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1  Introduction

In order to learn a classification model, supervised learn-
ing algorithms need a training dataset where each instance 
is manually labeled. With a large amount of unlabeled 
instances, one needs to manually label as much instances as 
possible. Such instances are randomly selected by a human 
labeler or oracle (i.e., passive learning). With this setting, 
the learning methods need huge labeled data to produce an 
optimized classifier. Note that labeling is costly and time 
consuming. Semi-supervised learning methods like [21] 
learn using both labeled and unlabeled data, and can there-
fore be used to reduce the labeling cost to some extent. 
Nonetheless, instead of randomly selecting the instances to 
be labeled, active learning methods allow to further reduce 
the labeling cost by allowing interaction between the learn-
ing algorithm and the oracle. Unlike a passive learning, 
active learning lets the learner choose which instances are 
more appropriate for labeling, according to an informative-
ness measure.

The main problem that active learning addresses is about 
defining informativeness in a way that reduces the number 
of instances to be labeled along with the improvement of 
the classifier’s performance. This is an important problem 
because in most real-world applications a large amount of 
unlabeled data are cheaply available as compared to the 
labeled ones.

We refer to [24] for a survey of active learning strate-
gies. The most widely used active learning strategies are 
based on uncertainty sampling [11, 19, 26, 27]. Those strat-
egies select instances in regions of the feature space, where 
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the classifier is most uncertain about its prediction. Such 
instances are typically close to the decision boundary and 
allow to fine-tune the boundary regardless of the change 
which is made to the classifier. Examples of those strate-
gies are presented in [14]. Other uncertainty based active 
learning methods, such as [5], define uncertainty in terms 
of the change that a weighted instance brings to the model 
so that the model changes its prediction regarding this 
instance. The classifier is then considered uncertain about 
its prediction, if a small weight is sufficient to change the 
predicted label. Active learning strategies based on query-
by-committee [10] can also be regarded as an uncertainty 
sampling because they select instances on which the mem-
bers of the committee are most uncertain. Those methods 
implicitly assume that the decision boundary is stable and 
needs just to be finely tuned. Indeed, stability of a decision 
boundary is expected to increase as training progresses (in 
terms of the number of labeled instances). However, since 
our objective is to reduce the labeling cost, active learning 
is initialized with few labeled instances and starts with a 
poor decision boundary. Therefore, the performance of 
those strategies may be limited. In the light of the afore-
mentioned issues, some active learning strategies define 
informative instances as those having a great influence 
on the model [6, 23, 25, 33]. The influence of a candidate 
instance can be measured by the reduction in the overall 
uncertainty of the model [23, 33], the change in the prob-
abilistic output of the model [6], or most commonly the 
change in specific parameters of the model before and after 
training on that instance. As an example, the authors in [25] 
use this strategy specifically with a discriminative probabil-
istic model where gradient-based optimization is used. The 
influence of an instance on the model is measured by the 
magnitude of the training gradient if the model is trained 
based on that instance. However, unlike the uncertainty-
based active learning, those strategies highly depend on the 
type of the used classification model, because they evaluate 
the change in specific parameters of the model. The active 
learning method that we propose in this paper, measures 
the informativeness of instances by their influence on the 
predictive capability of the classification model, not on its 
parameters, and can be used with any base classification 
model.

Further, most existing active learning methods assume 
that the labels given by the oracle are perfectly correct. 
However, the oracle is usually subject to accidental labeling 
errors, especially in complex applications such as docu-
ment analysis [15], entity recognition in text [7], biomedi-
cal image processing [1] and video annotation [29], where 
the labeling task is tedious and time consuming. Such labe-
ling errors not only reduce the accuracy of the classifier, 
but also mislead the active learner, causing it to query for 
the label of instances that are not necessarily informative. 

Many existing methods, like [17] and those surveyed in [9], 
address the problem of noisy labels in a passive supervised 
learning setting. Such methods allow to repeatedly correct 
or remove the possibly mislabeled instances from a data-
set of labeled instances which is already available. This is 
different from the active learning setting where labeling 
errors only affects instances whose labels are queried dur-
ing training. Such instances are located in regions of high 
informativeness, which naturally makes labeling errors not 
equally likely for all possible instances in the feature space. 
In this context, active learning with noisy labels is primar-
ily tackled in the literature based on crowdsourcing tech-
niques [2, 13, 16, 32]. However, those techniques can not 
be used with a single oracle because they rely on the redun-
dancy of labels that are queried for each instance from mul-
tiple oracles, which induces a high additional labeling cost. 
Very few methods that are independent of a specific classi-
fier, try to address this problem without relying on crowd-
sourcing. A strategy proposed in [20] rely on the classifier’s 
confidence to actively ask the correction of the suspected 
(i.e., possibly mislabeled) instances from an expert, how-
ever, the learning in itself is passive. The same strategy has 
been investigated for active learning in [4, 12], where sus-
pected instances can be relabeled or discarded. The active 
learning method proposed in [33], suggests that a suspi-
ciously mislabeled instance is the one that minimizes the 
expected entropy over the unlabeled dataset if it is labeled 
with a new label other than the one given by the oracle. 
Some more restrictive active learning methods like [8, 28] 
assume that labeling errors are due to uncertain domain 
knowledge of the oracle. They address this problem by 
modeling the knowledge of the oracle and querying for the 
label of an instance only if it is part of his/her knowledge. 
However, those methods do not handle labeling errors that 
are simply due to inattention, and they require the oracle 
to remain the same over time. The active learning method 
that we propose in this paper, handles labeling errors with-
out using crowdsourcing and without making assumptions 
about the oracle’s domain knowledge.

