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1  Introduction

Support vector machine (SVM) [1, 2], as a powerful tool 
for classification and regression, has been widely used in 
a variety of practical applications [3–6]. However, SVM 
is computational costly because its solution follows from 
solving constrained quadratic programming problems 
(QPPs), especially when handing large-scale data. Fur-
thermore, SVM has only one separating plane hence it 
cannot cope with the complex XOR problem. To address 
these issues, the generalized eigenvalue proximal SVM 
(GEPSVM) [7] uses two nonparallel haperplanes such 
that each hyperplane is close to one of the two classes 
and is as far as possible from the other class. Motivated 
by GEPSVM, Jayadeva et  al. [8] proposed a twin SVM 
(TWSVM) that developed a novel nonparallel hyperplane 
classifier for binary classification. In TWSVM, training 
samples in each class are proximal to one of the two non-
parallel hyperplanes. The nonparallel hyperplanes are 
obtained by solving a pair of small-sized QPPs. Experi-
mental results in [8] validated the superiority of TWSVM 
over the classical SVM. Moreover, TWSVM can effec-
tively deal with the XOR problem due to the underlying 
model. Therefore, the method of constructing nonparal-
lel hyperplane SVM has been extensively studied and a 
variety of methods have been proposed [9–16], such as 
LSTSVM [9], TBSVM [10], TPMSVM [11], RTSVM 
[12], PPSVC [13], NHSVM [14] and NPSVM [15]. Also, 
the method of finding two projection directions has been 
widely investigated, such as MVSVM [17], PTSVM [18] 
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and LSPTSVM [19, 20]. An overview on twin support 
vector machines was given in [21].

However, in practice, patterns belonging to one class 
often play more significant roles in classification. Such 
a problem is usually solved using fuzzy SVMs [22–26]. 
In fuzzy SVMs, the patterns of more important classes 
are assigned higher membership values. Different from 
FSVM, Tao and Wang proposed a new framework for 
SVM to solve the fuzzy classification problem using 
fuzzy membership function [27], which termed new fuzzy 
SVM (NFSVM) [28]. However, FSVM and NFSVM 
have the same computational complexity because their 
solutions follow from solving QPP. Lastly, inspired by 
TWSVM, FTWSVM [29] and FTSVM [30] have also 
been proposed. Specifically, FTWSVM incorporates the 
information of fuzziness in the data and obtains nonpar-
allel planes around which the data points of the corre-
sponding class get clustered. However, based on v-twin 
support vector machine, FTSVM was proposed by intro-
ducing importance of training sample.

In order to enhance the efficiency and performance 
of fuzzy SVM and TWSVM for binary classification, in 
this paper, we propose a new fuzzy twin support vector 
machine (NFTSVM). The proposed NFTSVM relates 
to the ideas of both NFSVM and TWSVM. However, 
NFTSVM has two advantages compared to NFSVM and 
TWSVM. First, NFTSVM aims at generating two nonpar-
allel hyperplanes such that each plane is close to one of 
the two classes and is as far as possible from the other. 
It employs the fuzzy membership to weigh the margin 
of each training sample, hence enhances the generaliza-
tion ability. Second, NFTSVM has a more general for-
mulation, compared to TWSVM and TBSVM. In fact, 
TWSVM and TBSVM are special cases of the proposed 
NFTSVM. Moreover, our proposed NFTSVM is differ-
ent from FTWSVM and FTSVM. For FTWSVM and 
FTSVM, a fuzzy membership value is assigned to each 
pattern, and points are classified by assigning them to the 
nearest of two nonparallel planes that are close to their 
respective classes. However, inspired by NFSVM, the 
main idea of our proposed NFTSVM is to weigh the mar-
gin by using the fuzzy membership function. Thus, it is 
easy to think that the influence of the samples with high 
uncertainty can be decreased by weighing the margin of 
each training vector. In addition, one of the important 
privileges of NFTSVM by the idea from fuzzy neural net-
works is that we can employ some available fuzzy mem-
bership functions.

The rest of this paper is organized as follows. Section 2 
gives a brief overview to related work, including NFSVM, 
TWSVM and TBSVM. Section  3 presents the proposed 
NFTSVM in detail. Experimental results and conclusion 
are given in Sects. 4 and 5, respectively.

2 � Related work

Conventional SVMs solve the binary classification prob-
lem using the principle of structural risk minimization 
(SRM) [1, 2]. For a typical binary classification problem, 
we have a set of training samples:

where xi ∈ ℜn is the i-th observation, yi ∈ {−1, 1} is 
the label of the i-th observation, and l is the number of 
training samples. The aim of linear SVM is to solve the 
following primal QPP:

where C is penalty parameter and �i are slack variables. 
The output of SVM is an optimal separating hyperplane:

where w ∈ ℜn is the normal vector to the hyperplane, 
and b ∈ ℜ1 is the offset. Given a new observation x′, we 
can use this hyperplane to determine the label, i.e. we 
assign the positive label to x′ if wTx + b ⩾ 0, otherwise, 
we assign the negative label to x′.

