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1  Introduction

Recently, more areas of science attempt to describe com-
plex structure objects by graph structure [1]. In the field of 
biology and medicine, scientists often use the graph struc-
ture to express the internal structure of macromolecules. In 
the internet field, the graph structure is used to describe the 
link relationships and views between websites. Since graph 
data have been more widely applied, graph data mining has 
become a hot topic in data mining research [2].

In practical applications, graph data have the following 
characteristics [3–5]:

First, there is a large quantity amount of data. Second, 
the data have a fast data growth rate. The update of graph 
data is highly frequent. Because of these features and 
immature technical conditions, the accuracy of obtained 
graph data is poor, and uncertainty exists.

For example, the field of molecular biology utilizes 
graph data to describe protein and its interaction network. 
Protein is often denoted by vertices, and the relationship of 
proteins is represented by the connection between vertices. 
Due to the restriction of detection methods during experi-
ments, certain parts can not be accurately detected, creating 
uncertainty. The graph data shows the presence of the edge 
based on a certain probability. In summary, uncertainty 
exists widely in graph data. The study of uncertain graph 
data has very important significance [6].

The frequent subgraph mining algorithm has been 
researched at home and abroad. Based on Apriori proper-
ties [7], breadth-first search algorithms AGM [8] and FSG 
[9] for mining frequent subgraphs were proposed. In view 
of the shortcoming that a large number of repeat candi-
date subgraphs will be produced in a breadth-first search 
algorithm [10], a depth-first search algorithm GSpan was 
presented.
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To optimize the searching efficiency in a large database, 
FFSM [11] was considered in [12]. On the basis of GSpan 
and a new pruning rule, the DFS code form was modified, 
and the mining efficiency improved.

In [13], CloseGraph algorithm for mining closed fre-
quent subgraph patterns was proposed. SPIN algorithm 
was presented in [14] to mine maximal frequent subgraph 
patterns. However, in this algorithm, the input data are not 
pruned effectively, and the data are unnecessary or repeat-
edly mined.

Although the above algorithms are used for mining fre-
quent subgraphs, all of these algorithms are based on the 
certain graph, and they can not be directly applied to uncer-
tain graph mining.

In an early phase, Zou, who works in the Harbin Institute 
of Technology, performed many studies in uncertain graph 
mining. There are more representative achievements related 
to frequent subgraph mining in uncertain graph [15–17]. 
In these references, based on the expected semantics and 
probabilistic semantics, the frequent subgraphs in uncertain 
graph semantics are defined formally. The computational 
complexity of the problem is proven and effective solution 
technology is proposed.

An expected support and Apriori based depth-first 
search mining algorithm MUSE was discussed [18]. 
Because an efficient expected support algorithm and the 
subgraph search space pruning technique were proposed, 
the complexity of mining uncertain frequent subgraphs has 
been reduced from exponential level to linear level. How-
ever, the mining efficiency in dealing with the large magni-
tude of the uncertain graph still needs to be improved.

In [19], an efficient k-maximal frequent pattern mining 
algorithm on uncertain graph databases called RAKING 
was presented. The computation of enumeration index lev-
els for a possible graph is avoided, but efficiency has yet to 
be further improved.

An efficient way of mining frequent subgraph patterns 
in uncertain graph databases called MUSIC was presented 
by Wang [20]. The algorithm relies on the Apriori property 
for enumerating candidate subgraph patterns efficiently. An 
index is applied to reduce the cost of computing expected 
support.

On the basis of the discriminative subgraph and a clas-
sification of uncertain graphs, an algorithm for mining 
uncertain frequent subgraph named AGF was proposed by 
Liu [21], that can switch the problem of uncertain frequent 
subgraph mining to uncertain frequent items mining. The 
efficiency of generating uncertain frequent subgraphs is 
improved.

In view of the problem of calculation consumption 
of expected support and low time efficiency of MUSE, a 
method that combines classification thought with BFS 
thought to find frequent subgraphs called EDFS was 

presented by Hu [22]. To reduce the space of subgraphs, an 
improved GSpan algorithm was used to address uncertain 
graphs. Integrating classification with BFS thought, uncer-
tain frequent subgraphs are mined. The subgraph isomor-
phism tests and the edge existence probability tests indicate 
that EDFS is more efficient than MUSE.

The existing uncertain frequent subgraph mining algo-
rithms have two main problems. First, the mining results 
obtained are excessive, resulting in a serious impact on 
the understanding and application of the results. Since the 
uncertain maximum frequent subgraph entails implied all 
uncertain frequent subgraphs, then the problem of finding 
uncertain frequent subgraphs is transformed into mining 
uncertain maximal frequent subgraphs. All of uncertain 
frequent subgraphs are treated equally in traditional algo-
rithms, however, for real data, the importance of different 
uncertain subgraphs often varies.