More specifically, the proposed active learning method 
relies on two strategies. In order to measure the informa-
tiveness of an instance x under a classification model h, 
the first strategy (see Sect.  3) trains h on x and evaluates 
its output on other unlabeled instances, whereas the sec-
ond strategy (see Section  4) trains h on other instances 
and evaluates the output on x. A modification of the later 
strategy (see Sect.  6), allows to characterize mislabeled 
instances. The experimental evaluation that we present in 
Sect.  7 shows that querying labels according to the first 
strategy and reducing noisy labels according to the second 
strategy, allows to improve the performance of the active 
learner compared to several commonly used active learning 
strategies from the literature.
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2 � Preliminaries and notations

A brief summary of the active learning can be general-
ized as follows. Let X ⊆ ℝ

d be a d dimensional feature 
space. The input x ∈ X is called an instance. Let Y be a 
finite set of classes where each class y ∈ Y  is a discrete 
value called class label. The classifier is then a function 
h that associates an instance x ∈ X with a class y ∈ Y  
(see Eq. 1). Most classifiers not only return the predicted 
class y but also give a score or an estimate of the poste-
rior probability P(y|x, h), i.e., probability that x belongs 
to class y under the model h.

Let U be a set of unlabeled instances, L be the set of labeled 
instances that are queried so far, and h be the current clas-
sification model trained on L. In active learning, the learner 
is given the set U and has to iteratively select an instance 
x ∈ U in order to ask an oracle for the corresponding class 
label y ∈ Y  and add it to L. In this way, the goal is to learn 
an efficient classification model h:X ⟶ Y  using a mini-
mum number of queried labels.

The uncertainty based active learning strategies 
select (for labeling) instances for which the model h 
is most uncertain about their class. For example, if 
y1 = maxy∈YP(y|x, h) is the most probable class label for 
x, then the most common uncertainty strategy simply 
selects instances with a low confidence P(y1|x, h) or with 
a high conditional entropy −

∑
y∈Y P(y�x, h) logP(y�x, h) 

which is a measure of uncertainty.
A general active learning procedure is illustrated 

in Algorithm  1. The input is a classification model h, a 
set of unlabeled instances U and an initial set of labeled 
instances L. At each iteration the algorithm queries for 
the true class label of the instance which maximizes some 
informativeness measure F (e.g., uncertainty). 

In the next sections, we will use the notation hx to 
denote the classification model after being trained on L 
in addition to some labeled instance x (i.e., trained on 

(1)h:
||||
� ⟶ �

x ⟼ y = h(x).

L ∪ {(x, y)}), and the notation x̄ to denote an unlabeled 
instance which is candidate for labeling.

3 � Disagreement 1 (selecting the most influencing 
instance)

This strategy measures the informativeness of an unlabeled 
instance x̄ (candidate for labeling) based on the disagree-
ment between the current classification model h and hx̄ 
(the model trained on L after including x̄). If the two mod-
els greatly disagree on labeling the unlabeled instances of 
U, then x̄ is informative, and its true class label is queried 
from an oracle.

In order to define the disagreement between two clas-
sification models a and b, let us assume that instances are 
drawn i.i.d. from an underlying probability distribution D. 
We can then define a metric d which represents the disa-
greement between a and b as follows:

As shown in Eq. 2, we can practically define this metric as 
the number of unlabeled instances on which the two mod-
els disagree about their predicted labels.

Let us consider the candidate instance x̄ ∈ U for labe-
ling. If we decide to query for the true class label of x̄, then 
d(h, hx̄) would express how many instances are affected by 
this decision. In order to compute the informativeness of x̄ 
before querying for its true label, we define hx̄ as the classi-
fication model trained on L ∪ {(x̄, h(x̄))}. In this way, if we 
query for the true label of x̄, then the resulting model will 
most likely be hx̄ because h(x̄) is the most probable class 
label for x̄. Based on Eq. 2 we can define the informative-
ness of x̄ as

where 1(C) is the 0–1 indicator function of condition C, 
defined as

Note that in Eq.  3, the informativeness of the candidate 
instance x̄ is determined by training a model hx̄ on L includ-
ing x̄, and testing on every instance x ∈ U.

Instead of expressing disagreement 1 as how many 
instances are affected (i.e., their predicted label change), 
we can also express it as how much those instances are 
affected. This is done by introducing a weight as described 
in Eq. 4

(2)d(a, b) = ℙ
x∼D

[a(x) ≠ b(x)] ≃
|{x ∈ U:a(x) ≠ b(x)}|

|U|
.

(3)F1(x̄) =
∑

x∈U

1(h(x) ≠ hx̄(x)),

1(C) =

{
1 if C is true

0 otherwise.

(4)F�
1
(x̄) =

∑

x∈U

[
1(h(x) ≠ hx̄(x)) × wx

]
,
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where wx = |max
y∈Y

P(y|x, hx̄) −max
y∈Y

P(y|x, h)| is the differ-
ence in the confidence of the predicted label of x under hx̄ 
and h, respectively.