2.1 � New fuzzy SVM (NFSVM)

However, one of the main drawbacks of the conventional 
SVM is that the linear model is very sensitive to outli-
ers or noises. In order to deal with this problem, fuzzy 
support vector machines (FSVM) have been proposed 
[22–26]. In addition, Tao and Wang [28] proposed a new 
fuzzy support vector machine (NFSVM). In NFSVM, 
we consider the binary classification problem for a set of 
training samples:

where xi ∈ ℜn is independently distributed, mi ∈ [0, 1 
is the fuzzy membership that measures the contribution 
of the i-th observation xi to the positive class and l is 
the number of training samples. In order to get the simi-
lar formula to classical SVM, NFSVM uses a new label 
yi = 2mi − 1 to replace the fuzzy membership mi. Hence, 
the primal problem of NFSVM can be expressed as

(1)T = {(x1, y1), (x2, y2),… , (xl, yl)}

(2)
min
w,b,�

1

2
wTw + C

l∑
i=1

�i

s.t. yi(w
Txi + b) ⩾ 1 − �i,

�i ⩾ 0, i = 1, 2,… , l

(3)wTx + b = 0

(4)T∗ = {(x1,m1), (x2,m2),… , (xl,ml)}

(5)
min
w,b,�

1

2
wTw + C

l∑
i=1

�i

s.t. yi(w
Txi + b) ⩾ y2

i
− y2

i
�i,

�i ⩾ 0, i = 1, 2,… , l
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where C is penalty parameter, �i are slack variables, 
w ∈ ℜn is the normal vector and b ∈ ℜ is the offset.

To solve this primal problem, NFSVM solves its 
Lagrangian dual problem:

where � ∈ ℜn is Lagrangian multiplier [28].

2.2 � TWSVM

Different from the single hyperplane SVM discussed 
above, linear twin support vector machine (TWSVM) [8] 
aims to find a pair of nonparallel hyperplanes:

such that each hyperplane is proximal to the training 
samples of one class and is as far as possible from the 
samples of the other class. More specifically, we consider 
the training of a binary classifier from p positive samples 
and q negative samples. The training samples in positive 
class are denoted by matrix A ∈ ℜp×n and the training 
samples in negative class are denoted by matrix B ∈ ℜq×n

. The primal problem of linear TWSVM can be expressed 
as:

where c1 > 0 and c2 > 0 are penalty parameters, �1 and �2 
are slack variables, e1 and e2 are vectors with each element 
of the value of 1. By introducing the method of Lagrangian 
multipliers, the corresponding Wolfe dual of QPPs (8) and 
(9) can be represented as

where G = [B e2 and � ∈ ℜq, � ∈ ℜp are Lagrangian 
multipliers [8].

(6)

min
�

1

2

l∑
i=1

l∑
j=1

�i�jyiyj(xi ⋅ xj) −

l∑
i=1

�iy
2
i

s.t.

l∑
i=1

�iyi = 0

0 ⩽ �iy
2
i
⩽ C, i = 1, 2,… , l

(7)wT
1
x + b1 = 0 and wT

2
x + b2 = 0

(8)
min

w1,b1,�2

1

2
||Aw1 + e1b1||22 + c1e

T
2
�2

s.t. − (Bw1 + e2b1) + �2 ⩾ e2, �2 ⩾ 0

(9)
min

w2,b2,�1

1

2
||Bw2 + e2b2||22 + c2e

T
1
�1

s.t. (Aw2 + e1b2) + �1 ⩾ e1, �1 ⩾ 0

(10)
max
�

eT
2
� −

1

2
�TG(HTH)−1GT�

s.t. 0 ⩽ � ⩽ c1e2

(11)
max
�

eT
1
� −

1

2
�TH(GTG)−1HT�

s.t. 0 ⩽ � ⩽ c2e1

2.3 � TBSVM

In order to embody the marrow of statistical learning 
theory and improve the performance of classification, the 
twin bounded support vector machines (TBSVM) was 
proposed [10]. TBSVM minimizes the structural risk by 
adding a regularization term with the idea of maximizing 
one side margin. For a linear binary classification prob-
lem, TBSVM solves the following two primal problems:

where c1, c2, c3 and c4 are positive penalty parameters, 
�1, �2 are slack variables, and e1, e2 are vectors with each 
element of the value of 1. By introducing the method of 
Lagrangian multipliers, the Wolfe dual of QPPs (12) and 
(13) can be represented as

where G = [B e2], H = [A e1], � ∈ ℜq, � ∈ ℜp are 
Lagrangian multipliers, and I is an identity matrix of 
appropriate dimensions [10].

3 � New fuzzy twin support vector machine 
(NFTSVM)

3.1 � Linear NFTSVM

In real-world applications, we may often face with 
the situations where patterns belonging to one class 
play a more significant role in classification. In such 
cases, the main concern is how to determine the final 
classes by assigning different importance degrees to 
training data. A well approach to deal with this chal-
lenge is to use the concept of fuzzy function. As we 
know, the existing nonparallel hyperplane support vec-
tor machines often obtain higher solving efficiency than 
conventional SVM, such as TWSVM is approximately 
four times faster than conventional SVM. In order to 
deal with real-world applications and get higher solving 

(12)
min

w1,b1,�2

1

2
c3(w

2
1
+ b2

1
) +

1

2
||Aw1 + e1b1||22 + c1e

T
2
�2

s.t. − (Bw1 + e2b1) + �2 ⩾ e2, �2 ⩾ 0

(13)
min

w2,b2,�1

1

2
c4(w

2
2
+ b2

2
) +

1

2
||Bw2 + e2b2||22 + c2e

T
1
�1

s.t. (Aw2 + e1b2) + �1 ⩾ e1, �1 ⩾ 0

(14)
max
�

eT
2
� −

1

2
�TG(HTH + c3I)

