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1 Introduction

Since 1983, Cohen–Grossberg neural networks (CGNNs) 
have attracted considerable attention due to their potential 
applications in pattern recognition, parallel computing, sig-
nal and image processing, associative memory, combina-
torial optimization, etc (see [1]). Many interesting results 
on the dynamical behaviors of CGNNs have been obtained 
(see, for example, [2–5, 26–28]). However, most of the 
previous results on CGNNs did not consider the jump dis-
continuities of neuron activations. As far as we know, dis-
continuous or non-Lipschitz activation functions of neural 
networks are significant and can be used to solve program-
ming problems and various control problems (see [6–8]). 
Nowadays, the study of dynamical behaviors for neural 
networks with discontinuous activations has become a hot 
research topic. For instance, the paper [29] gave global sta-
bility analysis of a general class of discontinuous neural 
networks with linear growth activation functions. In [30], 
the authors discussed the existence and stability of periodic 
solution for BAM neural networks with discontinuous neu-
ron activations and impulses. The paper [31] investigated 
the exponential state estimation for Markovian jumping 
neural networks with discontinuous activation functions 
and mixed time-varying delays. In recent years, under the 
Filippov differential inclusion framework, some attempts 
have been made to investigate the existence and conver-
gence of periodic solutions or almost periodic solutions 
or even equilibrium points for CGNNs possessing discon-
tinuous neuron activations (see [9–11]). Nevertheless, there 
is still not much research on finite-time synchronization 
issues of CGNNs with discontinuous activation functions.

Actually, finite-time synchronization requires that the 
system trajectories of error states converge to the desired 
aim over the finite time and to keep them there then after. 

Abstract This paper studies the finite-time synchro-
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As a powerful tool, finite-time synchronization control 
plays an important role in the field of artificial neural net-
works. On the one hand, we can understand an unknown 
dynamical neuron system from the well-known dynami-
cal neuron system via finite-time synchronization. On the 
other hand, by using finite-time synchronization control, 
the convergence time of error states can be shortened. This 
means that finite-time synchronization possesses faster con-
vergence speed than asymptotic synchronization and expo-
nential synchronization (see [12]). Note that the dynami-
cal neuron system with discontinuous neuron activation 
may also exhibit some unstable behaviors such as periodic 
oscillation and chaos. Especially, if time-delays between 
neuron signals occur in a discontinuous neuron system, the 
behaviors of oscillation or chaos will become more appar-
ent. Therefore, it is of great necessity for us to realize the 
finite-time synchronization control of CGNNs with discon-
tinuous activations and time-delays. In addition, the finite-
time synchronization of drive-response system is more easy 
to be achieved by utilizing non-smooth controllers such as 
sliding mode controller and switching controller. However, 
the classical continuous linear controllers are usually diffi-
cult to realize the finite-time synchronization of discontinu-
ous neural network systems. The main reasons include two 
aspects: (1) the classical continuous linear controllers are 
difficult to deal with the uncertain differences between the 
Filippov solutions of the drive system and response system 
with discontinuous factors. (2) The classical continuous 
linear controllers are difficult to eliminate the influence of 
time-delays on the error states of discontinuous neuron sys-
tems. It should be emphasized that, different from classical 
continuous linear controllers, the switching state-feedback 
controllers usually include a discontinuous function sign (⋅) 
which can effectively overcome the above two difficulties.

Up to now, some theoretical results on the synchroniza-
tion issues of neural networks with discontinuous activa-
tions have already been obtained. For example, the authors 
of [13] dealt with the quasi-synchronization problem of 
neural networks with discontinuous neuron activations, 
but the state error of drive-response system can only be 
controlled within a small region around zero. In [32] the 
adaptive exponential synchronization problem of delayed 
Cohen–Grossberg neural networks with discontinuous acti-
vations was considered. In [14, 39], by constructing suit-
able Lyapunov functionals, the exponential synchroniza-
tion of time-delayed neural networks with discontinuous 
activations were investigated. Also in [15], the periodic 
synchronization problem of time-delayed neural networks 
with discontinuous activations was discussed via switch-
ing control approach. However, the convergence time of the 
state error for synchronization in [13–15, 32, 39] is suffi-
ciently large. The paper [16] handled the finite-time syn-
chronization issue of complex networks with discontinuous 

node dynamics, but the discrete and distributed time-delays 
between neuron signal are not considered. To the best of 
the authors’ knowledge, only a few papers have studied 
finite-time synchronization problems of neural networks 
with time-delays and discontinuous neuron activations.

Inspired by the above discussions, this paper consider 
a class of discontinuous Cohen–Grossberg neural network 
model with both discrete time-delays and distributed time-
delays as follows:

where i ∈ ℕ ≐ {1, 2,… , n}, n corresponds to the number of 
units in the delayed network system (1); xi(t) denotes the 
state variable of the ith unit at time t; fj(⋅) represents the 
activation function of jth neuron; di(xi(t)) > 0 represents the 
amplification function of the ith neuron; ai(xi(t)) denotes 
appropriately behaved function; bij represents the connec-
tion strength of jth neuron on the ith neuron; cij denotes the 
discrete time-delayed connection strength of jth neuron on 
the ith neuron; wij denotes the distributed time-delayed con-
nection strength of jth neuron on the ith neuron; Ji is the 
neuron input on the ith unit; �j(t) corresponds to the discrete 
time-varying delay at time t and is a continuous function 
satisfying 0 ≤ �j(t) ≤ �M , �̇�j(t) ≤ 𝜏D

j
< 1, where 

�M = max
j∈ℕ

{sup
t≥0

�j(t)} and �D
j

 are nonnegative constants; �j(t) 

denotes the distributed time-varying delay at time t and is a 
continuous function satisfying 0 ≤ �j(t) ≤ �M, 
�̇�j(t) ≤ 𝛿D

j
< 1, where �M = max

j∈ℕ
{sup
t≥0

�j(t)} and �D
j

 are non-

negative constants.
Throughout this paper, we always make the following 

fundamental assumptions:

(ℋ1) For each i ∈ ℕ, the amplification function di(u) is 
continuous and there exist positive numbers d∗

i
 and d∗∗

i
 

such that 0 < d∗
i
≤ di(u) ≤ d∗∗

i
 for u ∈ ℝ.