The time H required for training a model h on a set of 
instances L depends mainly on the size of L. However, in our 
case, L increases by only one instance after each iteration, 
and its final size |L| is very small compared to |U|. As the final 
|L| is bounded by a fixed labeling budget, we can consider H 
as a constant (representing the upper bound training time) 
in our time complexity analysis. At each iteration, the disa-
greement 1 is computed (using Eqs. 3 or 4) for all instances 
x̄ ∈ U. Then, the instance with the highest disagreement 1 
is selected for labeling. Since H is constant, the complexity 
of computing disagreement 1 for a single instance x̄ is (n) 
where n = |U|. Since the disagreement 1 needs to be com-
puted for all instances (to select the one with highest score), 
the complexity of this query strategy is (n2).

4 � Disagreement 2 (selecting the most influenced 
instance)

We define another disagreement measure that we call disa-
greement 2. While the objective of disagreement 1 was to 
favour instances having a large impact on the model output, 
the objective of disagreement 2 is to favour the instances 
whose label is wrongly predicted by the current classification 
model h.

Let us consider the committee (or ensemble) of classifica-
tion models C = {hx:x ∈ U}. The disagreement 2 strategy 
computes how many models in the committee C disagree 
with h on the label of a candidate instance x̄. If many mem-
bers of the committee disagree with h(x̄), then h(x̄) is likely to 
be wrong, and the true label of x̄ is worth querying:

Note that while Eq.  5 looks similar to Eq.  3, it is differ-
ent. Eq. 3 trains a model hx̄ on the candidate instance x̄ and 
tests the output on every instance x ∈ U, and Eq. 5 trains a 
model hx on each instance x ∈ U and tests on x̄.

According to Eq. 5, it is likely that h(x̄) is wrong if many 
members of the committee C disagree with h(x̄). However, we 
can get more confidence about that if such committee mem-
bers agree on a common label (different from h(x̄)). There-
fore, another version of disagreement 2 which quantifies how 
much a committee of models disagree with h(x̄) and agree on 
a common label for x̄, would be expressed as follows:

Instead of using the 0–1 indicator function 1(hx(x̄) = y) 
to indicate the agreement of a committee member hx on 
the label y for x̄, we can rather consider the probability 

(5)F2(x̄) =
∑

x∈U

1(h(x̄) ≠ hx(x̄)).

max
y∈Y

∑

x∈U

1(h(x̄) ≠ hx(x̄) ∧ hx(x̄) = y).

P(y|x̄, hx), that is, the confidence of the committee mem-
ber hx about assigning the label y for x̄. The weighted ver-
sion of disagreement 2 can then be expressed (according to 
Eq. 6) as

Regarding the time complexity of disagreement 2, it is 
worth noting that at any given iteration, the committee of 
models C = {hx:x ∈ U} is independent of the candidate 
instance x̄ ∈ U. At each iteration, the set of models C can 
be computed once and used to evaluate the disagreement 2 
for each instance x̄ ∈ U (based on Eqs. 5 or 6). Therefore, 
the complexity of this query strategy is also (n2).

5 � Discussion on disagreements 1 and 2

To summarize, the simple version of disagreement 1 (Eq. 3) 
is quantifying how many predictions change if the model is 
trained by adding the candidate instance x̄. The weighted ver-
sion (Eq. 4) is quantifying how big is the change in those pre-
dictions. There is a relation between this proposed (disagree-
ment 1) strategy and an optimal active learning strategy. 
Indeed, since the ultimate objective of active learning is to 
produce a high accuracy classifier with a minimum number 
of labeled training instances, an optimal strategy would be to 
select at each iteration the instance x̄ that leads to the maxi-
mum increase in accuracy if labeled and used for training.1 
However, this strategy can never be used because it requires 
knowing beforehand the true class labels of the instances in U 
to evaluate the gain in accuracy of the classifier.

For simplification purposes, let us consider a binary clas-
sification task (i.e., with only two possible classes). Let y∗

x
 

be the (unknown) true class label of an instance x ∈ U. The 
overall gain in accuracy of the model induced by training on a 
candidate instance x̄ is expressed as

where g(x) is the gain in accuracy regarding a single 
instance x.

The value of g(x) would be 1 if the label of x is correctly 
predicted by hx̄ only, −1 if it is correctly predicted by h only, 
and 0 if the two models h and hx̄ predict the same label for 
x (either correctly or wrongly). To illustrate the relation 

(6)F�
2
(x̄) = max

y∈Y

∑

x∈U

[
1(h(x̄) ≠ hx(x̄)) × P(y|x̄, hx)

]
.

1  This is optimal given that we are only allowed to query for the label 
of one instance at each iteration, and it is only optimal for the given 
classifier.

G =
1

|U|
×
∑

x∈U

g(x),

g(x) = 1(hx̄(x) = y∗
x
) − 1(h(x) = y∗

x
)
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between disagreement 1 and the optimal active learning, 
g(x) can be re-written as a factor of 1(h(x) ≠ hx̄(x)) (which 
is used in Eqs. 3 and 4) as follows:

While it is impossible to evaluate the left-hand side fac-
tor in Eq.  7 because y∗

x
 is unknown, it is obvious that if 

1(hx̄(x) ≠ h(x)) = 0, there is no gain in accuracy regarding 
the instance x. Therefore, the disagreement between h and 
hx̄ is a necessary (but not necessarily sufficient) condition 
to improve the accuracy.