−1GT�

s.t. 0 ⩽ � ⩽ c1e2

(15)
max
�

eT
1
� −

1

2
�TH(GTG + c4I)

−1HT�

s.t. 0 ⩽ � ⩽ c2e1
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efficiency, we incorporate the concept of fuzzy theory 
into NFSVM and propose a new fuzzy twin support vec-
tor machine (NFTSVM) for binary classification. As dis-
cussed in Sect.  2.1, in fuzzy binary classification, mi is 
the fuzzy membership that measures the membership of 
the corresponding observation xi to the positive class. 
Given p positive samples {(x̃1, m̃1), (x̃2, m̃2),… , (x̃p, m̃p)} 
and q negative samples{(x̂1, m̂1), (x̂q, m̂q),… , (x̂q, m̂q)}

, then, we have the diagonal matrices 
Y1 = diag(ỹ1, ỹ2,… , ỹp), Y2 = diag(ŷ1, ŷ2,… , ŷq), where 
ỹi = 2m̃i − 1, (i = 1, 2,… , p), ŷj = 2m̂j − 1, (j = 1,… , q), 
respectively.

Similar to NFSVM [28], TWSVM [8] and TBSVM 
[10], the goal of the proposed linear NFTSVM is to find 
two nonparallel hyperplanes (7) using the following primal 
problems:

where c1, c2, c3 and c4 are positive penalty parameters, 
�1 and �2 are slack variables, e1 and e2 are vectors with each 
entry of the value of 1.

Let us compare the objective functions and constraints in 
(12), (13) and (16), (17). Obviously, their objective functions 
are the same and their constraints are different. In fact, for 
a classical binary classification problem, the fuzzy member-
ship m̃i = 1 and m̂j = 0, and the label ỹi = 1, (i = 1, 2,… , p) 
and ŷj = −1, (j = 1,… , q). In this case, the constraints 
in (16), (17) are the same as in (12), (13). That is to say, 
TBSVM is a special case of our NFTSVM when the param-
eters of NFTSVM are appropriately selected. However, in 
practical problem, the fuzzy memberships m̃i (i = 1, 2,… , p) 
are not all 1 and m̂j (j = 1, 2,… , q) are not all 0. This means 
that the punishment for different samples with different coef-
ficients, which maybe improve the classification accuracy in 
practical problems.

To obtain the solutions of the objective functions (16) 
and (17), we have to derive their dual problems. For (16), 
by introducing the method of Lagrangian multipliers, we 
can obtain the Lagrangian function:

where � ∈ ℜq and � ∈ ℜq are Lagrangian multipliers. With 
the Karush-Kuhn- Tucker (KKT) conditions [31], we have:

(16)
min

w1,b1,�2

1

2
||Aw1 + e1b1||22 + 1

2
c1(w

2
1
+ b2

1
) + c2e

T
2
�2

s.t. Y2(Bw1 + e2b1) ⩾ Y2
2
e2 − Y2

2
�2, �2 ⩾ 0

(17)
min

w2,b2,�1

1

2
||Bw2 + e2b2||22 + 1

2
c3(w

2
2
+ b2

2
) + c4e

T
1
�1

s.t. Y1(Aw2 + e1b2) ⩾ Y2
1
e1 − Y2

1
�1, �1 ⩾ 0

(18)

L(w1, b1, �2, �, �) =
1

2
||Aw1 + e1b1||22 + 1

2
c1(w

2
1
+ b2

1
) + c2e

T
2
�2

−�T [Y2(Bw1 + e2b1) − Y2
2
e2 + Y2

2
�2

Since � ⩾ 0, from (21) and (24), we have:

Let G = [B e2], G = [H A e1], v1 = [wT
1
b1]

T, (19) and 
(20) imply:

Thus, we can get the augmented vector

where I is an identity matrix. Then, we obtain the Wolfe 
dual problem of (16) by combing (27) with (18) using (19), 
(21):

In the same fashion, we can obtain the Wolfe dual problem 
of (19):

where � ∈ ℜq, � ∈ ℜp are Lagrangian multipliers.
The nonparallel hyperplanes (7) can be obtained from the 

solutions of � and � in (28) and (29) by:

Once v1 and v2 are obtained, these two nonparallel hyper-
planes (7) are known. A new sample x ∈ ℜn is assigned to 
either positive or negative label, depending on the hyper-
planes (7) it lies closest to, i.e.

where | ⋅ | is the absolute value.

(19)
�L

�w1

= AT (Aw1 + e1b1) + c1w1 − BTYT
2
� = 0,

(20)
�L

�b1
= eT

1
(Aw1 + e1b1) + c1b1 − eT

2
YT
2
� = 0,

(21)
�L

��2
= c2e2 − YT

2
� − � = 0,

(22)Y2(Bw1 + e2b1) ⩾ YT
2
e2 − YT

2
�2, �2 ⩾ 0,

(23)�T [Y2(Bw1 + e2b1) − YT
2
e2 + YT

2
�2

(24)� ⩾ 0, � ⩾ 0.

