
Vol.:(0123456789)1 3

Int. J. Mach. Learn. & Cyber. (2018) 9:1261–1269 
DOI 10.1007/s13042-016-0632-x

ORIGINAL ARTICLE

Exponential operational laws and new aggregation operators 
of intuitionistic Fuzzy information based on Archimedean 
T-conorm and T-norm

Xue Luo1 · Zeshui Xu1 · Xunjie Gou1 

Received: 21 June 2016 / Accepted: 27 December 2016 / Published online: 19 May 2017 
© Springer-Verlag Berlin Heidelberg 2017

1 Introduction

Most of the existing mathematical tools for formal mod-
eling, reasoning and computing are crisp, deterministic and 
precise in nature, which are not capable of dealing with the 
problems involving uncertainty, imprecision or fuzziness. 
Fuzzy set (FS) [1], characterized by the membership func-
tion, is suitable to deal with those uncertain or fuzzy prob-
lems. Later, Atanassov extended the FS to intuitionistic 
fuzzy set (IFS) [2, 3]. The IFS is constructed by three func-
tions, i.e., the membership function, the non-membership 
function, and the indeterminacy function, and thus, the IFS 
can describe uncertainty and fuzziness more comprehen-
sively than the FS. Atanassov [4] and De et  al. [5] intro-
duced some basic operational laws of IFSs. For simplicity, 
Xu and Yager [6–8] defined the concept of intuitionis-
tic fuzzy number (IFN) and gave some operational laws 
of IFNs, such as “intersection”, “union”, “supplement”, 
“power” and so on. Besides, Gou et  al. [9] presented the 
exponential operational law of IFNs, which is an effective 
supplement for the calculations of IFNs.

Based on these operational laws of IFNs, lots of intui-
tionistic fuzzy aggregation operators have been developed, 
such as the intuitionistic fuzzy weighted averaging (IFWA) 
operator [7], the intuitionistic fuzzy weighted geomet-
ric (IFWG) operator [6], the intuitionistic fuzzy ordered 
weighted averaging (IFOWA) [8] operator, and the intui-
tionistic fuzzy weighted exponential aggregation (IFWEA) 
operator [9], etc.

With the advantage in depicting uncertain and fuzzy 
information, IFSs and IFNs have been widely applied in 
many practical areas of modern life, including aggrega-
tion techniques [6–16], distance measures [17–19], corre-
lation measures [20–23], intuitionistic preference relations 
[24–26], dynamic decision making [27–29], intuitionistic 
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fuzzy calculus [30–32], system fault analysis [33–35], and 
multiple criteria decision making (MCDM) [12, 13, 18, 
21, 35–45]. For the decision making problem with a nor-
mal decision matrix and intuitionistic fuzzy weights, Gou 
et al. [9] introduced the exponential operational law and the 
IFWEA operator, but they are far from meeting the actual 
needs. In this paper, we define the exponential operational 
laws of IFSs and IFNs based on Archimedean t-conorm and 
t-norm (EOL-IFS-A and EOL-IFN-A), where the bases are 
positive real numbers and the exponents are IFSs or IFNs. 
With Archimedean t-conorm and t-norm [46–48], and the 
aggregation functions for the classical IFSs [6–16, 49], 
we can assign different functions based on t-conorm and 
t-norm to get different forms of exponential operational 
laws and aggregation operators for intuitionistic fuzzy 
information, which can help the decision makers to deal 
with different relationships of the aggregated intuitionistic 
fuzzy arguments and give them more choices.

The remainder of this paper is organized as follows: 
some basic knowledge related to IFSs, IFNs and t-conorm 
and t-norm are introduced in Sect.  2. Section  3 gives the 
definitions, properties of EOL-IFS-A and EOL-IFN-A, 
and develops an intuitionistic fuzzy exponential aggrega-
tion operator based on t-conorm and t-norm. Section  4 
uses the operator to develop a MCDM approach for solv-
ing the problems with intuitionistic fuzzy information, 
and employs an example to illustrate the application of the 
developed approach. The paper ends with some conclu-
sions in Sect. 5.

2  Preliminaries

In this section, we recall some basic concepts and opera-
tional laws of IFSs, IFNs and t-conorm and t-norm.

Definition 2.1 [2]. Let X be a fixed set, the IFS A can be 
defined as A =

�⟨x,�A(x), �A(x)⟩�x ∈ X
�
 with �A(x) ≥ 0, 

�A(x) ≥ 0 and 0 ≤ �A(x) + �A(x) ≤ 1. ��(x) and ��(x) rep-
resent the membership degree and the non-membership 
degree, respectively. Moreover, ��(x) = 1 − ��(x) − ��(x) is 
called the indeterminacy degree or hesitancy degree.