Disagreement 2 is a measure of how likely h(x̄) is wrong. 
The simple version of disagreement 2 (Eq. 5) is quantifying 
how many models disagree with h regarding the predicted 
label of the candidate instance x̄. The weighted version 
(Eq. 6) is quantifying how much the different models com-
monly agree to disagree with h regarding the predicted 
label of x̄. Conceptually, the proposed (disagreement 2) 
strategy has some similarity with the active learning strate-
gies based on query-by-committee and uncertainty sam-
pling, because it allows to query for the label of instances 
on which h is uncertain (i.e., instances whose labels are 
likely wrongly predicted by h). However, those strategies 
define the most uncertain instance as the one being closest 
to the current decision boundary. This may result in query-
ing for the label of an instance which has not a great impact 

(7)
g(x) =

[
1(hx̄(x) = y∗

x
) − 1(hx̄(x) ≠ y∗

x
)
]

× 1(h(x) ≠ hx̄(x)).

on the model even if its label is wrongly predicted by h. 
Unlike those strategies, disagreement 2 selects at each iter-
ation (for labeling) an instance which is still close to the 
decision boundary (not completely far from it) but not nec-
essarily the closest one, which makes it have a larger influ-
ence on the classification model. The reason why this may 
improve the results is that the current decision boundary 
(especially at early iterations of the active learning) is 
poorly defined. Fine tuning the poorly defined decision 
boundary by always selecting the closest instance to it, is 
likely to slow down the early stages of the learning 
process.2

It is worth mentioning that the disagreement 1 and the 
disagreement 2 measures have different objectives and 
there is not a simple linear correlation between them. This 
is demonstrated by Fig. 1 which shows the informativeness 
of some instances according to the weighted versions of 
disagreement 1 and disagreement 2, for different datasets. 
As disagreement 1 and 2 have different objectives, they 
may give a conflicting informativeness regarding some can-
didate instances. For example, disagreement 1 may be large 
while disagreement 2 is small. Indeed, if we look at Eq. 3, 
we see that for a candidate instance, disagreement 1 maxi-
mizes the number of unlabeled instances whose predicted 

2  As the decision boundary becomes more stable (over time), fine 
tuning it becomes more effective.

Fig. 1   Disagreement 1 with respect to disagreement 2 on different datasets
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labels change. However, we are not guaranteed that all 
those predicted labels change towards the true class labels. 
For this reason, disagreement 1 may, in some cases, over-
estimate (to some degree) the informativeness of a candi-
date instance, while this informativeness is still small with 
disagreement 2. These observations opens-up for further 
future work on combining the two disagreement measures.

In the next section, we show that a simple modification 
of the disagreement 2 measure, allows it to be used as a 
mislabeling measure to characterize noisy labels.

6 � Dealing with noisy labels

As indicated in Sect. 1, the oracle is potentially subject to 
labeling errors. We consider random labeling errors, where 
the oracle has a probability � ∈ [0, 1] for giving a wrong 
label for each query (i.e., � represents the noise intensity).

Let (xq, yq) be a labeled instance from L whose label yq 
was queried from the oracle. As a reminder, we previously 
used the notation hx to denote the classification model after 
being trained on L in addition to the instance x with its pre-
dicted label h(x). In other words, hx is the classifier trained 
on L ∪ {(x, h(x))}. Let us now use the notation hx⧵xq to 
denote the same model as hx, but trained after (temporarily) 
excluding the instance xq from L.

According to the idea of disagreement 2, if many mod-
els highly agree on a common label for xq, which is dif-
ferent from the queried label yq (i.e., agreeing to disagree 
with yq), then we can suspect yq to be wrong. Therefore, a 
mislabeling measure can be expressed based on Eq. 6 for a 
labeled instance (xq, yq), as follows:

A labeled instance with a high value of M(xq, yq) is poten-
tially mislabeled. In order to reduce the effect of such 
instance on the active learning, three main alternatives exist 
in the literature (with different mislabeling measures).

The first alternative is to manually review and correct 
the label of the instance by an expert oracle. This alterna-
tive may induce an additional relabeling cost, because the 
expert is assumed to be reliable. The second alternative 
simply consists in removing the instance from L. Note 
that this alternative may occasionally remove an informa-
tive instance that was actually correctly labeled. The third 
alternative is softer than the previous ones. If the classi-
fier accepts training with weighted instances [22, 30], 
then every instance in (xq, yq) ∈ L can be weighted by a 
weight 1

M(xq,yq)
 which is the inverse of the mislabeling 

measure, that is, instances with a higher mislabeling 

(8)

M(xq, yq) = max
y∈Y

∑

x∈U

[
1(yq ≠ hx⧵xq (xq)) × P(y|xq, hx⧵xq )

]
.

measure have a smaller weight (i.e., smaller impact on 
the model). However, this alternative highly depends on 
the used classifier.