(25)0 ⩽ � ⩽ c2(Y
2
2
)−1e2

(26)(HTH + c1I)v1 − GTYT
2
� = 0

(27)v1 = (HTH + c1I)
−1GTYT

2
�

(28)
max
�

eT
2
YT
2
� −

1

2
�TY2G(H

TH + c1I)
−1GTYT

2
�

s.t. 0 ⩽ � ⩽ c2(Y
2
2
)−1e2

(29)
max
�

eT
1
YT
1
� −

1

2
�TY1H(GTG + c3I)

−1HTYT
1
�

s.t. 0 ⩽ � ⩽ c4(Y
2
1
)−1e1

(30)v1 = (HTH + c1I)
−1GTYT

2
�, where v1 = [wT

1
b1]

T

(31)v2 = (GTG + c3I)
−1HTYT

1
� , where v2 = [wT

2
b2]

T

(32)x ∈ Wk, k = argmin
i=1,2

{|wT
1
x + b1|

||w1|| ,
|wT

2
x + b2|

||w2||

}
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3.2 � Nonlinear NFTSVM

In this subsection, we show that our linear NFTSVM can 
be easily extended to nonlinear case. Here, we consider 
the following kernel-generated hyperplanes

where C = [A B] ∈ ℜ(p+q)×n and K  is an appropriately 
kernel. Similar to the linear case, the nonlinear optimi-
zation problems can be expressed as:

With the Lagrangian method and KKT conditions, we 
can obtain the corresponding Wolfe dual problems

where G̃ = [K(B,CT ) e2], H̃ = [K(A,CT )e1]

According to (34)–(37), the augmented vectors 
v1 = [wT

1
b1]

T and v2 = [wT
2
b2]

T can be obtained by

Once the vector v1 and v2 are obtained, the two non-
parallel hyperplanes (33) are known. A new sample 
x ∈ ℜn is assigned to either positive or negative label, 
depending on which of the hyperplanes (33) it lies clos-
est to, i.e.

where | ⋅ | is the absolute value.

3.3 � Implementation

In this subsection, we discuss the implementation of our pro-
posed NFTSVM. In our NFTSVM, the dual problem can be 
rewritten as the following unified form

(33)K(xT ,CT )w1 + b1 = 0 and K(xT ,CT )w2 + b2 = 0,

(34)

min
w1,b1,�2

1

2
||K(A,CT )w1 + e1b1||22 + 1

2
c1(w

2
1
+ b2

1
) + c2e

T
2
�2

s.t. Y2(K(B,C
T )w1 + e2b1) ⩾ Y2

2
e2 − Y2

2
�2, �2 ⩾ 0,

(35)

min
w2,b2,�1

1

2
||K(B,CT )w2 + e2b2||22 + 1

2
c3(w

2
2
+ b2

2
) + c4e

T
1
�1

s.t. Y1(K(A,C
T )w2 + e1b2) ⩾ Y2

1
e1 − Y2

1
�1, �1 ⩾ 0

(36)
max
𝛼

eT
2
YT
2
𝛼 −

1

2
𝛼TY2G̃(H̃

TH̃ + c1I)
−1G̃TYT

2
𝛼

s.t. 0 ⩽ 𝛼 ⩽ c2(Y
2
2
)−1e2,

(37)
max
𝛾

eT
1
YT
1
𝛾 −

1

2
𝛾TY1H̃(G̃TG̃ + c3I)

−1H̃TYT
1
𝛾

s.t. 0 ⩽ 𝛾 ⩽ c4(Y
2
1
)−1e1,

(38)v1 = (H̃TH̃ + c1I)
−1G̃TYT

2
𝛼,

(39)v2 = (G̃TG̃ + c3I)
−1H̃TYT

1
𝛾 ,

(40)

x ∈ Wk, k = argmin
i=1,2

⎧⎪⎨⎪⎩

�wT
1
K(x,CT ) + b1��
wT
1
K(C,CT )w1

,
�wT

2
K(x,CT ) + b2��
wT
2
K(C,CT )w2

⎫⎪⎬⎪⎭

where Q is a positive definite matrix and d is a vector. For 
example, if we set Q = Y2G(H

TH + c1I)
−1GTYT

2
, d = Y2e2 

and c = c2(Y
2
2
)−1, problem (41) becomes the problem in (28) 

and if we set Q = Y2G̃(H̃
TH̃ + c1I)

−1G̃TYT
2
, d = Y2e2 and 

c = c2(Y
2
2
)−1, problem (41) becomes the problem in (36).

In our proposed NFTSVM, the most expensive part in 
terms of computational cost is solving the dual QPPs (41). 
To solve the QPPs more efficiently, we use a state- of-the-art 
optimization technique, i.e. successive overrelaxation (SOR) 
algorithm [10, 14, 32]. SOR is an excellent QPPs solver 
because it is able to deal with large scale problems, without 
storing all the data in memory [32]. The experimental results 
in the following section show that the SOR accelerates our 
proposed NFTSVM.