For convenience, the pair � =
(
�� , ��

)
 is called an intui-

tionistic fuzzy number (IFN) [2], where �� , �� ≥ 0 and 
�� + �� ≤ 1.

Definition 2.2 [50]. A function T: [0, 1] × [0, 1] → [0, 1] 
is called a t-norm if it satisfies the following four 
conditions:

1. T(1, x) = x, for all x;
2. T(x, y) = T(y, x), for all x and y;

3. T(x, T(y, z)) = T(x, T(y, z)), for all for all x, y and z;
4. If x ≤ x

′ and y ≤ y
′, thenT(x, y) ≤ T

(
x
�

, y
�).

Definition 2.3 [50]. A function S: [0, 1] × [0, 1] → [0, 1] 
is called a t-conorm if it satisfies the following four 
conditions:

1. S(0, x) = x, for all x;
2. S(x, y) = S(y, x), for all x and y;
3. S(x, S(y, z)) = S(x, S(y, z)), for all for all x, y and z;
4. If x ≤ x

′ and y ≤ y
′, then S(x, y) ≤ S

(
x
�

, y
�).

Definition 2.4 [50]. If the t-norm function T(x, y) is con-
tinuous and T(x, x) < x for all x ∈ (0, 1), then it is called an 
Archimedean t-norm. If an Archimedean t-norm is strictly 
increasing with respect to each variable for x, y ∈ (0, 1), 
then it is called a strict Archimedean t-norm.

Definition 2.5 [50]. If a t-conorm function S(x, y) is 
continuous and S(x, x) > x for all x ∈ (0, 1), then it is 
called an Archimedean t-conorm. If an Archimedean 
t-conorm is strictly increasing with respect to each vari-
able for x, y ∈ (0, 1), then it is called a strict Archimedean 
t-conorm.

Theorem  2.2 [50]. Let �i =
(
��i

, ��i

)
(i = 1, 2) and 

� =
(
�� , ��

)
 be three IFNs. Some basic operational laws 

for IFNs based on strict Archimedean t-conorm and t-norm 
can be expressed as follows:

1. 𝛼1 ⊕ 𝛼2 =
(
S
(
𝜇𝛼1

,𝜇𝛼2

)
, T

(
𝜈𝛼1 , 𝜈𝛼2

))
=
(
h−1

(
h
(
𝜇𝛼1

)
+h

(
��2

))
, g−1

(
g
(
��1

)
+ g

(
��2

)))
;

2. 𝛼1 ⊗ 𝛼2 =
(
T
(
𝜇𝛼1

,𝜇𝛼2

)
, S
(
𝜈𝛼1 , 𝜈𝛼2

))
=
(
g−1

(
g
(
𝜇𝛼1

)
+g

(
��2

))
, h−1

(
h
(
��1

)
+ h

(
��2

)))
;

3. 𝜆𝛼 =
(
h−1

(
𝜆h

(
𝜇𝛼

))
, g−1

(
𝜆g

(
𝜈𝛼
)))

, 𝜆 > 0;

4. 𝛼𝜆 =
(
g−1

(
𝜆g

(
𝜇𝛼

))
, h−1

(
𝜆h

(
𝜈𝛼
)))

, 𝜆 > 0.

3  Exponential operational law of IFNs based 
on Archimedean t-conorm and t-norm

3.1  Novel exponential operational laws

In Sect.  2, we have recalled some operational laws of 
IFSs and IFNs. However, we are still lack of one kind of 
exponential operational law, where the bases are posi-
tive real numbers and the exponents are IFSs or IFNs. 
Gou et  al. [9] introduced a specific form of exponential 
operational law of IFSs and IFNs. In this section, we 
extend it to a much more general form, and propose the 
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exponential operational laws of IFSs and IFNs based on 
Archimedean t-conorm and t-norm.

Definition 3.1 Let X be a fixed set, and 
A =

�⟨x,�A(x), �A(x)⟩�x ∈ X
�
 be an IFS on X, then

which is called the exponential operational law of IFSs 
based on Archimedean t-conorm and t-norm (EOL-IFS-A).