(ℋ2) The neuron activation 
f (x) = (f1(x1), f2(x2),… , fn(xn))

T is allowed to be discon-
tinuous and satisfies the following conditions:

(i) For each i ∈ ℕ, fi:ℝ → ℝ is piecewise continu-
ous, i.e., fi is continuous except on a countable set 
of isolate points {�i

k
}, where there exist finite right 

and left limits, f +
i
(�i

k
) and f −

i
(�i

k
), respectively. 

(1)

dxi(t)

dt
= − di(xi(t))

[
ai(xi(t)) −

n∑
j=1

bijfj(xj(t))

−

n∑
j=1

cijfj(xj(t − �j(t)))

−

n∑
j=1

wij ∫
t

t−�j(t)

fj(xj(s))ds − Ji

]
,
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Moreover, fi has at most a finite number of dis-
continuities on any compact interval of ℝ.

(ii) For each i ∈ ℕ, there exist nonnegative constants 
Li and pi such that for any u, v ∈ ℝ, 

 where, for � ∈ ℝ, 

(ℋ3) For any i ∈ ℕ, there exists a positive constant 
ȧi(u) ≥ 𝛽i, where ȧi(u) denotes the derivative of ai(u) for 
u ∈ ℝ and ai(0) = 0.

The structure of this paper is organized as follows. Sec-
tion  2 presents some preliminary knowledge. Our main 
results and their proofs are contained in Sect. 3. Section 4 
gives two numerical examples to verify the theoretical 
results. Finally, we conclude this paper in Sect. 5.

Notations Let � = max{�M , �M}. ℝ denotes the space of 
real number and ℝn represents the n-dimensional Euclid-
ean space. Given column vectors x = (x1, x2,… , xn)

T ∈ ℝ
n 

and y = (y1, y2,… , yn)
T ∈ ℝ

n, ⟨x, y⟩ = xTy =
∑n

i=1
xiyi 

denotes the scalar product of x and y, where the super-
script T represents the transpose operator. Given 
x = (x1, x2,… , xn)

T ∈ ℝ
n, let ∥ x ∥ denote any vector norm 

of x. Finally, let sign(⋅) be the sign function and 2ℝn denote 
the family of all nonempty subsets of ℝn.

2  Preliminaries

In this section, we give some preliminary knowledge about 
set-valued analysis, differential inclusion theory, non-
smooth Lyapunov approach and an important inequality. 
The readers may refer to [17–25] for more details.

Definition 1 (see [17, 18]) Suppose X ⊆ ℝ
n, then 

x ↦ F(x) is said to be a set-valued map from X → 2ℝ
n

, if 
for every point x of the set X ⊂ ℝ

n, there corresponds a 
nonempty set F(x) ⊂ ℝ

n. A set-valued map F with non-
empty values is said to be upper semi-continuous (USC) at 
x0 ∈ X, if for any open set N containing F(x0), there exists a 
neighborhood M of x0 such that F(M) ⊂ N.

Now let us introduce extended Filippov-framework (see 
[18, 19]). Let � be a given nonnegative real number and 
C = C([−�, 0],ℝn) denote the Banach space of continuous 
functions � mapping the interval [−�, 0] into ℝn with the 
norm ‖�‖C = sup

−�≤s≤0
‖�(s)‖. If for  ∈ (0,+∞], 

x(t):[−�,  ) → ℝ
n is continuous, then xt ∈ C is defined by 

(2)sup
�i∈co[fi(u)],�i∈co[fi(v)]

|�i − �i| ≤ Li|u − v| + pi,

co[fi(�)] =
[
min{f −

i
(�), f +

i
(�)}, max{f −

i
(�), f +

i
(�)}

]
.

xt(�) = x(t + �), −� ≤ � ≤ 0 for any t ∈ [0,  ). Consider 
the following time-delayed differential equation:

where xt(⋅) represents the history of the state from time 
t − �, up to the present time t; dx∕dt is the time derivative 
of x and f :ℝ × C → ℝ

n denotes measurable and essentially 
locally bounded function. In this case, f (t, xt) is allowed to 
be discontinuous in xt.

Let us construct the following Filippov set-valued map 
F:ℝ × C → 2ℝ

n

Here meas( ) denotes the Lebesgue meas-
ure of set  ; intersection is taken over all sets 
  of Lebesgue measure zero and over all 𝜌 > 0; 
(xt, 𝜌) = {x∗

t
∈ C ∣ ‖x∗

t
− xt‖C < 𝜌}; co[�] represents the 

closure of the convex hull of some set �.

Definition 2 We say a vector-valued function x(t) defined on 
a non-degenerate interval 𝕀 ⊆ ℝ is a Filippov solution for time-
delayed differential equation (4), if it is absolutely continuous 
on any compact subinterval [t1, t2] of �, and for a.e. t ∈ �, x(t) 
satisfies the following time-delayed differential inclusion

In the following, we apply the extended Filippov dif-
ferential inclusion framework in discussing the solution 
of CGNNs with mixed time-delays and discontinuous 
activations.

Definition 3 A function x(t) = (x1(t), x2(t),… , x
n
(t))T:

[−�,  ) → ℝ
n,  ∈ (0,+∞], is a state solution of the 

delayed and discontinuous system (1) on [−�,  ) if

(i) x is continuous on [−�,  ) and absolutely continuous 
on any compact subinterval of [0,  );

(ii) there exists a measurable function 
� = (�1, �2,… , �n)

T:[−�,  ) → ℝ
n such that 

�j(t) ∈ co[fj(xj(t))] for a.e. t ∈ [−�,  ) and for a.e. 
t ∈ [0,  ), i ∈ ℕ, 

(3)
dx

dt
= f (t, xt),

(4)F(t, xt) =
⋂
𝜌>0

⋂
meas( )=0

co[f (t,(xt, 𝜌)⧵ )].

(5)
dx

dt
∈ F(t, xt).