As one can notice, each alternative has its benefits and 
drawbacks. For our experiments, in order to remain inde-
pendent of any specific classifier, we evaluate active learn-
ing with the proposed mislabeling measure (Eq. 8) against 
other mislabeling measures from the literature, for the two 
first alternatives (i.e., relabeling and removing). Those 
alternatives require to periodically select an instance with 
the highest mislabeling measure from L. To ensure a fair 
comparison between the mislabeling measures, we simply 
set this period to 1

�
. For example, if � = 0.1, then after each 

10 queries, the most likely mislabeled instance is either 
relabeled or removed from the set L.

As a recapitulation, Fig. 2 shows a general flowchart of 
the developed system. First, a model h is trained on an ini-
tial set of labeled instances L. If a stopping criterion is not 
yet fulfilled (e.g. reaching a given labeling budget), then the 
most informative instance is selected for labeling accord-
ing to one of the proposed disagreement measures, and is 
added to L. If the number of iterations is multiple of 1

�
 then 

the most likely mislabeled instance is either relabeled or 
removed from L. The whole process is then repeated again 
for another iteration.

7 � Experiments

In this section, we evaluate the proposed active learning 
strategies. First, we present the datasets and evaluation 
metrics as well as the benchmarking methods used for com-
parison. Then, we present the experimental results.

Fig. 2   A general flowchart of the developed system
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7.1 � Datasets

We consider in our experimental evaluation seven different 
datasets of a variable size and number of classes, where six 
of them are considered as publicly available datasets and 
are described in the UCI machine learning repository [3]. 
The other dataset is a set of real-world administrative doc-
uments that are represented as bag of textual words (i.e., 
sparse vector containing the occurrence count of each word 
in the document). Table 1 shows a brief summary of each 
dataset including the number of categories (column class), 
the dimensionality (column dim), the number of instances 
(column size), and the percentage of instances kept for test-
ing (column test). This percentage is presented for each 
dataset as it is originally available in the UCI repository.

7.2 � Evaluation metrics

There is no absolute measure for evaluating active learn-
ing strategies. Most authors demonstrate the performance 
of active learning strategies visually by plotting curves of 
the classifier’s accuracy (on a test set) with respect to the 
number of labeled samples used for training. The higher 
the curve, the better the active learning strategy. We also 
present some of such plots in our experiments (see Figs. 3, 
4). Nonetheless, this method does not provide a quantita-
tive evaluation of the active learning strategy for the whole 
learning session. A straightforward way to achieve this is 
to compute the average accuracy (over iterations) for the 
whole active learning session:

where Acct is the test accuracy achieved by the classifier 
after querying for the t’th label. However, this measure 
gives a higher score to strategies that achieve higher accu-
racy at the end of the learning session (where accuracy 
is pretty high) even if they perform relatively poorly at 
early stages (where accuracy is pretty low). Therefore, we 

1

|L|

|L|∑

t=1

Acct,

propose an alternative evaluation measure which quantifies 
the performance of a given active learning strategy rela-
tively to the optimal strategy (that we referred to in Sect. 5) 
and the random sampling strategy which selects instances 
independently of their informativeness. This measure aims 
to be independent of the dataset by quantifying the area 
between the maximum achievable accuracy and the accu-
racy which is achievable by a random sampling, and can be 
computed as

where Acct(AL) is the test accuracy achieved at time t for a 
given strategy AL.

For the results presented in this paper, we noticed that 
using the average accuracy measure will lead to the same 
conclusions as the proposed evaluation metric E, although 
this is not necessarily true in general. Nevertheless, the 
metric E have some readability benefits. It shows how 
much a given active learning strategy is close to the optimal 
one independently of the dataset. Moreover, it clearly gives 
a negative value if there is no benefit in using the active 
learning strategy over the usual passive learning where data 
is randomly selected by the oracle.

7.3 � Benchmarking methods

In order to evaluate the proposed active learning strategies 
(without considering noisy labels for now), we compare 
them to five active learning strategies described below.

1.	 Entropy uncertainty [24]: it determines the most 
uncertain instance with respect to all possible classes 
based on the entropy measure. This strategy selects 
at each iteration the instance x̄ with the highest  
conditional entropy.  x̄ = argmax

x∈U

H(y|x, h),  where 

H(y�x, h) = −
∑

y∈Y P(y�x, h) logP(y�x, h).
2.	 Least certain strategy [14]: it selects at each iteration 

the instance x̄ which is closest to the decision bound-
ary. For classifiers that output an estimate of the pre-
diction probability, this strategy is equivalent to select-
ing x̄ = argmax

x∈U

P(y1|x, h), where y1 = argmax
y∈Y

P(y|x, h) 

is the most probable class for x.
3.	 Sufficient weight strategy [5]: it computes for each 

instance x a sufficient weight which is defined as the 
smallest weight that should be associated with x so 
that the prediction of the classifier h(x) changes from 
one label to another. Then, it selects (for labeling) the 
instance x̄ with the smallest sufficient weight.