Definition 3.2 Let � =
(
�� , ��

)
 be an IFN, then the expo-

nential operational law of � is

which is called an exponential operational law of IFNs 
based on Archimedean t-conorm and t-norm (EOL-IFN-A), 
where �� is also an IFN.

The process of proving �� being an IFN is similar to 
the process of proving �A being an IFS, so we omit it 
here.

(1)�A =

{{⟨
x, g−1

((
1 − �A(x)

)
g(�)

)
, h−1

(
�A(x)g(�)

)⟩|x ∈ X
}
, � ∈ (0, 1){⟨

x, g−1
((

1 − �A(x)
)
g
(

1

�

))
, h−1

(
�A(x)g

(
1

�

))⟩
|x ∈ X

}
� ≥ 1

(2)

�� =

{(
g−1

((
1 − ��

)
g(�)

)
, h−1

(
��g(�)

))
, � ∈ (0, 1)(

g−1
((

1 − ��

)
g
(

1

�

))
, h−1

(
��g

(
1

�

)))
, � ≥ 1

which is the exponential operational law of IFNs based on 
Algebraic t-conorm and t-norm.

2. If g(t) = log
(

2−t

t

)
, then Eq. (2) reduces to

which is the exponential operational law of IFNs based on 
Einstein t-conorm and t-norm.

3. If g(t) = log
(

�+(1−�)t

t

)
, then Eq. (2) reduces to

which is the exponential operational law of IFNs based on 
Hamacher t-conorm and t-norm.

4. If g(t) = log
(

�-1

�t−1

)
, then Eq. (2) reduces to

which is the exponential operational law of IFNs based on 
Frank t-conorm and t-norm.

As we can see, the EOL-IFN-A has a lot to do with the 
original exponential operational law defined by Gou et al. 
[9]. That is to say, the latter is the specific form of the 

(3)�� =

⎧
⎪⎨⎪⎩

�
�1 - �� , 1 − ��� ), � ∈ (0, 1)��

1

�

�1 - ��

, 1 −
�

1

�

���
�
, � ≥ 1

(4)

�� =

⎧
⎪⎪⎨⎪⎪⎩

�
2�1 - ��

(2−�)1 - ��+�1 - ��
,
(2−(1−��))

�
- (1−��)

�

(2−(1−��))
�
+(1−��)

�

�
, � ∈ (0, 1)

�
2
�

1

�

�1 - ��

�
2−

�
1

�

��1 - ��
+
�

1

�

�1 - ��
,
(2−(1−��))(

1
� )−(1−��)(

1
� )

(2−(1−��))(
1
� )+(1−��)(

1
� )

�
, � ≥ 1

(5)�� =

⎧
⎪⎨⎪⎩

�
��1 - ��

1+(�−1)(1−�)1 - ��+(�−1)�1 - ��
,

(1+(�−1)(1−�))��−���

(1+(�−1)(1−�))��+(�−1)���

�
, � ∈ (0, 1)�

�

�
1

�

�1 - ��

1+(�−1)
�
1−

�
1

�

��1 - ��
+(�−1)

�
1

�

�1 - ��
,

�
1+(�−1)

�
1−

�
1

�

�����
−
�

1

�

���

�
1+(�−1)(1−�)

�
1

�

����
+(�−1)

�
1

�

���

�
, � ≥ 1

(6)�� =

⎧
⎪⎪⎨⎪⎪⎩

�
log�

�
1 +

(��−1)
1−��

(�−1)−��

�
, 1 −

�
log�

�
1 +

(��−1)
��

(�−1)��−1

��
, � ∈ (0, 1)

⎛⎜⎜⎝
log�

⎛⎜⎜⎝
1 +

�
�(

1
� )−1

�1−��

(�−1)−��

⎞⎟⎟⎠
, 1 −

⎛⎜⎜⎝
log�

⎛⎜⎜⎝
1 +

�
�(

1
� )−1

���

(�−1)��−1

⎞⎟⎟⎠

⎞⎟⎟⎠
, � ≥ 1

Compared to the exponential operational law given in 
Ref. [9], our exponential operational law (2) is more gen-
eral and comprehensive. If we assign some specific forms 

to the function g, then we can get different forms of �� 
based on the well-known t-conorms and t-norms:

1. If g(t) = − log (t), then Eq. (2) reduces to
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former when Algebraic t-conorm and t-norm are assigned. 
In fact, some frequently-used forms of operational laws of 
IFNs can be obtained by those operational laws expressed 
by Archimedean t-conorm and t-norm.