(6)

dxi(t)

dt
= −di(xi(t))[ai(xi(t)) −

n∑
j=1

bij�j(t)

−

n∑
j=1

cij�j(t − �j(t)) −

n∑
j=1

wij ∫
t

t−�j(t)

�j(s)ds − Ji].
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Any function � = (�1, �2,… , �n)
T satisfying (6) is 

called an output solution associated with the state 
x. With this definition it turns out that the state 
x(t) = (x1(t), x2(t),… , xn(t))

T is a solution of (1) in the 
sense of Filippov since for a.e. t ∈ [0,  ) and i ∈ ℕ, it 
satisfies

The next definition is the initial value problem associ-
ated with CGNNs (1) as follows.

Definition 4 Let � = (�1,�2,… ,�n)
T:[−�, 0] → ℝ

n 
be any continuous function and 
� = (�1,�2,… ,�n)

T:[−�, 0] → ℝ
n be any measur-

able selection, such that �j(s) ∈ co[fj(�j(s))] (j ∈ ℕ) 
for a.e. s ∈ [−�, 0], an absolute continuous function 
x(t) = x(t,�,�) associated with a measurable function 
� is said to be a solution of the Cauchy problem for sys-
tem (1) on [−�,  ) (  might be +∞) with initial value 
(�(s),�(s)), s ∈ [−�, 0], if

Consider the neural network model (1) as the drive sys-
tem, the controlled response system is given as follows:

where i ∈ ℕ, ui(t) is the controller to be designed for real-
izing synchronization of the drive-response system. The 
other parameters are the same as those defined in system 
(1)

dxi(t)

dt
∈ −di(xi(t))

�
ai(xi(t)) −

n∑
j=1

bijco[fj(xj(t))]

−
n∑
j=1

cijco[fj(xj(t − �j(t)))]

−
n∑
j=1

wij ∫ t

t−�j(t)
co[fj(xj(s))]ds − Ji

�
.

(7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dxi(t)

dt
= −di(xi(t))[ai(xi(t)) −

n∑
j=1

bij�j(t)

−
n∑
j=1

cij�j(t − �j(t)) −
n∑
j=1

wij ∫ t

t−�j(t)
�j(s)ds

−Ji], for a.e. t ∈ [0,  ),

�j(t) ∈ co[fj(xj(t))], for a.e. t ∈ [0,  ),

x(s) = �(s), ∀s ∈ [−�, 0],

�(s) = �(s), for a.e.s ∈ [−�, 0].

(8)

dyi(t)

dt
= − di(yi(t))

[
ai(yi(t)) −

n∑
j=1

bijfj(yj(t))

−

n∑
j=1

cijfj(yj(t − �j(t)))

−

n∑
j=1

wij ∫
t

t−�j(t)

fj(yj(s))ds − Ji − ui(t)

]
,

Similar to Definition 4, we can give the initial value 
problem (IVP) of response system (8) as follows:

Lemma 1 (Chain Rule [20, 21]) Assume that 
V(z):ℝn

→ ℝ is C-regular, and z(t):[0,+∞) → ℝ
n is abso-

lutely continuous on any compact subinterval of [0,+∞). 
Then, z(t) and V(z(t)):[0,+∞) → ℝ are differential for a.e. 
t ∈ [0,+∞) and

where �V(z) denotes the Clarke’s generalized gradient of V 
at point z ∈ ℝ

n.

Lemma 2 (see [21]) Assume that V(z(t)):ℝn
→ ℝ is 

C-regular, and that z(t):[0,+∞) → ℝ
n is absolutely contin-

uous on any compact subinterval of [0,+∞). If there exists 
a continuous function Υ:(0,+∞) → ℝ, with Υ(𝜚) > 0 for 
� ∈ (0,+∞), such that

and

then we have V(t) = 0 for t ≥ t∗. Especially, we have follow-
ing conclusions.

(i) If Υ(�) = K1� + K2�
�, for all � ∈ (0,+∞), where 

� ∈ (0, 1) and K1,K2 > 0, then the settling time can be 
estimated by 

(ii) If Υ(�) = K�� and K > 0, then the settling time can be 
estimated by 

(9)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dyi(t)

dt
= −di(yi(t))[ai(yi(t)) −

n∑
j=1

bij�j(t)

−
n∑
j=1

cij�j(t − �j(t)) −
n∑
j=1

wij ∫ t

t−�j(t)
�j(s)ds

−Ji − ui(t)], for a.e. t ∈ [0,  ),

�j(t) ∈ co[fj(yj(t))], for a.e. t ∈ [0,  ),

y(s) = �(s), ∀s ∈ [−�, 0],

�(s) = �(s), for a.e. s ∈ [−�, 0].

dV(z(t))

dt
=

⟨
�(t),

dz(t)

dt

⟩
,∀�(t) ∈ �V(z(t)),

dV(t)

dt
≤ −Υ(V(t)), for a.e. t ≥ 0,

(10)∫
V(0)

0

1

Υ(𝜚)
d𝜚 = t∗ < +∞,

(11)t∗ =
1

K1(1 − �)
ln

K1V
1−�(0) + K2

K2

.

(12)t∗ =
V1−�(0)

K(1 − �)
.
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Definition 5 Discontinuous drive-response systems (1) 
and (8) are said to be finite-time synchronized if, for a suit-
able controller, there exists a time t∗ such that 
lim
t→t∗

‖e(t)‖ = 0, and ‖e(t)‖ = ‖y(t) − x(t)‖ ≡ 0 for t > t∗, 

where x(t) and y(t) are the solutions of drive system (1) and 
response system (8) with initial conditions � and �, 
respectively.