Adjacency matrix and weight based uncertain maxi-
mal frequent subgraph mining algorithm UMFGAMW is 
presented in this paper. The correspondence between the 
adjacency matrix and uncertain graph is established. To 
improve the matching speed of uncertain subgraph standard 
coding, the degree of the vertices is arranged in descending 
order when calculating the adjacency matrix of uncertain 
graph. Second, to reflect the importance of each uncertain 
subgraph, the definitions of the weight of the uncertain 
graph and the mean weight of uncertain edge are designed. 
Finally, to reduce the number of mining results, accord-
ing to the limiting condition of the mean weight of the 
weighted uncertain edge and the minimum support thresh-
old under uncertain meaning, a depth-first search weighted 
uncertain maximal frequent subgraph mining algorithm 
is proposed. Weighted uncertain maximum frequent sub-
graphs are mined.

The remainder of this paper is organized as follows. In 
Sect. 2, we describe the problem definitions. Section 3 pre-
sents the UMFGAMW algorithm. In Sect. 4, the efficiency 
of the proposed method is analyzed based on several exper-
imental results. Finally, we offer our conclusions and future 
work in Sect. 5.

2 � Problem definitions

In the uncertain data model, the world model may be the 
most commonly used. In this model, any valid combination 
of the tuples may be a world instance. The probability of an 
instance can be obtained by calculating the probability of 
the relevant tuples. In this paper, the study of the uncertain 
graph is based on the above model.

Assuming that the uncertain graph is represented by 
quintuple UG = (V ,E,

∑
, L,P), where V is the vertex set 

in an undirected graph. E ⊆ V × V  is a set of edges. 
∑
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denotes a label set. L is the distribution function of ver-
tex label. P:E → (0, 1] is the probability function of edge 
existence. For example, the existence probability of any 
edge ei is denoted by P(ei), and 0 < P(ei) ≤ 1.

Let the uncertain graph dataset 
UGD =

{
UG1,UG2,… ,UGm

}
 consist of lots of uncertain 

graphs, where m represents the number of the uncertain 
graphs in UGD. The graph structure denotes the topol-
ogy information. The existence probability of each edge 
is represented by a probability value between 0 and 1. 
For example, in Fig. 1, the weight of edge (B-B) in UG1 
is 0.8. It indicates that the edge e1 exists with the prob-
ability 0.8. For an uncertain graph UG, if it has the exist-
ence probability P(e1) = 1, then it indicates that the edge 
e1 must exist. The certain graph is a special form of the 
uncertain graph. Therefore, it can be denoted by the four-
tuple G = (V ,E,

∑
,L).

The two uncertain graphs UG = (V ,E,
∑
, L,P) and 

UG� = (V �,E�,
∑�

,L�,P�) are subgraph isomorphism, 
if and only if UG and UG′ meet a single shot function 
f :V → V ′, referred to as UG ⊆ UG′. Thus, the follow-
ing two conditions are met: (1) ∀v ∈ V , l(v) = l�(f (v))

(2) ∀(u, v) ∈ E, (f (u), f (v)) ∈ E�.
If UG and UG′ meet UG ⊆ UG′ and ||VUG

|| ≠ ||VUG′
||, then 

we say UG is really a subgraph isomorphism to UG′, it is 
recorded as UG ⊂ UG′.

Assuming that graph USG is the uncertain subgraph of 
UGD, if and only if USG is isomorphic to any uncertain 
subgraph USG which is contained in at least one uncertain 
graph UG in UGD.

Suppose that the uncertain graph UGr has ||L(UGr)
|| 

edges, then the number of uncertain subgraphs contained in 
UGr is 2|L(UGr)|, where r is the serial number of the uncer-
tain subgraph [21]. Here, as a result UG1 has three edges, 
so the number of uncertain subgraphs in UG1 is 2|L(UGr)|
=23=8. All uncertain subgraphs contained in the uncertain 
graph UG1 is shown as Fig. 2.

In this paper, marking all the vertices and edges that are 
in uncertain graph, distinguish different vertices and edges. 
The vertices or edges labelled with the same mark are 

allowed. The subgraph mining in this paper is for a marked 
and undirected connected uncertain subgraph.

Given that graph dataset GD =
{
G1,G2,… ,Gn

}
, the 

definition of the support of the subgraph SG is shown as 
follows:

If Sup(SG) ≥ Minsup, then SG is a frequent subgraph, 
where Minsup is a given minimum support threshold. 
The value of Minsup is based on experience, it is obtained 
through several experiments to test the best value.

3 � UMFGAMW algorithm

3.1 � Pre‑processing uncertain data

In the UMFGAMW algorithm, there are three steps. First, 
the uncertain graph data is abstracted to certain space. A 
pretreatment process is achieved by using a frequent sub-
graph mining algorithm in existing certain graph data. The 
search space is reduced effectively. Next, the uncertainty 
of frequent subgraph is recovered. The expected supports 
of uncertain frequent subgraph patterns are calculated to 
narrow the search space further. The pre-treated uncer-
tain graph results are obtained. The definition of uncertain 
standard matrix is introduced to establish the correspond-
ence between the adjacency matrix and uncertain graph. 
The uncertain frequent subgraph is represented normally. 
Finally, using a depth-first search weighted uncertain maxi-
mal frequent subgraph mining algorithm, weighted uncer-
tain maximum frequent subgraphs are mined.