Let �i =
(
��i

, ��i

)
(i = 1, 2) be two IFNs, � and k be 

two real numbers, then we can get some operational formu-
las based on Definition 3.2 and Theorem 2.2. In what fol-
lows, we only consider the situation where � ∈ (0, 1), and 
the expressions can be similarly deduced when � ≥ 1.

1. 𝜆𝛼1 ⊕ 𝜆𝛼2 =
(
h−1

(
h
(
g−1

((
1 − 𝜇𝛼1

)
g(𝜆)

))
+h

(
g−1

((
1 − ��2

)
g(�)

)))
, g−1

(
g
(
h−1

(
��1g(�)

))
+g

(
h−1

(
��2g(�)

))))
;

2. 𝜆𝛼1 ⊗ 𝜆𝛼2 =
(
g−1

(
2 − 𝜇𝛼1

− 𝜇𝛼2

)
g(𝜆),

h−1
((
��1 + ��2

)
g(�)

))
;

3. 𝜆𝛼1⊕𝛼2 =
(
g−1

((
g−1

(
h
(
𝜇𝛼1

)
+ h

(
𝜇𝛼2

)))
g(𝜆)

)
,

h−1
(
g−1

(
g
(
��1

)
+ g

(
��2

))
g(�)

))
;

4. 𝜆𝛼1⊗𝛼2 =
(
g−1

((
h−1

(
g
(
𝜇𝛼1

)
+ g

(
𝜇𝛼2

)))
g(𝜆)

)
, h−1(

h−1
(
h
(
��1

)
+ h

(
��2

))
g(�)

))
;

5. k�� =
(
h−1

(
kh
(
g−1

((
1 − ��

)
g(�)

)))
, g−1

(
kg
(
h−1(

��g(�)
))))

.

3.2  Some basic properties of EOL-IFN-As

Theorem  3.1 Let �1 =
(
��1

, ��1

)
 and �2 =

(
��2

, ��2

)
 be 

two IFNs, � ∈ (0, 1), then

(1) 𝜆𝛼1 ⊕ 𝜆𝛼2 = 𝜆𝛼2 ⊕ 𝜆𝛼1; (2) 𝜆𝛼1 ⊗ 𝜆𝛼2 = 𝜆𝛼2 ⊗ 𝜆𝛼1.

Theorem  3.2 Let �i =
(
��i

, ��i

)
(i = 1, 2, 3) be three 

IFNs, � ∈ (0, 1), then

(1) (𝜆𝛼1 ⊕ 𝜆𝛼2)⊕ 𝜆𝛼3 = 𝜆𝛼1 ⊕ (𝜆𝛼2 ⊕ 𝜆𝛼3); (2) (𝜆𝛼1⊗

𝜆𝛼2 )⊗ 𝜆𝛼3 = 𝜆𝛼1 ⊗ (𝜆𝛼2 ⊗ 𝜆𝛼3 ).

Theorem  3.3 Let �1 =
(
��1

, ��1

)
 and �2 =

(
��2

, ��2

)
 be 

two IFNs, � ∈ (0, 1), k > 0, then

(1) k(𝜆𝛼1 ⊕ 𝜆𝛼2 ) = k𝜆𝛼1 ⊕ k𝜆𝛼2; (2) (𝜆𝛼1 ⊗ 𝜆𝛼2)
k =

(𝜆𝛼1)
k ⊗ (𝜆𝛼2)

k.
In Theorem  3.3, we only have two EOL-IFN-As ��1 
and ��2, we can extend (1) and (2) of Theorem  3.3 to 
the general forms with a collection of n EOL-IFN-As 
��1 , ��2 ,… , ��n:

k(𝜆𝛼1 ⊕ 𝜆𝛼2 ⊕⋯⊕ 𝜆𝛼n ) = k𝜆𝛼1 ⊕ k𝜆𝛼2 ⊕⋯⊕ k𝜆𝛼n

(𝜆𝛼1 ⊗ 𝜆𝛼2 ⊗⋯⊗ 𝜆𝛼n)k = (𝜆𝛼1 )k ⊗ (𝜆𝛼2)k ⊗⋯⊗ (𝜆𝛼n)k.

Theorem 3.4 Let � =
(
�� , ��

)
 be an IFN, � ∈ (0, 1), and 

k1, k2 > 0, then

(1) k1𝜆
𝛼 ⊕ k2𝜆

𝛼 =
(
k1 + k2

)
𝜆𝛼; (2) (𝜆𝛼)

k1 ⊗ (𝜆𝛼)
k2 =

(��)
k1+k2.