To have a further analysis and understanding, we give 
some remarks to our NFTSVM. Firstly, if we define 
the membership mi = 1 when xi is a positive sample, 
the corresponding label yi = 2mi − 1 = 1. If we define 
the membership mi = 0 when xi is a negative sample, 
the corresponding label yi = 2mi − 1 = −1. Therefore, 
Y1 = diag{1, 1,… , 1}, Y2 = diag{−1,−1,… ,−1} and the 
primal problems of NFTSVM can be described as

It is obvious that (42) and (43) are the same as (12) and 
(13). Moreover, if the parameters c1 = c3 = 0, (42) and (43) 
degenerate to (8) and (9). Thus, the classical TWSVM [8] 
and TBSVM [10] are special cases of our NFTSVM when 

(41)
min
�

1

2
�TQ� − dT�

s.t. 0 ⩽ � ⩽ ce ,

(42)
min

w1,b1,�2

1

2
||Aw1 + e1b1||22 + 1

2
c1(w

2
1
+ b2

1
) + c2e

T
2
�2

s.t. − (Bw1 + e2b1) ⩾ e2 − �2, �2 ⩾ 0,

(43)
min

w2,b2,�1

1

2
||Bw2 + e2b2||22 + 1

2
c3(w

2
2
+ b2

2
) + c4e

T
1
�1

s.t. (Aw2 + e1b2) ⩾ e1 − �1, �1 ⩾ 0,
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the parameters of NFTSVM are appropriately selected. 
Secondly, for nonlinear NFTSVM, if the number of training 
points is large, the rectangular kernel technique [33] can 
be applied to reduce the dimensionality of (36) and (37). 
Lastly, in practical classification applications, we often 
only have the information of labels and have to define the 
fuzzy membership based on prior knowledge. Fortunately, 
we can employ some available fuzzy membership functions 
from fuzzy neural networks. In this paper, we directly use 
a fuzzy membership function that is also used in [27, 28]. 
Keller and Hunt [27] suggested the following way to assign 
fuzzy membership values such that a fuzzy 2-partition is 
formed. Given a positive sample xi with positive label +1, 
the fuzzy membership is defined as

Given a negative sample xi with negative label −1, the 
fuzzy membership is defined as

where d1(xi) is the distance between xi and the mean of 
the positive class, d−1(xi) is the distance between xi and the 
mean of the negative class, d is the distance between the 
means of positive and negative classes, and C0 is a constant 
controlling the membership function.

4 � Experimental results

In order to evaluate the performance of our proposed 
NFTSVM, we investigated its classification accuracy and 
computational efficiency both on artificial datasets and real-
world benchmark datasets. In our experiments, we focused 
on the comparison between our proposed NFTSVM and 
some classical classifiers, e.g. NFSVM [28], TWSVM [8], 
TBSVM [10], FTWSVM [29] and FTSVM [30]. These 
methods were implemented in MATLAB R2013a on a 
PC with Intel (R) Core (TM) processor (3.40  GHz) CPU 

m1(xi) = 0.5 +
exp (C0(d−1(xi) − d1(xi))∕d) − exp ( − C0)

2( expC0 − exp ( − C0))
,

m−1(xi) = 1 − m1(xi)

m−1(xi) = 0.5 +
exp (C0(d1(xi) − d−1(xi))∕d) − exp ( − C0)

2( expC0 − exp ( − C0))
,

m1(xi) = 1 − m−1(xi)

and 4  GB RAM. TWSVM, TBSVM, and our proposed 
NFTSVM were solved using SOR algorithm. The QPPs in 
NFSVM, FTWSVM and FTSVM were solved by the opti-
mization toolbox QP in MATLAB. The “Accuracy” used 
in our experiments was defined as Accuracy = (TP + TN)/
(TP + FP + TN + FN), where TP, TN, FP and FN are the 
number of true positives, true negatives, false positives and 
false negatives, respectively. The parameters were selected 
by employing the standard tenfold cross-validation method-
ology [31]. The parameters ci and Gaussian kernel width 
� are selected from the set {2i|i = −8,… , 8} and C0 is 
selected from the set {0.5, 1, 1.5, 2, 2.5}.

4.1 � Artificial datasets

In this subsection, three artificial datasets, including 
crossplane (XOR), complex XOR and Ripley’s synthetic 
datasets [34] have been used to validate our proposed 
NFTSVM in dealing with linearly inseparable problems. 
Ripley’s synthetic dataset contains 250 training sam-
ples and 1000 test samples. The average results of linear 
NFSVM, TWSVM, TBSVM and our proposed NFTSVM 
on crossplane (XOR) dataset and complex XOR dataset 
are demonstrated in Table 1. The average results of non-
linear NFSVM, TWSVM, TBSVM, and our NFTSVM 
with Gaussian kernels on Ripley’s synthetic dataset 
are presented in Table  2. In all tables, “Acc” and “Std” 
denote “Accuracy” and “Standard deviation” respectively.

From Table  1, we can conclude that NFSVM can-
not well deal with XOR and complex XOR prob-
lems. Although TWSVM and TBSVM have better 

Table 1   Classification accuracy 
(training and testing) on 
crossplane (XOR) datasets

Best accuracy values are in bold

Datasets NFSVM TWSVM TBSVM NFTSVM
Acc ± Std(%)
Acc (%)

Acc ± Std(%)
Acc (%)

Acc ± Std(%)
Acc (%)

Acc ± Std(%)
Acc (%)

XOR
200 × 2

65.00 ± 6.91
70.50

98.50 ± 2.42
98.00

99.00 ± 2.11
98.00

99.00 ± 3.16
97.50

Complex XOR
260 × 2

64.23 ± 6.22
70.00

91.54 ± 5.68
90.77

91.15 ± 5.14
90.38

95.77 ± 2.84
95.00

Table 2   Classification accuracy (training and testing) on Ripley 
datasets

Best accuracy values are in bold

Datasets NFSVM TWSVM TBSVM NFTSVM
Acc ± Std(%)
Acc (%)

Acc ± Std(%)
Acc (%)

Acc ± Std(%)
Acc (%)

Acc ± Std(%)
Acc (%)

Ripley
1000 × 2

86.80 ± 7.07
87.20

88.40 ± 4.79
85.40

88.40 ± 4.27
85.80

86.40 ± 8.68
87.60
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performance on XOR dataset, the performance decreases 
on the complex XOR dataset. In contrast, our proposed 
NFTSVM performs best both on the XOR and complex 

XOR datasets. According to Table  2, the accuracy of 
our proposed NFTSVM is 87.60% that beats all the 
others, which demonstrates that our method has better 
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Fig. 1   Crossplane (a) and complex XOR (b) datasets
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generalization ability. Figure 1 illustrates the crossplane 
(XOR) and complex XOR datasets. Ripley’s dataset and 
the hyperplanes of TWSVM, TBSVM and our proposed 
NFTSVM are shown in Fig. 2.