3.1.1 � Data pre‑processing under certain meaning

In the process of pre-processing, the uncertain graph data-
set is converted to certain graphs. The certain graph mining 
algorithm is used to delete the subgraph with support less 

(1)Sup(SG) =
The number of SG in GD

The number of graphs in GD

Fig. 1   The uncertain graph dataset UGD

Fig. 2   All uncertain subgraphs contain in the uncertain graph UG
1



1448	 Int. J. Mach. Learn. & Cyber. (2018) 9:1445–1455

1 3

than Minsup. The search cost of the next step is reduced. In 
this section, the GSpan subgraph mining algorithm that is 
widely recognized in for efficiency and stability is utilized 
to obtain certain graphs. The support of each frequent sub-
graph in certain meaning is recorded during the process of 
graph pre-processing.

Different from previous work, in the traditional uncer-
tain graph mining method, the uncertain graphs are enu-
merated in the possible world, and further mined in each 
possible world. In this section, the uncertain meaning 
of graph is ignored. The subgraph that is not frequent is 
pruned effectively. Next, the uncertain meaning of each fre-
quent subgraph is further recovered.

3.1.2 � Recovering frequent subgraph uncertainty

The uncertainty of the obtained frequent subgraph is recov-
ered in this section. The expected support of each uncertain 
subgraph is calculated. For uncertain subgraph USG, the 
expected support Sup(USG) is obtained by computing the 
product of each subgraph existence probability and support 
Sup(SG) in certain meaning.

Where, the probability calculation method of each uncer-
tain subgraph USGPli

 can refer to [20].
The description of algorithm Preprocessing Uncertain 

Dataset Algorithm (PUDA) is shown as below.

(2)Sup(USG) =
∏

li∈USG
USGPli

∗ Sup(SG)

In algorithm PUDA, through certain and uncertain envi-
ronment, the subgraph that is not frequent is pruned, and 
the search space is greatly reduced. UMinsup is obtained 
through several experiments to test the best value. Through 
analysing the computational complexity of the PUDA, the 
time complexity of the GSpan algorithm is O(2n ⋅ 2n). The 
complexity of the algorithm reached the index level. How-
ever, in GSpan, based on depth-first search technology, the 
subgraph isomorphism list of the frequent subgraphs is pre-
served. The number of the subgraph isomorphism opera-
tions is reduced. The value of the parameter n in PUDA 
is the data scale after extracting the uncertainty. Com-
pared with the certain subgraphs with n index level in the 
uncertain probability space, the scale of the index level is 
reduced significantly. Suppose that n′ is the number of the 
obtained uncertain frequent subgraphs. For PUDA, in addi-
tion to the time cost of the GSpan algorithm, the only other 
cost for traversing the uncertain frequent subgraph is O(n�).

3.2 � Standard representation and calculation method 
for uncertain frequent subgraph

In this paper, the concept of uncertain standard matrix is 
introduced. The correspondence between the adjacency 
matrix and uncertain graph is established. In the process of 
mining uncertain frequent subgraphs, each uncertain graph 
is represented by the uncertain adjacency matrix. The 
purpose of mining uncertain subgraphs is not only to find 
frequent objects, but also to determine implicitly the rela-
tionship between these objects. In the uncertain graph, the 
entities are represented by vertices, and the relations among 
the vertices are represented by uncertain edges. Therefore, 
edge-center based adjacency matrix notation is used.

Definition 1  Assuming that uncer-
tain graph UG = (V ,E,

∑
, L,P) has n vertices, 

V(UG) =
{
V1,V2,… ,Vn

}
 , then n order square matrix 

A(UG) = (Xij) denotes the adjacency matrix of UG.

Example 1  Computing the adjacency matrix of UG in 
Fig. 3.

Two adjacency matrixes of the given UG are shown in 
Fig. 4.

To improve the efficiency of the algorithm, because 
of the asymmetry, we can only reserve the upper triangu-
lar matrix of adjacency matrix. However, because allow 
the same mark appears, the uniqueness of the adjacency 
matrix can not be assured. As shown in Fig. 2, according to 

(3)Xij =

{
P(e) ∗ e, if it has edge e between vi and vj
0, otherwise

Algorithm 1. PUDA
Input: The uncertain graph dataset UGD, Min-

imum support threshold Minsup, Minimum support
threshold under uncertain meaning UMinsup.

Output: The pretreated uncertain graph dataset
PUD.