4.	 Expected entropy reduction (EER) [23, 33]: this 
strategy selects the instance x̄ which minimizes the 

E(AL) =

∑�L�
t=1

Acct(AL) − Acct(RANDOM)

∑�L�
t=1

Acct(OPTIMAL) − Acct(RANDOM)
,

Table 1   Summary of the datasets characteristics

Dataset Class Dim Size Test (%) SVM

LandsatSat. 6 36 6435 31 C = 10 � = .0001

CNAE-9 9 856 1080 20 C = 100 � = .01

Letter-recog. 26 16 26101 23 C = 100 � = .01

Optdigits 10 64 5620 32 C = 10 � = .001

Pendigits 10 16 10992 32 C = 100 � = .0001

Segmentation 7 19 2310 9 C = 100 � = .0001

Documents 24 277 1951 33 C = 1000 � = .1
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expected entropy of the model regarding all the other 
unlabeled instances. The expected entropy is computed 
by averaging over all possible labels yi ∈ Y  for each 
instance x ∈ U. 

where h(x,yi) is the model after being trained on 
L ∪ {(x, yi)} and H(y|u, h(x,yi)) is the conditional entropy 
for the instance u as described in the first strategy.

5.	 Change in probabilities [6]: this strategy measures the 
variation between two models in terms of the differ-
ence in their probabilistic output. Let vh denote a vector 
containing the prediction probabilities of the model h 
on all the available instances (labeled and unlabeled). 
Given the current model h and the model after being 
trained on L with an additional instance hx, the infor-
mativeness of the instance x is measured proportionally 
to the distance between vh and vhx.

To evaluate the active learning in the presence of noisy 
labels, we use the proposed mislabeling measure to filter 
mislabeled instances as described in Sect.  6. We com-
pare the results based on two other mislabeling measures 
(described below) that are independent of the classifier, 
and has been used to mitigate the effect of noisy labels on 
active learning in [4, 12, 33].

1.	 Entropy reduction based mislabeling measure [33]: 
this measure suggests that a suspiciously mislabeled 
instance is the one that minimizes the expected entropy 
over the set U, if it is labeled with a new label other 
than the one given by the oracle.

2.	 Margin based mislabeling measure [4, 12]: this meas-
ure simply suggest that a mislabeled instance is the one 
having a high prediction probability and a low proba-
bility for the label given by the oracle. The mislabeling 
measure for a labeled instance (xq, yq) ∈ L is then sim-
ply defined as p(y1|x, hL−xq ) − p(yq|x, hL−xq ), where y1 

is the most probable label for xq, yq is the label given 
by the oracle, and hL−xq is the model trained after 
excluding xq from L.

SVM is used as a base classifier for all the considered 
active learning strategies. We consider two variants of the 
SVM classifier, a simple one (with a linear kernel) and a 
complex one (with an RBF kernel). We use the Python 
implementation of SVM which is available in the scikit-
learn library [18]. As the traditional SVM is a binary clas-
sification model, we applied the one-against-one multiclass 
strategy, which constructs one classifier per pair of classes. 
At prediction time, the class which receives the most votes 

x̄ = argmin
x∈U

∑

yi∈Y

p(yi|x, h)
∑

u∈U−x

H(y|u, h(x,yi)),

is selected.3 Prediction probabilities are estimated and cali-
brated based on the SVM scores using the method 
described in [31]. For all the scenarios that we consider in 
this paper, the initial SVM model is trained on a fixed set of 
50 initially labeled instances chosen randomly from U 
while ensuring that at least two instances from each class 
are included. The only exception is for the Letter-recogni-
tion dataset where 52 instances were selected (exactly two 
instances from each class).

The main SVM parameters taken into consideration are 
a penalty parameter C and a kernel coefficient parameter � 
(only for the RBF kernel). The parameter C is a trade off 
between the training error and the simplicity of the deci-
sion surface. The parameter � is the inverse of the radius of 
influence of samples selected by the model as support vec-
tors. Those parameter values are simply selected based on 
an exhaustive grid search over pre-specified parameter val-
ues where the score is obtained using cross-validation on a 
separate dataset (  15% of the whole dataset)3. The values 
retained for those parameters for each dataset are indicated 
on Table 1 (column SVM).

7.4 � Results and analysis

We firstly evaluate the active learning without considering 
noisy labels. Table 2 shows the average accuracy for each 
active learning strategy based on the SVM (RBF) classifier. 
Each method was run on each dataset five times, by consid-
ering each time a random split of the training/testing sets. 
This allows to have five accuracy values for each method 
and dataset. The average accuracy (of the five values) is 
reported on Table 2, together with the corresponding confi-
dence intervals (by considering a confidence level of 95%). 
Table  2 reports the p-value obtained based on Student’s 
t-test which shows how much significantly is the best per-
forming strategy (among the proposed ones) different from 
the second best strategy (among the other reference strate-
gies). Table 2 also reports the p-value obtained based on the 
statistical analysis of variance method (ANOVA), which is 
used to analyze the differences among all strategies. The 
smaller the p-values, the more significant is the difference. 
We can see that the most outstanding result is achieved on 
the Letter-recognition dataset where the weighted version 
of disagreement 1 achieves a much significantly different 
accuracy than the other strategies. Table 3 shows the aver-
age E metric (defined in section 7.2) over all classifiers for 
each individual dataset. Table 4 shows the average E metric 

3  For more information about the used one-against-one mul-
ticlass strategy and the hyper-parameter selection, please visit 
the APIs sklearn.multiclass.OneVsOneClassifier 
and sklearn.model_selection.GridSearchCV and 
sklearn.svm.SVC on http://scikit-learn.org.

http://scikit-learn.org
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as well as the average accuracy over all datasets for each 
individual classifier (columns RBF SVM and Linear SVM), 
and for all datasets and classifiers (column All SVMs). 
Figs. 3 and 4 show the test accuracy of the model h with 
respect to the number of labeled samples (chosen according 
to different strategies) used to train h, for 7 different data-
sets and two variants of h (SVM with RBF kernel in the top 
of each figure, and SVM with a linear kernel in the bottom 
of each figure). Fig.  3 (respectively Fig.  4) compares the 
proposed simple and weighted versions of disagreement 1 
(respectively disagreement 2) to the other reference strate-
gies. For clarity purposes, the curve of only one baseline 
strategy is presented in the figures, however, results of all 
the considered strategies are summarized in Tables 3 and 4.