Similar to Theorem 3.3, we can further extend (1) and 
(2) to the following general forms:

k1𝜆
𝛼 ⊕ k2𝜆

𝛼 ⊕⋯⊕ kn𝜆
𝛼 =

(
k1 + k2 +⋯ kn

)
𝜆𝛼 a n d 

(𝜆𝛼)k1 ⊗ (𝜆𝛼)k2 ⊗⋯⊗ (𝜆𝛼)kn = (𝜆𝛼)k1+k2+⋯+kn.

Theorem 3.5 Let � =
(
�� , ��

)
 be an IFN, if �1 ≥ �2, then 

we can get

(1) 
(
�1
)�

≥
(
�2
)�, if �1, �2 ∈ (0, 1); (2) 

(
�1
)�

≤
(
�2
)�, if 

�1, �2 ≥ 1.
Proof When �1, �2 ∈ (0, 1), based on the EOL-IFN-As, 
we know.

�1
� =

(
g−1

((
1 − ��

)
g
(
�1
))
, h−1

(
��g

(
�1
)))

 and �2� =(
g−1

((
1 − ��

)
g
(
�2
))
, h−1

(
��g

(
�2
)))

.
It is obvious that Archimedean t-norm is a strictly 

decreasing function g:[0, 1] → [0,∞], and Archimedean 
t-conorm is a strictly increasing function h:[0, 1] → [0,∞]. 
It’s easy to prove that the function g−1(x) is strictly 
decreasing and h−1(x) is strictly increasing. Therefore, if 
�1, �2 ∈ (0, 1) and �1 ≥ �2, then we have g

(
�1
)
≤ g

(
�2
)
. 

Thus

Similarly, we can also prove.

Combining Eqs. (7) and (8), we get s
((
�1
)�)

≥ s
((
�2
)�)

. 
Therefore, we conclude that if �1, �2 ∈ (0, 1), then (
�1
)�

≥
(
�2
)�
.

However, when �1, �2 ≥ 1 and �1 ≥ �2, we can obtain 
0 < 1∕𝜆1 ≤ 1∕𝜆2 ≤ 1. Based on what we have discussed 
above, we can get 

(
�1
)�

≤
(
�2
)�. This completes the proof 

of the theorem.
Next, let’s take a look at some special values of ��:

1. If � = 1, then �� = (1, 0);
2. If � = (1, 0), then �� = (1, 0);
3. If � = (0, 1), then �� = (�, 1 − �).

3.3  The aggregation technique of EOL-IFN-As

Based on the EOL-IFS-As and their basic properties, we can 
get a novel aggregation operator:

Definition 3.3 Let �i =
(
��i

, ��i

)
(i = 1, 2, … , n) be 

a collection of IFNs, �i ∈ (0, 1) (i = 1, 2, … , n), and let 
AIFWEA:Θn

→ Θ. If

(7)g−1
((
1 − ��

)
g
(
�1
))

≥ g−1
((
1 − ��

)
g
(
�2
))

(8)h−1
(
��g

(
�1
))

≤ h−1
(
��g

(
�2
))



1265Int. J. Mach. Learn. & Cyber. (2018) 9:1261–1269 

1 3

then the function AIFWEA is called an Archimedean intu-
itionistic fuzzy weighted exponential aggregation (AIFWEA) 
operator, where �i(i = 1, 2,… , n) are the exponential weights 
of �i(i = 1, 2,… , n).

Now we prove the formula (9) by using the mathematical 
induction:

When n = 2, we have AIFWEA
(
𝛼1, 𝛼2

)
= 𝜆1

𝛼1 ⊗ 𝜆2
𝛼2.

According to Definition 3.2 and Theorem  2.2, 
AIFWEA

(
�1, �2

)
 can be written as:

Suppose that when n = k, the equation

holds and the aggregated value is also an IFN. Then when 
k = n + 1, by the operational laws in Sect. 3.1, we get

whose result is also an IFN, by which we can draw a con-
clusion that when k = n + 1, Eq.  (9) holds. Therefore, 
Eq. (9) holds for all n. The proof is completed.