Step1: The existence probability of each edge in the
uncertain graph dataset UGD is set to 1, the uncertain
graph dataset is translated to certain graphs;

Step2: GSpan algorithm is applied to process cer-
tain subgraphs. The support Sup(SGr) in certain mean-
ing is stored in a subgraph. If Sup(SGr) < Minsup,
then SGr is not a frequent subgraph, it is deleted di-
rectly;

Step3: The uncertainty of a frequent subgraph is re-
stored. The support degree of each uncertain frequent
subgraph is calculated by formula (2). If the corre-
sponding value is less than UMinsup in the uncertain
meaning, then it is pruned;

Step4: The pre-processed uncertain dataset PUD
is obtained.
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different orders of the vertices, different adjacency matrixes 
can be obtained. To this end, the concept of the standard 
matrix coding is introduced. The correspondence between 
adjacency matrix and uncertain graph is established.

Definition 2  Assuming that X =

⎛
⎜⎜⎜⎝

X11,X12,… ,X1n

X21,X22,… ,X2n

⋮ ⋮

Xn1,Xn2,… ,Xnn

⎞
⎟⎟⎟⎠
 is 

the adjacency matrix of uncertain graph. The matrix coding 
for X is represented by 
CD(X) = X12X13 ⋯X1,mX23 ⋯X2,m ⋯Xm−1,m, then the 
standard matrix coding of uncertain graph UG is denoted 
by SC(UG) = Max

X∈A(UG)
(CD(X)).

According to the definitions of subgraph isomorphism 
and the adjacency matrix of uncertain graph, the computa-
tion of standard matrix coding of graphs is equivalent to the 
isomorphism of a graph. The reason is that if two graphs 
are isomorphic with each other, the standard matrix coding 
must be the same. Normally, by listing all possible coding 
and finding the maximum, the final standard matrix coding 
can be obtained. Calculation cost is higher, its complexity 
is O(|V(UG|!), where |V(UG)| is the number of vertices in 
the uncertain graph.

Suppose that uncertain graph UG = (V ,E,
∑
, L,P), the 

degree of vertex is denoted by the number of associated 
edges of vertex v(v ∈ V). The factor of the existence proba-
bility of edge should be considered. For example, in Fig. 3, 
V1 and V2, V1 and V4 are connected. Since the existence 
probability of e2 and e4 is 0.6, thus the degree of V1 is 1.2.

To reduce the computational complexity of standard 
matrix coding and improve execution efficiency, the fast 
calculation strategy of standard matrix coding is proposed. 
When calculating the adjacency matrix of the uncertain 
graph, vertices are arranged from high to low order. By fol-
lowing Example 2, the strategy is explained.

Example 2  By using the adjacency matrix in Fig. 3 as an 
example, the degrees of five vertices are 1.2, 2.7, 0.7, 2 and 
1.2, respectively. According to the degree of vertex from 
high to low order, and the strategy of lexicographic order 

when two vertices have the same degree, the ordering result 
is V2, V4, V1∕V5 and V3. In this way, all possible adjacency 
matrixes are shown in Fig. 5.

We set the values of e1, e2, e3, e4, e5 and e6 are 1, 2, 3, 4, 5 
and 6. According to the given values of e1, e2, e3, e4, e5 and 
e6, each matrix code can be represented by 15 columns of 
numbers. By sequentially comparing the numbers in each 
column, the matrix coding with the larger value in the front 
column is the largest. The matrix codings of Fig. 5a, b are 
0.8e5 0.6e1 0.6e4 0.7e6 0 0.6e2 0.6e3 0 0 0 0 0 0 0 0 and 0.8e5 
0.6e4 0.6e1 0.7e6 0 0.6e3 0.6e2 0 0 0 0 0 0 0 0, respectively. 
We can see that the two matrix codings are 4 0.6 2.4 4.2 0 
1.2 1.8 0 0 0 0 0 0 0 0 and 4 2.4 0.6 4.2 0 1.8 1.2 0 0 0 0 0 
0 0 0. According to the strategy of standard matrix coding, 
because the value in the second column of the matrix cod-
ing of Fig. 5b is 2.4, which is larger than the corresponding 
value of the matrix coding of Fig.5a. Therefore, the stand-
ard matrix coding of Fig. 3 is the same as the matrix coding 
of Fig.5b.

It can be seen from Example 2, using the proposed 
ordering strategy, the standard matrix coding is obtained 
by comparing codings of the two matrixes. If we enumerate 
all possible matrixes to calculate, 6! = 720 different matrix 
coding needs to be compared. It is easy to see that the 
uncertain graph search space is greatly reduced by ordering 
strategy.

According to the idea of the Apriori algorithm, when 
producing k-candidate uncertain subgraph, transaction is 

Fig. 3   The uncertain graph UG

(a) (b)

Fig. 4   Two adjacency matrixes of UG

(a) (b)

Fig. 5   Two ordered adjacency matrixes of UG in Fig. 3
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needed that contains the uncertain subgraph and computes 
the support degree. Whether the uncertain subgraph is 
deleted will be judged. The proposed strategy in this paper 
can reduce the time cost in the uncertain graph isomor-
phism and the calculation of support.