Lemma 3 (Jensen Inequality [25]) If a1, a2,… , an are 
positive numbers and 0 < r < p, then

3  Main results

In this section, we consider the possibility to implement 
finite-time synchronization control of time-delayed neural 
networks with discontinuous activations. Different from 
previous works, we design two classes of novel switching 
state-feedback controllers which involve time-delays and 
discontinuous factors. Based on extended Filippov differ-
ential inclusion framework and famous finite-time stability 
theory, we will provide some new basic results about finite-
time synchronization of drive-response neural networks 
with time-delays and discontinuous activations. Now let us 
define the synchronization error between the drive system 
(1) and the response system (8) as follows

In order to realized finite-time synchronization goal, we 
design the following two classes of switching state-feed-
back controllers:

Case (1) The switching state-feedback controller 
u(t) = (u1(t), u2(t),… , un(t))

T is given by

where i ∈ ℕ, the constants ki, ri,�ij,�ij are the gain coef-
ficients to be determined, and the real number � satisfies 
0 < 𝜎 < 1.

Case (2) The switching state-feedback controller 
u(t) = (u1(t), u2(t),… , un(t))

T is given by

(
n∑
i=1

a
p

i

)1∕p

≤
(

n∑
i=1

ar
i

)1∕r

.

ei(t) = yi(t) − xi(t), i ∈ ℕ.

(13)

ui(t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−kisign(ei(t)) −
ri�ei(t)��
sign(ei(t))

−
n∑
j=1

�ijsign(ei(t))�ej(t − �j(t))�

−
n∑
j=1

�ijsign(ei(t)) ∫ t

t−�j(t)
�ej(s)�ds, ifei(t) ≠ 0,

0, ifei(t) = 0,

Here i ∈ ℕ, the constants �i, �i, �i, �i are the gain coeffi-
cients to be determined, � > 0 and q > 0 are tunable con-
stants, and the real number � satisfies 0 < 𝜎 < 1.

Remark 1 Different from conventional continuous linear 
controllers and adaptive controllers, the switching state-
feedback controllers (13) and (14) include the discontinu-
ous term sign(ei(t)) which can switch the system state and 
makes the error state converge to zero in a finite-time. Such 
switching state-feedback controllers possess some mer-
its. One of merits is that they can well handle the uncer-
tain differences of the Filippov solutions for neural net-
works with discontinuous activations. Another merit is that 
such switching state-feedback controllers can eliminate 
the influence of time-delay on the states of neuron sys-
tem with especial state-dependent nonlinear discontinuous 
properties.

3.1  State‑feedback control design in Case (1)

Theorem  1 Suppose that the conditions (ℋ1)-(ℋ3) are 
satisfied, assume further that

(ℋ4) ki ≥
n∑
j=1

��bij� + �cij� + �M�wij�
�
pj for each i ∈ ℕ, 

ℬ > 𝒜, min
1≤i,j≤n

{
�ij
} ≥ max

1≤i,j≤n
{|cij|Lj

}
 and 

min
1≤i,j≤n

{
�ij

} ≥ max
1≤i,j≤n

{|wij|Lj
}
, where 

If the drive-response system is controlled with the control 
law (13), then the response system (8) can be synchronized 
with the drive system (1) in a finite time, and the settling 
time for finite-time synchronization is given by

(14)

ui(t) =

⎧
⎪⎪⎨⎪⎪⎩

−�isign(ei(t)) −
�i�ei(t)��
sign(ei(t))

−
q

sign(ei(t))

�∫ 0

−�i(t)
∫ t

t+�
�i�ei(s)�dsd�

��

−
ℏ

sign(ei(t))

�∫ t

t−�i(t)
�i�ei(s)�ds

��

, if ei(t) ≠ 0,

0, if ei(t) = 0.

ℬ = min
1≤i≤n

{
�i
}
, 𝒜 = max

1≤j≤n

{
n∑
i=1

|bij|Lj
}

.

(15)

t∗
1
=

1

(1 − �)(ℬ −𝒜)d∗
min

× ln

(
(ℬ −𝒜)d∗

min
V1−�(0) +𝒟(d∗

min
)�

𝒟(d∗
min

)�

)
.
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Proof Consider the following Lyapunov functional for the 
drive-response system with switching state-feedback con-
troller (13):

Obviously, V(t) is C-regular and the following inequality 
holds:

where d∗
min

= mini∈ℕ{d
∗
i
} and d∗∗

max
= maxi∈ℕ{d

∗∗
i
}. By the 

chain rule in Lemma 1, calculate the time derivative of V(t) 
along the trajectories of the drive-response system, we can 
obtain

Recalling the assumptions (ℋ1) and (ℋ3), we can get from 
(18) that

Multiplying both sides of switching state-feedback control-
ler (13) by sign(ei(t)), we have

(16)
V(t) =

n∑
i=1

sign(ei(t))∫
yi(t)

xi(t)

1

di(s)
ds.

(17)
1

d∗∗
max

n∑
i=1

|ei(t)| ≤ V(t) ≤ 1

d∗
min

n∑
i=1

|ei(t)|,

(18)

dV(t)

dt
=

n∑
i=1

sign(ei(t))[−(ai(yi(t)) − ai(xi(t))) +

n∑
j=1

bij(�j(t) − �j(t)) +

n∑
j=1

cij(�j(t − �j(t)) − �j(t − �j(t)))

+

n∑
j=1

wij �
t

t−�j(t)

(�j(s) − �j(s))ds + ui(t)]

≤ −

n∑
i=1

(ai(yi(t)) − ai(xi(t)))sign(ei(t)) +

n∑
i=1

n∑
j=1

|bij||�j(t) − �j(t)||sign(ei(t))| +
n∑
i=1

n∑
j=1

|cij||�j(t − �j(t))

− �j(t − �j(t))||sign(ei(t))| +
n∑
i=1

n∑
j=1

|wij|�
t

t−�j(t)

|�j(s) − �j(s)|ds ⋅ |sign(ei(t))| +
n∑
i=1

ui(t)sign(ei(t)), for a.e. t ≥ 0.

(19)

dV(t)

dt
≤ −

n∑
i=1

�i|ei(t)|

+

n∑
i=1

n∑
j=1

|bij|(Lj|ej(t)| + pj)|sign(ei(t))|

+

n∑
i=1

n∑
j=1

|cij|(Lj|ej(t − �j(t))| + pj)|sign(ei(t))|

+

n∑
i=1

n∑
j=1

|wij|�
t

t−�j(t)

(Lj|ej(s)| + pj)ds ⋅ |sign(ei(t))|

+

n∑
i=1

ui(t)sign(ei(t)), for a.e. t ≥ 0.