4.2 � UCI datasets

To further compare our proposed NFTSVM with NFSVM, 
TWSVM, TBSVM, FTWSVM and FTSVM, we selected 
15 datasets from the UCI machine learning repository [35]. 
The numerical results of their linear versions are given in 
Table 3. In Table 3, the best results are highlighted in bold 
font. We can find that the accuracy of linear NFTSVM is 
better than that of NFSVM, TWSVM, TBSVM, FTWSVM 

and FTSVM on most of the datasets. A win-tie-loss (W-T-
L) summarization based on mean accuracy is also reported 
at the bottom of Table 3. For example, for the Heart-Statlog 
dataset, the accuracy of our NFTSVM is 86.30%, while 
that of NFSVM is 84.07%, TWSVM is 84.81%, TBSVM is 
85.19%, FTWSVM is 84.85% and FTSVM is 84.81%.

Table  4 shows the experimental results of nonlinear 
NFSVM, TWSVM, TBSVM, FTWSVM, FTSVM and 
our NFTSVM on the selected UCI datasets. Note that 
the Gaussian kernel K(x, y) = e−||x−y||2∕2�2 was used in 
this experiment. The accuracy and the time of training of 
these methods are also reported. The results in Table  4 
are similar to those in Table 3, and therefore confirm our 
conclusion again. In addition, from Tables  3 and 4, we 

Table 3   Tenfold testing percentage accuracy of linear classifiers

Best accuracy values are in bold

Datasets NFSVM TWSVM TBSVM FTWSVM FTSVM NFTSVM
Acc ± Std(%) Acc ± Std(%) Acc ± Std(%) Acc ± Std(%) Acc ± Std(%) Acc ± Std(%)

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Australian (690 × 14) 85.51 ± 4.16 86.81 ± 4.07 86.96 ± 2.65 86.96 ± 2.39 86.81 ± 3.71 87.25 ± 3.19
2.5451 0.3891 0.4269 0.5079 0.6748 0.3143

BUPA liver (345 × 6) 67.28 ± 9.33 69.53 ± 6.70 69.53 ± 9.45 70.04 ± 7.25 69.67 ± 6.48 71.81 ± 7.54
1.1243 0.0630 0.0338 0.2683 0.3623 0.1584

House votes (435 × 16) 94.04 ± 3.23 95.18 ± 5.11 95.64 ± 2.96 95.82 ± 2.90 95.62 ± 2.32 95.87 ± 2.37
0.8110 0.0754 0.0569 0.3019 0.4107 0.1411

Heart-c (303 × 14) 84.78 ± 5.04 85.17 ± 7.45 85.86 ± 6.45 85.16 ± 7.19 84.84 ± 3.26 85.48 ± 3.17
0.9173 0.0210 0.0303 0.1216 0.2623 0.0152

Heart-Statlog (270 × 13) 84.07 ± 9.25 84.81 ± 4.77 85.19 ± 4.28 85.25 ± 3.24 85.04 ± 4.36 86.30 ± 6.06
0.4829 0.0332 0.0456 0.0729 0.1181 0.0263

Ionosphere (351 × 34) 86.36 ± 5.99 91.18 ± 5.42 91.16 ± 4.15 91.74 ± 4.75 90.60 ± 4.87 91.47 ± 3.74
0.7604 0.0385 0.0183 0.2476 0.3834 0.1237

Monk3 (432 × 7) 80.11 ± 6.14 87.49 ± 7.42 81.71 ± 6.25 82.14 ± 4.21 82.08 ± 3.27 82.42 ± 4.61
0.4887 0.0460 0.0697 0.3021 0.4082 0.0690

Musk (476 × 166) 78.98 ± 4.49 85.91 ± 3.89 86.55 ± 3.48 86.45 ± 5.42 86.02 ± 6.35 86.56 ± 5.37
2.5894 0.2313 0.1701 0.6587 0.7085 0.5029

Sonar (208 × 60) 79.31 ± 5.59 78.76 ± 7.22 80.26 ± 9.50 79.60 ± 7.25 79.48 ± 6.82 81.26 ± 7.96
0.2546 0.0315 0.0125 0.0824 0.1502 0.0667

Spect (267 × 44) 83.18 ± 7.22 80.19 ± 6.97 81.28 ± 7.24 80.92 ± 3.23 80.63 ± 3.75 81.70 ± 7.40
0.2361 0.0632 0.0293 0.2338 0.2932 0.0680

Wpbc (198 × 34) 72.18 ± 6.56 82.89 ± 5.23 82.95 ± 8.48 82.12 ± 6.25 82.84 ± 4.52 82.29 ± 6.91
0.9140 0.1867 0.0668 0.1608 0.2418 0.0831