First, we can observe that all the considered active learn-
ing strategies perform generally better than the passive ran-
dom sampling. This can be seen from Figs. 3 and 4 where 

Table 2   Average accuracy for each dataset for the SVM (RBF) classifier

Bold values indicate the best results

Method Average accuracy (%)

CNAE9 LandsatSat. Letter-recog. Documents Optdigits Pendigits Segmentation

Entropy 84.0 ± 1.40 86.0 ± 1.60 42.8 ± 1.41 91.7 ± 0.26 94.9 ± 0.46 95.0 ± 0.55 79.6 ± 2.43

Least certain 85.6 ± 0.97 86.1 ± 1.84 49.9 ± 0.53 91.6 ± 0.71 95.1 ± 0.36 95.9 ± 0.63 83.2 ± 1.46

Sufficient weight 85.9 ± 0.53 85.6 ± 1.79 53.4 ± 0.90 92.8 ± 0.34 94.9 ± 0.28 96.2 ± 0.52 86.7 ± 1.46

EER 85.3 ± 1.40 ��.� ± 2.06 51.6 ± 0.90 91.9 ± 0.48 95.0 ± 0.36 95.8 ± 0.66 84.8 ± 0.98

Change in prob. 86.2 ± 0.91 85.9 ± 2.12 55.1 ± 0.69 93.7 ± 0.52 96.1 ± 0.17 96.7 ± 0.54 87.3 ± 1.85

Disagreement 1 86.4 ± 1.02 85.4 ± 2.11 56.0 ± 0.80 ��.� ± 0.47 96.1 ± 0.25 97.1 ± 0.45 84.4 ± 3.08

Weighted disag. 1 ��.� ± 0.66 86.0 ± 1.99 ��.� ± 0.88 94.1 ± 0.39 ��.� ± 0.26 ��.� ± 0.61 86.6 ± 1.48

Disagreement 2 86.0 ± 1.17 85.3 ± 2.53 55.9 ± 1.08 93.7 ± 0.34 95.6 ± 0.35 96.6 ± 0.46 87.4 ± 1.29

Weighted disag. 2 85.4 ± 1.01 85.5 ± 1.94 57.5 ± 0.64 93.2 ± 0.44 95.7 ± 0.51 96.8 ± 0.40 ��.� ± 0.96

p value (t test) 0.23 0.85 9.7 × 10−4 0.33 0.10 0.40 0.59
p value (ANOVA) 0.06 0.98 4.2 × 10−21 1.8 × 10−9 3.2 × 10−6 2.7 × 10−4 2.5 × 10−5

Table 3   Average E metric over 
all classifiers for each dataset

Bold values indicate the best results

Method Average E metric (%)

CNAE9 LandsatSat. Letter-recog. Documents Optdigits Pendigits Segmentation

Entropy 45.28 17.96 −44.78 26.13 08.36 11.95 −24.00
Least certain 45.73 06.52 −43.21 47.57 24.18 11.07 3.92
Sufficient weight 49.38 24.33 7.01 46.54 29.85 47.21 40.10
EER 51.75 29.62 −21.72 50.80 26.40 32.45 22.13
Change in prob. 50.14 34.37 17.94 63.57 52.25 29.95 37.56
Disagreement 1 53.82 25.69 −3.93 76.26 44.44 44.19 40.53
Weighted disag. 1 57.69 30.79 28.59 71.15 51.65 50.03 43.74
Disagreement 2 53.56 20.27 13.64 66.95 42.19 46.07 45.61
Weighted disag. 2 54.31 33.79 21.60 72.61 46.15 37.33 34.90

Table 4   Average E metric and average accuracy, over all datasets for 
each classifier

Bold values indicate the best results

Method Average E metric (%)  −  average accuracy 
(%)

RBF SVM Linear SVM All SVMs

Entropy uncertainty 14.83–82.51 −3.15 to 80.15 5.84–81.33
Least certain 31.77–83.93 −4.40 to 79.84 13.68–81.89
Sufficient weight 38.82–85.09 31.01–83.90 34.92–84.49
EER 41.64–85.15 13.05–81.69 27.35–83.42
Change in prob. 48.09–86.08 33.57–83.87 40.83–84.97
Disagreement 1 47.62–85.81 32.66–83.51 40.14–84.66
Weighted disag. 1 56.51–86.99 38.81–84.58 47.66–85.79
Disagreement 2 51.09–86.46 31.28–83.56 41.18–85.01
Weighted disag. 2 48.70–86.06 37.22–84.47 42.96–85.27



1316	 Int. J. Mach. Learn. & Cyber. (2018) 9:1307–1319

1 3

the active learning curves are predominantly higher, and 
from Tables 3 and 4, where the E metric values are rarely 
negative. This confirms that any active learning method 
can, in general, improve the results over the usual passive 
learning (random sampling).