Substituting the formula (20) into Eq. (19) and using the 
assumption (ℋ4), we can deduce that

(20)

ui(t)sign(ei(t))

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−ki�sign(ei(t))� − ri�ei(t)��
sign(ei(t))

sign(ei(t))

−
n∑
j=1

�ij�sign(ei(t))��ej(t − �j(t))�

−
n∑
j=1

�ij�sign(ei(t))� ∫ t

t−�j(t)
�ej(s)�ds, if ei(t) ≠ 0,

0, if ei(t) = 0,

= −ki�sign(ei(t))� −
n�
j=1

�ij�sign(ei(t))��ej(t − �j(t))�

− ri�ei(t)�� −
n�
j=1

�ij�sign(ei(t))��
t

t−�j(t)

�ej(s)�ds.

(21)

dV(t)

dt
≤ −

n∑
i=1

�i|ei(t)| +
n∑
j=1

n∑
i=1

|bij|Lj|ej(t)|

−

n∑
i=1

(
ki −

n∑
j=1

(|bij| + |cij| + �M|wij|)pj
)

× |sign(ei(t))| −
n∑
i=1

ri|ei(t)|�

−

(
min
1≤i,j≤n

{
�ij

}
− max

1≤i,j≤n
{|wij|Lj

})

×

n∑
i=1

n∑
j=1

|sign(ei(t))|�
t

t−�j(t)

|ej(s)|ds

≤ − min
1≤i≤n

{
�i
} n∑

i=1

|ei(t)| − min
1≤i≤n

{
ri
} n∑

i=1

|ei(t)|�

+ max
1≤j≤n

{
n∑
i=1

|bij|Lj
}

n∑
j=1

|ej(t)|

= −(ℬ −𝒜)

n∑
i=1

|ei(t)| −𝒟

n∑
i=1

|ei(t)|� , a.e. t ≥ 0,
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where ℬ = min
1≤i≤n

{
�i
}
, � = max

1≤j≤n

�
n∑
i=1

�bij�Lj
�

 and 

� = min
1≤i≤n

{
ri
}
. From 0 < 𝜎 < 1 and Lemma 3, we can get

which implies

Combining (17) and (23), it follows from (21) that

According to the special case (i) in Lemma 2, the response 
system (1) and the drive system (8) can achieve the finite-
time synchronization under the switching state-feedback 
controller (13). Obviously, Υ(�) = K1� + K2�

�, where 
K1 = (ℬ −𝒜)d∗

min
> 0 and K2 = �(d∗

min
)𝜎 > 0. Therefore, 

the settling time can be given by

The proof is complete.  □

(22)
(

n∑
i=1

|ei(t)|�
) 1

�

≥
n∑
i=1

|ei(t)|,

(23)
n∑
i=1

|ei(t)|� ≥
(

n∑
i=1

|ei(t)|
)�

.

dV(t)

dt
≤ −(ℬ −𝒜)d∗

min
V(t) −𝒟(d∗

min
)�V�(t), a.e. t ≥ 0.

(24)
t∗
1
=∫

V(0)

0

1

Υ(�)
d� =

1

(1 − �)(ℬ −𝒜)d∗
min

× ln

(
(ℬ −𝒜)d∗

min
V1−�(0) +𝒟(d∗

min
)�

𝒟(d∗
min

)�

)
.

3.2  State‑feedback control design in Case (2)

Theorem  2 Under the assumptions (ℋ1)-(ℋ3) and 
0 < 𝜎 < 1, assume further that the following inequalities 
hold.

(ℋ5) For each i ∈ ℕ, �i −
n∑
j=1

�bji�Li − �i

1−�D
i

−
�i�

M

1−�D
i

≥ 0, 

�i ≥
n∑
j=1

��bij� + �cij� + �M�wij�
�
pj, �i ≥

n∑
j=1

�cji�Li and 

�i ≥
n∑
j=1

�wji�Li.

If the drive-response system is controlled with the control 
law (14), then the response system (8) can be synchro-
nized with the drive system (1) in a finite time, and the 
settling time forfinite-time synchronization is given by

Proof Consider the following Lyapunov functional for the 
drive-response system with switching state-feedback con-
troller (14):

Obviously, V(t) is C-regular. By the chain rule in Lemma 1, 
calculate the time derivative of V(t) along the trajectories of 
the drive-response system, we have

(25)t∗
2
=

V1−�(0)

�(1 − �)
.

(26)

V(t) =

n∑
i=1

sign(ei(t))∫
yi(t)

xi(t)

1

di(s)
ds

+

n∑
i=1

1

1 − �D
i
∫

t

t−�i(t)

�i|ei(s)|ds

+

n∑
i=1

1

1 − �D
i
∫

0

−�i(t)
∫

t

t+�

�i|ei(s)|dsd�.

(27)

dV(t)

dt
=

n∑
i=1

sign(ei(t))[−(ai(yi(t)) − ai(xi(t))) +

n∑
j=1

bij(𝜉j(t) − 𝛾j(t)) +

n∑
j=1

cij(𝜉j(t − 𝜏j(t)) − 𝛾j(t − 𝜏j(t))) +

n∑
j=1

wij �
t

t−𝛿j(t)

(𝜉j(s)

− 𝛾j(s))ds + ui(t)] +

n∑
i=1

𝜁i

1 − 𝜏D
i

|ei(t)| +
n∑
i=1

𝜗i

1 − 𝛿D
i

𝛿i(t)|ei(t)| −
n∑
i=1

𝜁i

1 − 𝜏D
i

(1 − �̇�i(t))|ei(t − 𝜏i(t))|

−

n∑
i=1

𝜗i

1 − 𝛿D
i

(1 − �̇�i(t))�
t

t−𝛿i(t)

|ei(s)|ds

≤ −

n∑
i=1

(ai(yi(t)) − ai(xi(t)))sign(ei(t)) +

n∑
i=1

n∑
j=1

|bij||𝜉j(t) − 𝛾j(t)||sign(ei(t))| +
n∑
i=1

n∑
j=1

|cij||𝜉j(t − 𝜏j(t))