German (1000 × 20) 73.50 ± 5.38 74.90 ± 2.32 75.90 ± 2.18 75.48 ± 4.26 75.67 ± 3.72 76.20 ± 4.16
16.4945 1.0132 0.9183 5.6823 5.4905 0.8182

CMC (1473 × 9) 76.16 ± 3.39 77.24 ± 2.19 77.40 ± 2.00 77.28 ± 3.54 77.26 ± 3.46 77.40 ± 3.72
23.3055 1.6267 1.4657 7.3454 7.9850 1.2031

Hypothyroid (3163 × 25) 96.38 ± 1.35 97.33 ± 1.19 97.47 ± 1.72 97.33 ± 1.27 97.35 ± 1.19 97.44 ± 0.67
51.2482 5.5438 5.1408 23.4976 23.6237 4.3745

Spambase (4601 × 57) 92.45 ± 1.42 92.12 ± 1.19 92.32 ± 1.35 92.85 ± 1.45 92.48 ± 0.89 92.65 ± 1.05
61.6878 8.6856 8.3635 31.6878 32.2624 7.2252

W-T-L 14-0-1 13-0-2 11-1-3 13-0-2 14-0-1
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can find that the training times of NFSVM, FTWSVM 
and FTSVM are more than TWSVM, TBSVM and our 
NFTSVM, which indicates that the SOR can speed up the 
training procedure.

4.3 � Image recognition

In this subsection, we test our method using the task of 
image recognition. Three well-known and publicly avail-
able databases for image classifications benchmarking, 
handwritten digits (USPS), objects (COIL-20), and rec-
ognition of faces (AR), are used to evaluate our proposed 
NFTSVM compared with TWSVM, TBSVM, FTWSVM 
and FTSVM. The USPS database [36] consists of 

Table 4   Tenfold testing percentage accuracy of nonlinear classifiers

Best accuracy values are in bold

Datasets NFSVM TWSVM TBSVM FTWSVM FTSVM NFTSVM
Acc ± Std(%) Acc ± Std(%) Acc ± Std(%) Acc ± Std(%) Acc ± Std(%) Acc ± Std(%)

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Australian (690 × 14) 85.86 ± 3.25 86.96 ± 4.27 87.10 ± 3.83 86.96 ± 4.04 86.96 ± 3.47 87.25 ± 4.26
3.2673 0.6897 1.6723 1.3443 2.0890 1.0293

BUPA liver (345 × 6) 65.23 ± 8.11 74.82 ± 5.75 73.55 ± 8.10 74.38 ± 6.28 73.86 ± 7.21 74.77 ± 6.88
0.9612 0.2307 0.2391 1.0743 1.2702 0.8086

House votes (435 × 16) 92.86 ± 5.05 95.87 ± 3.17 95.86 ± 1.80 96.08 ± 2.63 95.63 ± 2.27 96.31 ± 1.64
0.6754 0.2210 0.4401 0.6454 0.6854 0.4024

Heart-c (303 × 14) 83.17 ± 4.54 83.49 ± 4.15 85.51 ± 3.76 83.82 ± 4.79 84.86 ± 5.70 84.81 ± 6.65
0.7326 0.1442 0.1916 0.3010 0.3292 0.1994

Heart-Statlog (270 × 13) 82.59 ± 8.91 82.59 ± 8.74 84.07 ± 6.54 84.96 ± 6.81 84.59 ± 4.95 85.56 ± 6.16
0.6054 0.1130 0.1916 0.2707 0.3430 0.1607

Ionosphere (351 × 34) 93.45 ± 3.01 94.59 ± 2.84 95.72 ± 3.87 95.48 ± 3.25 95.14 ± 4.13 96.29 ± 3.32
0.7326 0.1352 0.3562 0.4110 0.6332 0.2552

Monk3 (432 × 7) 90.51 ± 5.31 97.45 ± 1.72 97.47 ± 2.52 98.16 ± 1.82 97.91 ± 1.72 97.45 ± 1.72
0.6492 0.1832 0.4620 0.5238 0.7669 0.4606

Musk (476 × 166) 81.95 ± 7.00 94.77 ± 3.83 95.17 ± 1.74 95.38 ± 3.69 95.21 ± 3.64 95.81 ± 2.39
2.2624 0.6172 0.9081 1.2113 2.2113 0.8326

Sonar (208 × 60) 87.40 ± 8.79 90.88 ± 4.72 90.95 ± 9.10 90.85 ± 2.32 90.93 ± 2.56 91.40 ± 4.90
0.6996 0.0706 0.1194 0.2579 0.2824 0.1033

Spect (267 × 44) 79.49 ± 7.52 82.75 ± 7.50 82.78 ± 6.08 83.52 ± 7.65 82.91 ± 6.32 82.09 ± 7.89
0.9495 0.0823 0.1644 0.2395 0.2858 0.1691

Wpbc (198 × 34) 81.87 ± 7.52 82.87 ± 6.24 82.34 ± 5.83 81.86 ± 4.57 81.84 ± 6.07 81.87 ± 7.44
0.7974 0.0995 0.1260 0.2252 0.5011 0.1261

German (1000 × 20) 76.16 ± 4.57 75.60 ± 1.36 76.30 ± 2.67 76.18 ± 2.16 76.26 ± 3.61 76.40 ± 4.18
19.9993 1.1272 1.2073 6.9048 6.4612 1.0423