It is easy to see from the fast calculation strategy of 
standard matrix coding that the connection vertex with 
other vertices is reflected by the degree of the vertex. The 
higher the degree of the vertex, the more it connects with 
other vertices. Therefore, nonzero elements in the adja-
cency matrix should appear in front of the subgraph that 
is represented by the matrix coding as much as possible. 
In this way, the matching time for uncertain subgraph cod-
ing in transaction coding uncertain subgraph is reduced. As 
standard matrix coding in Example 2, most nonzero ele-
ments are concentrated in front of the coding, zero elements 
are at the back of the coding. The measure of efficiency for 
judging standard coding of the uncertain subgraph is the 
improvement in the substring of the uncertain graph trans-
action standard coding. This measure enables uncertain 
subgraph isomorphism to end as early as possible.

3.3 � Mining weighted uncertain maximal frequent 
subgraphs

For traditional uncertain subgraph pattern mining algo-
rithms, all uncertain frequent subgraph patterns will be 
treated equally. However, in a real dataset, different uncer-
tain subgraph patterns often have different importance. 
To solve the above problem, on the basis of frequency of 
uncertain frequent edge, the calculation method of uncer-
tain frequent subgraph weight is used.

Definition 3  Assume that 
{
UG1,UG2,… ,UGr

}
 is r 

records in uncertain graph dataset UGD. The weight of 
edge ei is defined as W(ei) = N(ei)∕

∑r

j=1

���L(UGj)
���, where 

N(ei) =
∑r

j=1
P(ei) ∗ N(ei)UGj

 denotes the total number of 

appearances of edge ei in UGD. N(ei)UGj
 is the number of ei 

appearances in UGj. |L(UGj)| is the number of edges in UGj. 
The uncertain subgraph that contains k edges is called an 
uncertain k-subgraph.

For example, suppose that there are three uncer-
tain subgraphs in UGD, they are UG1, UG2 and UG3. 
The number of edges in UG1, UG2 and UG3 are 5, 
4, 6, respectively. The number of edge e1 in UG1,  
UG2 and UG3 are 2, 1, 2. Therefore, the weight of e1 is 
W(e1) = (2 + 1 + 2)∕(5 + 4 + 6) = 5∕15 = 1∕3.

Definition 4  Assuming that the uncertain subgraph USG 
consists of t edges 

{
e1, e2,… , et

}
, then the weight of USG 

is defined by W(USG) =
∑t

k=1
W(ek)∕t.

Suppose that USG contains n different edges {
e1, e2,… , en

}
, the maximum weight and minimum weight 

are represented by Max1≤k≤n(W(ek)) and Min1≤k≤n(W(ek)), 
then the mean weight of uncertain subgraph USG is defined 
as follows:

It can be seen from Eq. (4), the mean weight of USG is 
described as the mean of the maximum weight and the 
minimum weight of all the uncertain edges in USG.

Given that uncertain subgraph USG and 
MeanWeight(USG), the following two condi-
tions are used to prune. (1)Sup(USG) < Minsup; 
(2)W(USG) < MeanWeight(USG).

Assuming that USG is an uncertain subgraph, if it is 
frequent, then any X ⊆ USG meets that X is an uncertain 
frequent subgraph. Condition (1) meets the Apriori prop-
erties. Condition (2) meets that if the weight of uncertain 
subgraph USG is lower than the mean weight. That is, the 
subgraph is not ’important’, and then it will be pruned in 
the mining process. Direct use of these two conditions to 
prune, will lead to higher computational cost. More impor-
tantly, the mining results will not continually use Apriori 
properties to prune.

To solve this problem, the uncertain frequent 1-sub-
graphs are sorted according to weight from high to low 
order. Through mining weighted uncertain frequent sub-
graphs, the pruning process is accelerated and the effi-
ciency of the algorithm is improved.

Suppose that USG is an uncertain subgraph, if 
Sup(USG) ∗ W(USG) ≥ MeanWeight(USG) ∗ Minsup, 
then USG is described as a weighted uncertain frequent 
subgraph. If there is no uncertain weighted frequent sub-
graph USG′, it meets that USG ⊆ USG′, then USG is 
calledthe weighted uncertain maximal frequent subgraph.

Given any two uncertain subgraphs 
USG and USG′, the standard matrix cod-
ing SC(USG) = P(e1)e1P(e2)e2 ⋯P(en)en and 
SC(USG�) = P(e1)e1P(e2)e2 ⋯P(en)enP(ea)ea, respec-
tively. If for any ei ∈ SC(USG), W(ea) ≤ W(ei), 
and there does not exist USG with standard matrix 
coding P(e1)e1P(e2)e2 ⋯P(en)enP(eb)eb, then 
W(ea) ≤ W(eb) ≤ W(ei) for ∀ei ∈ SC(USG). USG′ 
is denoted as a child of the USG and recorded as 
USG� = CH(USG).