− 𝛾j(t − 𝜏j(t))||sign(ei(t))| +
n∑
i=1

n∑
j=1

|wij|�
t

t−𝛿j(t)

|𝜉j(s) − 𝛾j(s)|ds ⋅ |sign(ei(t))| +
n∑
i=1

ui(t)sign(ei(t)) +

n∑
i=1

𝜁i

1 − 𝜏D
i

|ei(t)|

−

n∑
i=1

𝜁i

1 − 𝜏D
i

(1 − 𝜏D
i
)|ei(t − 𝜏i(t))| −

n∑
i=1

𝜗i

1 − 𝛿D
i

(1 − 𝛿D
i
)�

t

t−𝛿i(t)

|ei(s)|ds +
n∑
i=1

𝜗i𝛿
M

1 − 𝛿D
i

|ei(t)|, for a.e. t ≥ 0.
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Multiplying both sides of controller (14) by sign(ei(t)), we 
have

Recalling the assumption (ℋ3), we can obtain that

By using the assumption (ℋ2), we can get

Similarly, we have

and

(28)

ui(t)sign(ei(t))

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−�i�sign(ei(t))� − �i�ei(t)��
sign(ei(t))

sign(ei(t))

−
ℏ

sign(ei(t))
sign(ei(t))

�∫ t

t−�i(t)
�i�ei(s)�ds

��

−
q

sign(ei(t))
sign(ei(t))

�∫ 0

−�i(t)
∫ t

t+�
�i�ei(s)�dsd�

��

,

if ei(t) ≠ 0,

0, if ei(t) = 0,

= −�i�sign(ei(t))� − �i�ei(t)�� − ℏ

�
�

t

t−�i(t)

�i�ei(s)�ds
��

− q

�
�

0

−�i(t)
�

t

t+�

�i�ei(s)�dsd�
��

.

(29)
n∑
i=1

(ai(yi(t)) − ai(xi(t)))sign(ei(t)) ≥
n∑
i=1

�i|ei(t)|.

(30)

n∑
i=1

n∑
j=1

|bij||�j(t) − �j(t)||sign(ei(t))|

≤
n∑
i=1

n∑
j=1

|bij|(Lj|ej(t)| + pj)|sign(ei(t))|

≤
n∑
i=1

n∑
j=1

|bji|Li|ei(t)| +
n∑
i=1

n∑
j=1

|bij|pj|sign(ei(t))|.

(31)

n∑
i=1

n∑
j=1

|cij||�j(t − �j(t)) − �j(t − �j(t))||sign(ei(t))|

≤
n∑
i=1

n∑
j=1

|cij|(Lj|ej(t − �j(t))| + pj)|sign(ei(t))|

≤
n∑
i=1

n∑
j=1

|cji|Li|ei(t − �i(t))| +
n∑
i=1

n∑
j=1

|cij|pj|sign(ei(t))|,

It follows from (27)–(32) that

According to the assumption (ℋ5), we can obtain from 
(33) that

By using the assumptions (ℋ1), we have

(32)

n∑
i=1

n∑
j=1

|wij|�
t

t−�j(t)

|�j(s) − �j(s)|ds ⋅ |sign(ei(t))|

≤
n∑
i=1

n∑
j=1

|wij|�
t

t−�j(t)

(Lj|ej(s)| + pj)ds ⋅ |sign(ei(t))|

≤
n∑
i=1

n∑
j=1

|wji|Li �
t

t−�i(t)

|ei(s)|ds

+

n∑
i=1

n∑
j=1

�M|wij|pj|sign(ei(t))|.

(33)

dV(t)

dt
≤ −

n∑
i=1

|ei(t)|
(
�i −

n∑
j=1

|bji|Li −
�i

1 − �D
i

−
�i�

M

1 − �D
i

)

−

n∑
i=1

[�i −

n∑
j=1

(|bij| + |cij| + �M|wij|)pj]|sign(ei(t))|

−

n∑
i=1

(
�i −

n∑
j=1

|cji|Li
)
|ei(t − �i(t))|

−

n∑
i=1

(
�i −

n∑
j=1

|wji|Li
)
�

t

t−�i(t)

|ei(s)|ds

−

n∑
i=1

�i|ei(t)|� − ℏ

n∑
i=1

(
�

t

t−�i(t)

�i|ei(s)|ds
)�

− q

n∑
i=1

(
�

0

−�i(t)
�

t

t+�

�i|ei(s)|dsd�
)�

, for a.e. t ≥ 0.

(34)

dV(t)

dt
≤ −

n∑
i=1

�i|ei(t)|� − ℏ

n∑
i=1

(
�

t

t−�i(t)

�i|ei(s)|ds
)�

− q

n∑
i=1

(
�

0

−�i(t)
�

t

t+�

�i|ei(s)|dsd�
)�

, for a.e. t ≥ 0.

(35)
(
sign(ei(t))�

yi(t)

xi(t)

1

di(s)
ds

)�

≤
(

1

d∗
i

|ei(t)|
)�

.
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It follows from Eqs. (34) and (35) that

where

Since 0 < 𝜎 < 1, based on Lemma 3, we have

which yields

(36)

dV(t)

dt
≤ −

n∑
i=1

�i(d
∗
i
)�
(
sign(ei(t))�

yi(t)

xi(t)

1

di(s)
ds

)�

−

n∑
i=1

ℏ
(
1 − �D

i

)�
(

1

1 − �D
i
�

t

t−�i(t)

�i|ei(s)|ds
)�

−

n∑
i=1

q
(
1 − �D

i

)�
(

1

1 − �D
i
�

0

−�i(t)
�

t

t+�

�i|ei(s)|dsd�
)�

≤ −�

[
n∑
i=1

(
sign(ei(t))�

yi(t)

xi(t)

1

di(s)
ds

)�

+

n∑
i=1

(
1

1 − �D
i
�

t

t−�i(t)

�i|ei(s)|ds
)�

+

n∑
i=1

(
1

1 − �D
i
�

0

−�i(t)
�

t

t+�

�i|ei(s)|dsd�
)�]

, for a.e. t ≥ 0,

� = min{�1,�2,�3}, �1 = min
1≤i≤n{�i(d

∗
i
)�},

�2 = min
1≤i≤n

{
ℏ
(
1 − �D

i

)�}
, �3 = min

1≤i≤n
{
q
(
1 − �D

i

)�}
.