Second, we can see that the simple and weighted ver-
sions of the proposed disagreement 1 and disagreement 
2 strategies, all achieve a better overall performance than 
the Entropy and the Least certain strategies. This can be 
directly observed from the column All SVMs of Table  4. 
Moreover, the Entropy and the Least certain strategies are 
occasionally less reliable than the random one. This is espe-
cially true for the Letter-recognition dataset where the two 
strategies are significantly worse than the random sampling 

(see the Letter-recognition column in Table 3, and the Let-
ter-recognition curves in Figs.  3 and 4). Indeed, for this 
dataset, the initial classifier achieves a low test accuracy 
(around 30%) and the learning progresses slowly. There-
fore, selecting the most uncertain instances will allow to 
fine-tune a poorly defined decision boundary, which slows 
down the learning progress further. The same observation 
can be made for the EER strategy which achieved a lower 
performance than the random strategy on the Letter-recog-
nition dataset (see Table  3). This is seemingly due to the 
fact that the EER strategy computes an expected entropy by 
averaging over all possible labels, which makes it less reli-
able when the number of classes is high (i.e., 26 classes for 
the Letter-recognition dataset as shown on Table 1).

Fig. 3   Disagreement 1 strategy in comparison to uncertainty sampling (least certain strategy)
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Third, from Table 4 we can see that the strategy based 
on the change in probabilities achieved the closest perfor-
mance to our proposed strategies and a slightly better per-
formance than the simple disagreement 1 strategy. How-
ever, the weighted version of disagreement 1 achieves the 
best overall result. This is confirmed by the column All 
SVMs which shows the average E metric over all datasets 
and classifiers. This proves that the instances chosen using 
the proposed weighted disagreement 1 strategy are usually 
more informative.

Finally, the active learning results in the presence of 
noisy labels are summarized in Table 5. The weighted disa-
greement 1 has been used as a query strategy, as it achieved 
the best performance in the previous experiments. Table 5 

shows the average E metric over all datasets when differ-
ent mislabeling measures (including the one proposed in 
Sect. 6) are used to filter (i.e., relabel or remove) the poten-
tially mislabeled instances. Different intensities of noise � 
are considered. We can observe from Table 5 that for all the 
considered mislabeling measures, and for a fixed value of �, 
relabeling the potentially mislabeled instances improves the 
accuracy better than removing them. However, as discussed 
in Sect. 6, relabeling may require an additional cost, while 
removing does not. Further, Table 5 shows that the misla-
beling measure that we proposed in Sect. 6 (which is based 
on the weighted disagreement 2 measure) allows to better 
mitigate the effect of noisy labels than the margin or the 
entropy reduction based mislabeling measures. This proves 

Fig. 4   Disagreement 2 strategy in comparison to uncertainty sampling (least certain strategy)
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that relaying on a committee of models that highly agree 
on a common label and disagree with the label given by the 
oracle, allows to better characterize mislabeled instances, 
even when the noise intensity is significantly high.

8 � Conclusion and future work

In this paper, we proposed a new active learning method 
which is able to query for the label of instances based on 
how much they impact the output of the classification 
model. The method is also able to measure how much the 
queried instance’s label is likely to be wrong, based on 
models that agree to disagree with the current classification 
model, without relaying on crowdsourcing techniques. This 
method is generic and can be used with any base classi-
fier. The experimental evaluation demonstrate that the pro-
posed query strategy achieves a higher accuracy compared 
to several active learning strategies, and that the proposed 
mislabeling measure efficiently characterize mislabeled 
instances.

As a future work, we will focus on how to automati-
cally estimate the noise intensity from the data and from 
previous interactions with the oracle, so that the number of 
relabeled or removed instances could be adapted accord-
ing to this noise intensity. We will also focus on improv-
ing computational efficiency of the proposed method. A 
first direction for this, is to explore heuristics that can sig-
nificantly improve the computational efficiency by reducing 
the size of U. For example, as times go, unlabeled instances 
whose predicted labels never change during subsequent 
iterations of the active learning, could be safely removed 
from U. Another possibility is to use a fast-to-compute 

informativeness measure (e.g., uncertainty) in order to pre-
select at each iteration a sufficiently large subset U′ ⊂ U 
of a fixed size |U�| = m such that m ≪ |U|. Then, we can 
compute the disagreement measures for the instances 
in U′ instead of all instances in U, which will allow us to 
reduce the complexity from (n2) to (n) (which is simi-
lar to (n × m), because m is constant). Another possible 
direction is to explore whether the computational efficiency 
could be improved if the proposed method is specialized 
for on a limited class of machine learning algorithms. Fur-
thermore, we would like to investigate ways of combining 
the disagreement 1 and disagreement 2 strategies to benefit 
from their synergy. As a simple idea, Eq.  7 contains two 
factors that allow to improve the classifier’s accuracy. The 
right-hand side factor has been used in disagreement 1, but 
the left-hand side factor is not possible to estimate because 
it requires knowing if the label of x has been correctly or 
incorrectly predicted. However, since disagreement 2 
allows to characterize instances whose label is probably 
wrongly predicted, then it can be possibly used as a weight 
in place of the left-hand side factor of Eq. 7.
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