. Here the one-against-
all method is applied to make multi-classification for 
the change trends of silicon content. The simulation 
results are evaluated by the following hit rate criteria:

Table  3 presents the comparison results for the clas-
sification of silicon content based on SVM, ELM and 
EW-ELM algorithms. The EW-ELM algorithm obtains 
the best hit rate. EW-ELM can well exclude the effect of 
outliers to the model. In summary, EW-ELM can obtain 
the best classification performance for the change trends 
of silicon content, and well satisfy the need of industrial 
production.

Hit rate =
Count(correct classifications on the testing set)

Count(testing set)

6  Conclusion

The prediction of silicon content in hot metal is important for 
the quality of the iron, but also an indicator of the operating 
condition of BF production. The operators often carry out the 
operations based on the value and change trends of silicon 
content. In this paper, we proposed a novel prediction scheme 
for the silicon content of hot metal based on ELM algorithm. 
Because of the complex iron-making environment, there are 
many outliers exist in the obtained data, which can deterio-
rate the performance of ELM algorithm. We proposed an out-
lier detection method from a statistical point of view. Then 
two modified ELM algorithms are proposed to get rid of the 
interference of outliers, named E-ELM and EW-ELM. It 
is worth noting that the proposed ELM frameworks can be 
applied to any regression and classification application with 
outliers in machine learning fields. The E-ELM algorithm is 
applied in the value prediction of silicon content, while EW-
ELM algorithm makes prediction for the change trend of sili-
con content. In the simulation part, the real BF production 
data has been employed to verify the satisfied performance 
of the proposed scheme to make prediction of silicon content.
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Appendix

Part A: Proof for Lemma 1

In this part, we present the main proof for Lemma 1. More 
details can be referred to [26].

Proof (1) First, prove the following equation:

where 𝛽w(i) presents the output weights without the i 
observation.

For the W-ELM algorithm, the output weights are calcu-
lated as

Considering A is a nonsingular matrix with the dimension 
of n × n, u and v are n × 1 vectors, one can get

(21)𝛽w(i) = 𝛽w −
wi

(
HTWH

)−1
hiei

1 − wiqw,i

(22)𝛽w(i) =
[
HT

(i)
W(i)H(i)

]−1
H(i)W(i)T(i)

(23)
(
A − uvT

)−1
= A−1 +

A−1uvTA−1

1 − uTA−1v

Table 3  The simulation results of silicon content prediction

Algorithm Parameter Regression 
(RMSE)

Classifica-
tion hit rate 
(%)

SVM/LS-SVM � = 2 0.0256 89.56
ELM #Nodes 500 0.0167 93.45

800 0.0156 93.23
1000 0.0152 94.58

E-ELM
EW-ELM

500 0.0142 95.23
800 0.0101 96.12
1000 0.0100 96.15
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Then

Combining (22) and (23), we can obtain (21).
(2) If the ith observation is an outlier, it would present the 

characteristic of non-random draft. Then the model can be 
modified as

where di is a zero vector except that the ith element is 1. It 
is easy to get the least squares estimation of �w and � as

The unconstrained residual sum of squares (RSS) of model 
(24) can be calculated as

[
HT

(i)
W(i)H(i)

]−1
=
[
HTWH − hiwih

T
i

]−1
=
(
HTWH

)−1

+
hiwih

T
i

(
HTWH

)−1
1 − wiqw,i

(24)T = H�w + di� + �

𝛽w = 𝛽w(i), �̂� =
1

1 − wi,qw,i

RSS = TTT − H𝛽wT − �̂�dT
i
T =

(
N − Ñ

)
�̂�2 −

wie
2
i

1 − wi,qw,i

Then one can get

Part B: simulation results using well‑known databases

In this part, we verify the performance of the proposed 
E-ELM and EW-ELM algorithms using the well-known 
databases. First, a function approximation problem based 
on the ‘Sinc’ function is applied to make comparison 
between ELM and E-ELM algorithms. In the experiment, 
2000 data with 5% white noise are created. For the outli-
ers, we make the values of the observations around x = −4 
minus 0.15, while the data around x = 0 are added by 0.15. 
We chose 1300 observations as the training set artificially, 
and the last 700 data is employed for testing.

Here the number of hidden nodes is set as 50, and the 
active function is the sigmoid function. Figure  6 presents 
the simulation result, where red line represents the ELM 
result, while the green line is the E-ELM output. We ring 
out outliers with pink circles. It is obvious that E-ELM can 
well get rid of the interference of outliers, and obtain more 
accurate performance than the ordinary ELM algorithm.

Next, we employ the proposed ELM frameworks into 
two real-world applications: one regression application for 
Abalone dataset and one classification dataset for Breast 
Cancer dataset. All the datasets are obtained from the well-
known UCI machine learning repository [33]. The OR-
ELM algorithm proposed in [30] is compared with E-ELM 
and EW-ELM algorithms. Similar to Ref. [30], we make 
segmental training observations to be contaminated in 
order to generate outliers. Table 4 presents the simulation 
results of these two applications, where one can see that the 
proposed ELM algorithms takes a relatively longer training 
time than OR-ELM algorithm. However, it obtains more 
satisfied testing performance with the increase of con-
tamination rate to the training observations. For the indus-
trial applications with big delays like the silicon content 

�̂�2
(i)
=

(
N − Ñ

)
�̂�2 − wie

2
i

/(
1 − wiqw,i

)

N − Ñ − 1
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Fig. 6  Comparison results of ‘Sinc’ function

Table 4  The performance 
of E-ELM and EW-ELM 
algorithm in real world 
applications

The numbers with bold font means the best simulation results

Applications Algorithms #Nodes Training time Testing accuracy (RMSE)

Contamination rate (%)

0 10 40

Abalone ELM 200 0.0068 2.1804 2.2510 2.4502
OR-ELM 0.1103 2.1910 2.2015 2.2513
E-ELM 0.1732 2.1899 2.1900 2.2002

Breast Cancer ELM 400 0.0048 96.12% 94.34% 90.78%
OR-ELM 0.0985 95.99% 95.65% 95.46%
EW-ELM 0.1789 95.67% 95.68% 95.59%
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prediction during iron-making process in this paper, the 
model accuracy is more important than calculating time. 
So the proposed ELM frameworks are more suitable in the 
problems of the paper.
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