(37)

[
n∑
i=1

(
sign(ei(t))�

yi(t)

xi(t)

1

di(s)
ds

)�

+

n∑
i=1

(
1

1 − �D
i
�

t

t−�i(t)

�i|ei(s)|ds
)�

+

n∑
i=1

(
1

1 − �D
i
�

0

−�i(t)
�

t

t+�

�i|ei(s)|dsd�
)�] 1

�

≥
n∑
i=1

sign(ei(t))�
yi(t)

xi(t)

1

di(s)
ds

+

n∑
i=1

1

1 − �D
i
�

t

t−�i(t)

�i|ei(s)|ds

+

n∑
i=1

1

1 − �D
i
�

0

−�i(t)
�

t

t+�

�i|ei(s)|dsd�,

From (36) and (38), we derive that

By the special case (ii) in Lemma 2, the response system 
(1) and the drive system (8) can realize the finite-time syn-
chronization under the switching state-feedback controller 
(14). Clearly, Υ(�) = K��, where K = � > 0. Hence, the 
settling time can be given by

The proof is complete.  □

Remark 2 By using the finite-time stability theorem given 
by Forti et  al., this paper has studied the finite-time syn-
chronization problem of CGNNs with discontinuous acti-
vation functions. In [33], Wang and Zhu dealt with the 
problem of finite-time stabilization for a class of high-order 
stochastic nonlinear systems in strict-feedback form. How-
ever, the finite-time stability theorem of [33] is invalid to 
handle the discontinuous dynamical systems.

Remark 3 In the existing literature [34–38], there are 
some results on synchronization for neural networks. How-
ever, the neural network models of [34–38] did not con-
sider the discontinuities of neuron activations. Moreover, 
the finite-time synchronization results of this paper are 

(38)

n∑
i=1

(
sign(ei(t))�

yi(t)

xi(t)

1

di(s)
ds

)�

+

n∑
i=1

(
1

1 − �D
i
�

t

t−�i(t)

�i|ei(s)|ds
)�

+

n∑
i=1

(
1

1 − �D
i
�

0

−�i(t)
�

t

t+�

�i|ei(s)|dsd�
)�

≥
[

n∑
i=1

sign(ei(t))�
yi(t)

xi(t)

1

di(s)
ds

+

n∑
i=1

1

1 − �D
i
�

t

t−�i(t)

�i|ei(s)|ds

+

n∑
i=1

1

1 − �D
i
�

0

−�i(t)
�

t

t+�

�i|ei(s)|dsd�
]�

= V�(t).

dV(t)

dt
≤ −�V�(t), for a.e. t ≥ 0.

(39)t∗
2
= ∫

V(0)

0

1

Υ(�)
d� =

V1−�(0)

�(1 − �)
.
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more better than the synchronization results of [34–38]. 
That is because finite-time synchronization possesses 
faster convergence speed than asymptotic or exponential 
synchronization.

Remark 4 Different from the classical state-feedback 
methods, our state-feedback methods (13) and (14) include 
switching term, time-delayed term and integral term. From 
Theorems 1 and 2, we can see that the two state-feedback 
control methods are effective in realizing the finite-time 
synchronization of CGNNs with discontinuous activations 
and mixed time-delays. However, the classical controllers 
are difficult to deal with the uncertain differences of the 
Filippov solutions of differential equation with discon-
tinuous right-hand side. In [14], the authors used adaptive 
control method to study the exponential synchronization 
problem of time-delayed neural networks with discontinu-
ous activations. Nevertheless, the adaptive control method 
of [14] is difficult to realize the finite-time synchronization 
of neural network model (1) due to the emergence of mixed 
time-delays and discontinuities of activations.

4  Numerical simulations

In this section, two numerical examples are given to illustrate 
the effectiveness of main results.

Example 1 Consider the following 2-dimensional  
CGNNs (1) with di(xi(t)) = 0.6 +

0.1

1+x2
i
(t)
(i = 1, 2), 

a1(x1(t)) = 1.9x1(t), a2(x2(t)) = 2x2(t), b11 = 2, b12 = −0.2, 

b21 = −1, b22 = 0.5, c11 = −1.5, c12 = c21 = −0.5, 
c22 = −3, w11 = w22 = −0.01, w21 = w12 = 0, J1 = J2 = 0 
and �j(t) = �j(t) = 1(j = 1, 2). The discontinuous activation 
functions are described by

It is obvious that the discontinuous activation function 
fi(�) is non-monotonic and satisfies the assumption (ℋ2). 
Actually, the activation function fi(�) possesses a discontinu-
ous point � = 0 and co[fi(0)] = [f +

i
(0), f −

i
(0)] = [−0.1, 0.1]. 

We can choose L1 = L2 = 0.6 and p1 = p2 = 0.2 such that 
the inequality (2) holds. Under the switching state-feedback 

fi(𝜃) =

{
0.6 tanh(𝜃) − 0.1, 𝜃 ≥ 0,

0.6 tanh(𝜃) + 0.1, 𝜃 < 0,
i = 1, 2.
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Fig. 1  Synchronization error state trajectories between drive system 
and corresponding response system under the switching state-feed-
back controller (13) for Example 1
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Fig. 2  a Time evolution of variables x1(t) and y1(t) of drive neural 
network and corresponding response system for Example 1; b time 
evolution of variables x2(t) and y2(t) of drive neural network and cor-
responding response system for Example 1
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controller (13), let us select the control gains k1 = k2 = 12, 
r1 = r2 = 6, �ij = 2, �ij = 0.02 and � = 0.5. By simple com-
putation, we can get

This shows that the conditions of Theorem  1 are satis-
fied. Thus, the discontinuous and time-delayed CGNNs 
can realize the finite-time synchronization with the 
corresponding response system under the switch-
ing state-feedback controller (13). Consider the drive-
response neural network system with initial conditions 
[�(t),�(t)] = [(2.5,−1.2)T, (f1(2.5), f2(−1.2))

T], for 
t ∈ [−1, 0] and [�(t),�(t)] = [(−1, 2)T, (f1(−1), f2(2))

T] for 
t ∈ [−1, 0]. Figure  1 presents the trajectory of each error 
state which approaches to zero in a finite time. Figure  2 
describes the state trajectories of drive system and its cor-
responding response system. The numerical simulations fit 
the theoretical results perfectly.