CMC (1473 × 9) 77.46 ± 2.32 77.82 ± 2.42 78.32 ± 3.49 77.94 ± 2.56 77.89 ± 3.85 78.05 ± 2.29
25.2132 2.4304 2.4127 8.2132 8.0437 2.2367

Hypothyroid (3163 × 25) 97.15 ± 1.42 97.58 ± 1.18 97.72 ± 1.02 97.67 ± 1.18 97.74 ± 1.06 97.86 ± 0.92
58.5326 7.1536 6.8230 27.5221 26.2528 6.2550

Spambase (4601 × 57) 93.22 ± 1.25 93.25 ± 1.25 93.36 ± 1.97 93.52 ± 1.25 93.27 ± 1.42 93.38 ± 1.29
65.4455 10.3106 10.1102 35.4455 34.7402 8.2252

W-T-L 14-1-0 11-1-3 10-0-5 12-0-3 12-0-3

Fig. 3   Subjects in the USPS database
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gray-scale handwritten digit images from 0 to 9, as shown 
in Fig. 3. Each digit has 1100 images, and the resolution of 
each image is 16 × 16. In this paper, we selected five pair-
wise digits of varying difficulty for odd vs. even digit clas-
sification. COIL-20 [37] is a database of gray scale images 
of 20 objects, which are illustrated in Fig.  4. The objects 
were placed on a motorized turntable against a black back-
ground. Images of the objects were taken at pose inter-
vals 5°, which corresponds to 72 images per object. In our 
experiments, we resized each image to 32 × 32. The AR 
database [38] contains 100 subjects and each subject has 26 
face images taken in two sessions. For each session, there 
are 13 face images. We selected 14 unoccluded images Fig. 4   The subjects in the COIL-20

Fig. 5   An illustration of the 
selected 14 images of one per-
son from the AR database

Table 5   The classification 
performance comparison on 
the COIL-20, AR and USPS 
datasets

Best accuracy values are in bold

Datasets TWSVM TBSVM FTWSVM FTSVM NFTSVM
Acc + std (%) Acc + std (%) Acc + std (%) Acc + std (%) Acc + std (%)

Time(s) Time(s) Time(s) Time(s) Time(s)

USPS 1 vs. 7 99.62 ± 0.15 99.87 ± 0.12 99.67 ± 0.13 99.76 ± 0.10 99.87 ± 0.13
2.1386 2.3537 3.5136 2.6658 2.1647

USPS 2 vs. 3 97.99 ± 0.55 98.20 ± 0.18 98.12 ± 0.46 98.16 ± 0.25 98.29 ± 0.45
2.1227 2.1836 3.4369 2.6338 2.1312

USPS 2 vs. 7 99.55 ± 0.17 99.65 ± 0.12 98.76 ± 0.25 99.64 ± 0.18 99.65 ± 0.15
2.1846 2.3048 3.5391 2.5954 2.1339

USPS 3 vs. 8 97.29 ± 0.47 98.34 ± 0.32 98.12 ± 0.69 97.73 ± 0.41 98.48 ± 0.27
2.2499 2.2471 3.4630 2.5324 2.2319

USPS 4 vs. 7 99.57 ± 0.17 99.73 ± 0.10 99.66 ± 0.23 99.68 ± 0.16 99.77 ± 0.12
2.2155 2.3963 3.5182 2.6872 2.1596

COIL-20 98.32 ± 0.59 98.81 ± 0.70 98.85 ± 0.45 98.87 ± 0.37 99.19 ± 0.66
9.3016 9.7372 14.3223 10.5956 9.2855

AR 94.33 ± 1.39 95.66 ± 0.71 96.38 ± 0.59 96.43 ± 0.34 96.94 ± 0.71
10.5869 10.7321 15.0674 11.1707 10.4379

W-T-L 7-0-0 5-2-0 7-0-0 7-0-0
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from these two sessions in our experiments, as shown in 
Fig. 5. The 1400 images are all cropped into the same size 
of 40 × 30. For these datasets, we randomly split the images 
of each object into two parts with the same sizes such that 
one part is selected for training and the remaining part is 
used for testing. This process is repeated ten times and the 
average result is reported. Moreover, we only consider the 
Gaussian kernel for these methods. Table 5 lists the exper-
imental results of these four methods in USPS, COIL-20 
and AR datasets. The proposed NFTSVM obtains the best 
results both on USPS, COIL-20 and AR than the others in 
most cases according to the W-T-L summarization.

5 � Conclusions

Inspired by NFSVM and TWSVM, a new fuzzy twin sup-
port vector machine (NFTSVM) was presented in this 
paper. NFTSVM employs fuzzy membership to weigh 
each training sample to improve the generalization abil-
ity of the system. As discussed in the paper, TWSVM and 
TBSVM are special cases of our proposed NFTSVM when 
the parameters of NFTSVM are appropriately selected. 
Experimental results obtained on a number of benchmarks 
illustrate the superiority of the proposed NFTSVM. In our 
future works, we will address the following three issues. 
First, it is worth noting that there are five parameters in the 
proposed NFTSVM, hence parameter selection is a prac-
tical problem that should be carefully investigated in the 
future. Second, we will construct fast algorithm to solve 
QPPs, such as genetic algorithm (GA) [39]. Third, exten-
sions of NFTSVM to multi-class classification [40] and 
uncertainty mining [41] are also interesting.
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