(4)

MeanWeight(USG) =
Max1≤k≤n(W(ek)) +Min1≤k≤n(W(ek))

2
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It can be seen from the definition of the child of the USG 
called CH(USG) that the proposed weighted maximal fre-
quent subgraph mining algorithm is based on the depth-first 
thought. Any superset of non-weighted frequent subgraph 
is also a non-weighted frequent subgraph. Any subset of 
a weighted frequent subgraph is also a weighted frequent 
subgraph.

In this section, a depth-first weighted uncertain maximal 
frequent subgraph mining algorithm named WUMFGM is 
proposed.

Algorithm 2: WUMFGM(PUD, UMFGD)
Input: The preprocessed uncertain graph dataset

PUD, Minimum support threshold Minsup.
Output: Uncertain Maximal frequent subgraph

dataset UMFGD
Step1: All 1-weighted uncertain frequent subgraphs

are found. Uncertain edges are sorted according to weight
from high to low order. Here we set the sorted uncertain
edges are e1, e2, ..., en;

Step2: for each em do
Step3: if em em+1 ... en is a weighted uncertain

frequent subgraph UMFGD does not exist the superset
of ei em+1 ... en

Step4: em, em+1, ..., en is added to UMFGD ;
Step5: break;
Step6: end if
Step7: if CH(em) = ∅ & UMFGD does not exist

the superset of em then
Step8: em is added to UMFGD ;
Step9: else WUMFGM (PUD,UMFGD);
Step10: end for
Step11: Uncertain Maximal frequent subgraph

dataset UMFGD is output.

In algorithm  2, all 1-weighted uncertain frequent sub-
graphs are found. The subgraphs are sorted in accordance 
with the weight from high to low order. Each 1-weighted 
uncertain frequent subgraph em is investigated one by one. 
If em, em+1, ..., en is a weighted uncertain frequent subgraph, 
then we know that all subgraphs are weighted uncertain fre-
quent subgraphs. If the superset of the uncertain subgraph 
in UMFGD does not exist, then the UMFGD subgraph is 
added to UMFGD. If the branch strategy is established, 
then the process for connecting between em and all sub-
sets one by one in em+1, ..., en is decreased. The judgement 
cost of weighted uncertain maximal frequent subgraphs is 
reduced. The search space is also greatly reduced.

Weighted uncertain maximal frequent subgraph expand-
ing algorithm named WUMFGE is described as follows.

Algorithm 3: WUMFGE(PUD, UMFGD, UG)
Input: The preprocessed uncertain graph dataset

PUD, Minimum support threshold Minsup.
Output: The extended weighted uncertain maxi-

mal frequent subgraph.
Step1: if CH(UG) is weighted uncertain frequent

subgraph then
Step2: CH(UG) is added to UG;
Step3: if CH(UG) = ∅ & UMFGD does not exist

the superset of UG then
Step4: UG is added to UMFGD ;
Step5: end if
Step6: else
Step7: Repeat steps Step1-Step7, until depth-first

extension for em is completed;
Step8: end if

In algorithm WUMFGE, if CH(em) = � and the superset 
of em in UMFGDthere does not exist, then em is added to 
UMFGD. Otherwise, if CH(em) ≠ �, the depth-first exten-
sion for em is executed recursively by WUMFGE.

Uncertain maximal frequent subgraph mining algorithm 
based on adjacency matrix and weight called UMFGAMW 
is described as follows.

Algorithm 4: UMFGAMW
Input: The preprocessed uncertain graph dataset

PUD, Minimum support threshold Minsup.
Output: Weighted uncertain maximal frequent

subgraph dataset WUMFGD.
Step1: The uncertain graph dataset UGD is pre-

processed by using PUDA, and then the pre-processed
uncertain graph dataset PUD is obtained;

Step2: The correspondence between the adjacency
matrix and uncertain graph is established by the un-
certain standard matrix. Next, the uncertain frequent
subgraph is represented normally;

Step3: By WUMFGM, all mined 1-weighted uncer-
tain frequent subgraphs are sorted by weight from high
to low order. According to the limiting condition of the
mean weight of the weighted uncertain edge and the
minimum support threshold under uncertain meaning,
weighted uncertain maximal frequent subgraph dataset
WUMFGD is mined.

4 � Experimental results and analysis

To verify the performances of UMFGAMW, RAKING and 
EDFS, the experimental tests were conducted with a cer-
tain graph dataset generated from the graph data genera-
tor in [9]. Input parameters of the graph data generator are 
described as the following Table 1.
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After generating the certain graph dataset, each edge in 
a certain graph is given a probability. This probability fol-
lows the normal distribution of the mean value of m and the 
variance of d2.