Example 2 Consider the following 2-dimensional CGNNs 
(1) with di(xi(t)) = 0.7 +

0.2

1+x2
i
(t)
(i = 1, 2), a1(x1(t)) = 4x1(t), 

12 = k1 ≥
n∑
j=1

(|b1j| + |c1j| + �M|w1j|
)
pj = 0.842,

12 = k2 ≥
n∑
j=1

(|b2j| + |c2j| + �M|w2j|
)
pj = 1.002,

2 = min
1≤i,j≤n

{
�ij
} ≥ max

1≤i,j≤n
{|cij|Lj

}
= 1.8,

0.02 = min
1≤i,j≤n

{
�ij

} ≥ max
1≤i,j≤n

{|wij|Lj
}
= 0.006,

1.9 = ℬ > 𝒜 = 1.8.

a2(x2(t)) = 3x2(t), b11 = −1, b12 = −0.1, b21 = −1.5, 
b22 = 0.8, c11 = −1, c12 = −0.2, c21 = 0.8, c22 = −2.5, 
w11 = w22 = 0.02, w21 = w12 = 0, J1 = J2 = 0 and 
�j(t) = �j(t) = 1(j = 1, 2). The discontinuous activation 
functions are given as

It is not difficult to check that the discontinuous acti-
vation function fi(�) satisfies the assumption (ℋ2)with 
L1 = L2 = 0.3 and p1 = p2 = 0.2. Under the switching 
state-feedback controller (14), let us choose the control gains 

fi(𝜃) =

{
0.3𝜃 + 0.1, 𝜃 ≥ 0,

0.3𝜃 − 0.1, 𝜃 < 0,
i = 1, 2.
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Fig. 3  Synchronization error state trajectories between drive system 
and corresponding response system under the switching state-feed-
back controller (14) for Example 2
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Fig. 4  a Time evolution of variables x1(t) and y1(t) of drive neural 
network and corresponding response system for Example 2; b time 
evolution of variables x2(t) and y2(t) of drive neural network and cor-
responding response system for Example 2
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�1 = �2 = 6, �1 = �2 = 5, ℏ = q = 0.01, �i = �i = 1 and 
� = 0.5. It is easy to calculate that

Hence, all the conditions of Theorem 2 are satisfied. Then, 
the discontinuous and time-delayed CGNNs can realize the 
finite-time synchronization with the corresponding response 
system under the switching state-feedback controller (14). 
Consider the initial conditions of drive-response neural net-
work system: [�(t),�(t)] = [(3,−2)T, (f1(3), f2(−2))

T], for 
t ∈ [−1, 0] and [�(t),�(t)] = [(−2, 3)T, (f1(−2), f2(3))

T] for 
t ∈ [−1, 0]. Figures 3 and 4 also show the theoretical results 
are correct.

Remark 5 Comparing with the control methods of [34–
38], only the asymptotic or exponential synchronization 
can be realized for neural networks. From Example 1 and 2, 
it can be seen that the proposed finite-time synchronization 
control method here in this paper has better convergence 
property for neural networks. On the other hand, different 
from the existing control methods used in studying finite-
time synchronization of [16, 43, 47], our switching state-
feedback control method can be used to deal with more 
general neural networks with time-delay and discontinuous 
factors. Example 1 and 2 can also illustrate that our con-
trol method is effective and the conditions are easy to be 
verified.

5  Conclusions

In this paper, we have dealt with the finite-time synchroni-
zation issue of a class of CGNNs with discontinuous acti-
vations and mixed time-delays. Firstly, we have designed 

1.1 = �1 −

n∑
j=1

|bj1|L1 −
�1

1 − �D
1

−
�1�

M

1 − �D
1

≥ 0,

0.79 = �2 −

n∑
j=1

|bj2|L2 −
�2

1 − �D
2

−
�2�

M

1 − �D
2

≥ 0,

6 = �1 ≥
n∑
j=1

(|b1j| + |c1j| + �M|w1j|
)
pj = 0.564,

6 = �2 ≥
n∑
j=1

(|b2j| + |c2j| + �M|w2j|
)
pj = 1.124,

1 = �i ≥
n∑
j=1

|wji|Li = 0.006(i = 1, 2),

1 = �1 ≥
n∑
j=1

|cj1|L1 = 0.54, 1 = �2 ≥
n∑
j=1

|cj2|L2 = 0.81.

two classes of novel switching state-feedback controllers. 
Such switching state-feedback controllers play an impor-
tant role in handling the uncertain differences of the Filip-
pov solutions for discontinuous CGNNs and can eliminate 
the influence of time-delay on the states of CGNNs. Then, 
some easily testable conditions have been established to 
check the finite-time synchronization control of drive-
response system. The main tools of this paper involve the 
differential inclusion theory, non-smooth analysis theory, 
the famous finite-time stability theorem, inequality tech-
niques and the generalized Lyapunov functional method. 
Finally, the designed control method and theoretical results 
have been illustrated by numerical examples. We think 
that it would be interesting to extend the theory and con-
trol method of this paper to other classes of discontinuous 
neural networks such as stochastic neural networks, Marko-
vian jump switched neural networks, reaction-diffusion 
neural networks, memristor-based neural networks, bidirec-
tional associative memory (BAM) neural networks, and so 
on. There are some papers [40–45] related to this topic. In 
addition, it is also expected to explore some other complex 
dynamical behaviors of discontinuous neural networks such 
as homoclinic orbits, cluster synchronization, exponential 
H∞ filtering problem, finite-time boundedness and passiv-
ity [46–49].
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