Our experiments were run on the Intel Core 2 Duo 2.93 
GHz CPU, 4GB main memory and Microsoft XP. All algo-
rithms are written in MyEclipse 8.5. For testing the per-
formance of UMFGAMW, we compare it with RAKING 
and EDFS in four aspects. The aspects are comparison of 
execution times of algorithms by the change of minimum 
support degree Minsup, comparison of the execution times 
of algorithms by the mean change of the probability of the 
edge in the uncertain graph, comparison of the algorithm 
scalability with an increasing number of uncertain graphs, 
and comparison of the number of the mined uncertain fre-
quent subgraphs of the algorithm with different minimum 
support degree Minsup.

(1) Comparison of execution times of algorithms by the 
change of minimum support degree Minsup

The parameters of Data1 are D = 10,000, L = 100, V = 
10, E = 10, I = 5, T = 20, m = 0.9, d = 0.05. The param-
eters of Data2 are D = 20,000, L = 100, V = 10, E = 10, 
I = 5, T = 30, m = 0.9, d = 0.05. In Data1, the execution 
times of the three algorithms are compared by the change 
of minimum support degree Minsup.

It is not difficult to perceive from Fig.  6, with the 
increase of the minimum support degree Minsup, that the 
execution time of the UMFGAMW algorithm is gradu-
ally reduced. This is because when the minimum support 
degree Minsup increases, the relative uncertain frequent 
subgraph is correspondingly reduced. Uncertain frequent 
subgraphs under a smaller threshold become less frequent 
and cut off. The reduction of the search space will inevita-
bly result in a change in the search time of the algorithm, 
which is consistent with the theoretical results.

Figure 7 shows that the execution time is related to the 
number of uncertain graphs and the average size of the 
uncertain graphs. The larger the number, the greater the 
average size, and the higher the cost of the UMFGAMW 
algorithm. Therefore, the efficiency of the UMFGAMW in 
Data1 dataset is better than that in Data2.

In RAKING algorithm, K uncertain maximal frequent 
patterns are obtained, the parameter K is the number of the 
uncertain maximal frequent patterns in the original dataset. 
When the value of K is very large, the execution time of the 
RAKING will increase dramatically. If the number of the 
uncertain maximal frequent patterns in the original dataset 
is less than K, then the algorithm is automatically termi-
nated after several iterations.

Because the uncertain subgraph pattern search space 
tailoring technique and database partitions are used in the 
EDFS algorithm, the search space is reduced to a certain 
extent. Therefore, in the process of searching uncertain 

frequent subgraphs, efficiency is higher than that in the 
RAKING algorithm.

For UMFGAMW, based on the frequency of uncertain 
frequent edges, the method of calculating the weight of the 
uncertain subgraph is given. First, the uncertain frequent 
1-subgraphs are sorted by their weight from high to low 
order. By mining weighted uncertain frequent subgraphs, 
the process of pruning is faster. The efficiency of the algo-
rithm is also improved. In addition, rapid calculation strat-
egy of the standard matrix coding is proposed in the UMF-
GAMW. When calculating the adjacency matrix of the 
uncertain graph, the vertices are arranged by degree from 
high to low order. The matching speed of the coding of the 
candidate uncertain subgraph in the uncertain graph trans-
action coding subgraph is accelerated. Reducing the com-
putational complexity of the uncertain standard matrix cod-
ing, improves the efficiency of the algorithm UMFGAMW.

(2) Comparison of the execution times of algorithms by 
the mean change of the probability of the edge in the uncer-
tain graph

There are two possibilities for the mean change of 
the probability of the edge in the uncertain graph. One 
is change in the probability of the edge, and the other is 
change in the probability variance of the edge. In this 
paper, we compare the execution time of the algorithms in 
these two cases. The parameters of Data3 are D = 10,000, 
L = 100, V = 10, E = 10, I = 5, T = 30, m1 = 0.8, d1 = 0.1. 
The parameters of Data4 are D = 10,000, L = 100, V = 10, 
E = 10, I = 5, T = 30, m2 = 0.9, d2 = 0.2. In this experi-
ment, Minsup = 0.1.

Figure  8 shows that when the possibility is gradually 
increased, the support degree is also increased, and the 
number of uncertain frequent subgraphs increases. The 
execution time of the algorithm is longer.

From Fig.  9, with the increase of the probability vari-
ance of the edge, the execution time of UMFGAMW is 
reduced. Because with the increase of the probability vari-
ance of the edge, the number of uncertain edges that have 
relatively low existence possibility is increased. This will 
reduce the number of uncertain frequent subgraphs, there-
fore, the running time of UMFGAMW is reduced.

Table 1   Input parameters of the graph data generator

Parameters Meaning of the parameters

D The number of graphs
V The number of vertex label
E The number of edge label
I The average size of frequent subgraphs
L The potential number of frequent subgraphs
T The average size of graphs
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(3) Comparison of the algorithm scalability with an 
increasing number of uncertain graphs

There are two kinds of comparison of the scalability 
with an increasing number of uncertain graphs. One is 
comparison of execution time of the UMFGAMW with a 
different number of uncertain graphs, and the other is com-
parison of the number of the mined frequent subgraph pat-
terns of the UMFGAMW with a different number of uncer-
tain graphs. In this paper, we compare the scalability of the 
UMFGAMW in these two cases. The parameters of Data5 
are D = 10,000, L = 200, V = 10, E = 10, I = 5, T = 20, m 
= 0.95, d = 0.05. The parameters of Data6 are D = 10,000, 
L = 100, V = 5, E = 10, I = 5, T = 20, m = 0.95, d = 0.05. 
In this experiment, Minsup = 0.1.

Figure  10 shows that with the increase of the number 
of uncertain graphs, the execution time of the algorithm 
is longer. This is because when the number of uncer-
tain graphs increases, the number of uncertain subgraphs 
needed to search is also increased.

From Fig. 11, with the increase of the number of uncer-
tain graphs, the number of the mined uncertain frequent 

subgraphs is also increased. The UMFGAMW in dataset 
Data5 exhibits better scalability results than that in Data6.

(4) Comparison of the number of the mined uncertain 
frequent subgraphs of the UMFGAMW with different min-
imum support degrees Minsup

In this section, datasets Data1 and Data2 are used, for 
UMFGAMW algorithm, we compare the number of the 
mined uncertain frequent subgraphs under different mini-
mum support degrees Minsup.

It is not difficult to see from Fig. 12, with the increase 
of support degree, the number of mined uncertain frequent 
subgraphs is decreased from the overall trend. The num-
ber of mined uncertain frequent subgraphs of the UMF-
GAMW in the dataset Data2 is less than that in Data1. This 
is because when the minimum support threshold Minsup 
increases, the relative uncertain frequent subgraphs are 
correspondingly reduced allowing frequent subgraphs to 
become not frequent under a small threshold. Thus, the 
uncertain subgraph is pruned away. The reduction of the 
search space will inevitably cause the corresponding reduc-
tion of search time cost. This is consistent with the theo-
retical results. The number of the mined uncertain frequent 
subgraphs is related to the number of the uncertain graphs 
and the average size of the uncertain graphs. If there are 
more uncertain graphs and they are of larger average size, 
there will be more mined uncertain frequent subgraphs.

5 � Conclusions

In this paper, a novel algorithm UMFGAMW is pro-
posed to resolve the problem of getting all uncertain fre-
quent subgraphs in the traditional uncertain frequent sub-
graph mining algorithm. The weighted uncertain maximal 
frequent subgraph is obtained. Not only can it dentify 
important uncertain maximal frequent subgraphs, it can 

Fig. 6   Comparison of execution times of three algorithms by the 
change of minimum support degree Minsup

Fig. 7   Comparison of the execution time of the UMFGAMW with 
different datasets

Fig. 8   Comparison of the execution time of the UMFGAMW with 
different probabilities of the edge
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also accelerate the cost of pruning. The definition of the 
adjacency matrix and standard matrix coding for uncer-
tain graphs are introduced. The correspondence between 
the adjacency matrix and uncertain graphs is established. 
A new vertex ordering policy for computing the standard 
coding of a graph adjacency matrix is designed. Uncertain 
frequent subgraphs are represented normally. When calcu-
lating the adjacency matrix of the uncertain graph, vertices 
are arranged according to degree from high to low order. 
The computational efficiency of the algorithm is improved. 
In addition, a depth-first search weighted uncertain maxi-
mal uncertain frequent subgraph mining algorithm is pro-
posed. All mined 1-weighted uncertain frequent subgraphs 
are sorted by weight from high to low order. According to 
the limiting condition of the mean weight of the weighed 
uncertain edge and the minimum support threshold under 
uncertain meaning, weighted uncertain maximum fre-
quent subgraphs are obtained. The efficiency of pruning 
is improved. The search space of uncertain maximal fre-
quent subgraph is reduced. The experimental results show 
that the proposed algorithm UMFGAMW not only can 

effectively reduce the number of mining results, but also 
has a high efficiency.

At present, the mainstream of uncertain frequent sub-
graph mining algorithms is primarily focused on how to 
improve efficiency. However, the real bottleneck of the 
algorithm is that the number of whole uncertain subgraphs 
is too high, which seriously affects the understanding and 
application of the mining results. Therefore, a further 
research direction is to explore a more efficient algorithm 
for simplifying the representation of uncertain frequent 
subgraphs and mining uncertain frequent subgraphs.
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Fig. 9   Comparison of the execution time of the UMFGAMW with 
different probability variances of the edge

Fig. 10   Comparison of execution time of the UMFGAMW with dif-
ferent number of uncertain graphs

Fig. 11   Comparison of the number of the mined uncertain frequent 
subgraphs of the UMFGAMW with different number of uncertain 
graphs

Fig. 12   Comparison of the number of the mined uncertain frequent 
subgraphs of the UMFGAMW with different minimum support 
degrees Minsup
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