Theorem  3.6 (Boundedness) Let �
i
=
(
��i

, ��i

)
(i = 1, 2,⋯ , n) and

(9)

AIFWEA
(
𝛼1, 𝛼2, … , 𝛼n

)
= 𝜆1

𝛼1 ⊗ 𝜆2
𝛼2 ⊗⋯⊗ 𝜆n

𝛼n

=

(
g−1

(
n∑
i=1

((
1 − 𝜇𝛼i

)
g
(
𝜆i
)))

, h−1

(
n∑
i=1

(
𝜈𝛼i g

(
𝜆i
))))

AIFWEA
(
𝛼1, 𝛼2

)
= 𝜆1

𝛼1 ⊗ 𝜆2
𝛼2 =

(
g−1

((
1 − 𝜇𝛼1

)
g
(
𝜆1
)

+
(
1 − 𝜇𝛼2

)
g
(
𝜆2
))
, h−1

(
𝜈𝛼1g

(
𝜆1
)
+ 𝜈𝛼2g

(
𝜆2
)))

AIFWEA
(
�1, �2,… , �k

)
=

(
g−1

(
k∑

i=1

((
1 − ��i

)
g
(
�i
)))

,

h−1

(
k∑

i=1

(
��i g

(
�i
))))

AIFWEA
(
𝛼1, 𝛼2,… , 𝛼k, 𝛼k+1

)
= AIFWEA

(
𝛼1, 𝛼2,… , 𝛼k

)
⊗ 𝜆k+1

𝛼k+1

=

(
g−1

(
k+1∑
i=1

((
1 − ��i

)
g
(
�i
)))

, h−1

(
k+1∑
i=1

(
��i g

(
�i
))))

�min =
(
min
i

{
��i

}
, max

i

{
��i

})
, �max =

(
max

i

{
��i

}
, min

i

{
��i

})

�+ = AIFWEA
(
�max, �max,⋯ , �max

)

=

(
g−1

(
n∑
i=1

((
1 −max

i

{
��i

})
g
(
�i
)))

,

h−1

(
n∑
i=1

(
min
i

{
��i

}
g
(
�i
))))

then �− ≤ AIFWEA
(
�1, �2,⋯ , �n

)
≤ �+.

Proof Since

and the values of the functions g(x) and h(x) should be 
no less than 0, then g

(
�i
)
≥ 0, and for any i = 1, 2, ⋯ , n, 

we have

By adding n inequalities, where the value of i increases 
from 1 to n by 1 each time, we get

According to Definition 2.5, we know that g−1(x) 
is a strictly decreasing function and h−1(x) is a strictly 
increasing function, then the following four inequalities 
hold:

�− = AIFWEA
(
�min, �min,⋯ , �min

)

=

(
g−1

(
n∑
i=1

((
1 −min

i

{
��i

})
g
(
�i
)))

,

h−1

(
n∑
i=1

(
max

i

{
��i

}
g
(
�i
))))

1 −min
i

{
��i

}
≥ 1 − ��i

, max
i

{
��i

}
≥ ��i

and 1 −max
i

{
��i

}
≤ 1 − ��i

, min
i

{
��i

}
≤ ��i

(
1 −min

i

{
��i

})
g
(
�i
)
≥
(
1 − ��i

)
g
(
�i
)
, max

i

{
��i

}
g
(
�i
)
≥ ��i g

(
�i
)

(
1 −max

i

{
��i

})
g
(
�i
)
≤
(
1 − ��i

)
g
(
�i
)
, min

i

{
��i

}
g
(
�i
)
≤ ��i g

(
�i
)

n∑
i=1

((
1 −min

i

{
��i

})
g
(
�
i

))
≥

n∑
i=1

((
1 − ��i

)
g
(
�
i

))
,

n∑
i=1

(
max

i

{
��i

}
g
(
�
i

))
≥

n∑
i=1

(
��i g

(
�
i

))

n∑
i=1

((
1 −max

i

{
��i

})
g
(
�
i

))
≤

n∑
i=1

((
1 − ��i

)
g
(
�
i

))
,

n∑
i=1

(
min
i

{
��i

}
g
(
�
i

))
≤

n∑
i=1

(
��i g

(
�
i

))

g−1

(
n∑
i=1

((
1 −min

i

{
��i

})
g
(
�i
)))

≤ g−1

(
n∑
i=1

((
1 − ��i

)
g
(
�i
)))

,

h−1

(
n∑
i=1

(
max

i

{
��i

}
g
(
�i
)))

≥ h−1

(
n∑
i=1

(
��i g

(
�i
)))

g−1

(
n∑
i=1

((
1 −max

i

{
��i

})
g
(
�i
)))

≥ g−1

(
n∑
i=1

((
1 − ��i

)
g
(
�i
)))

,

h−1

(
n∑
i=1

(
min
i

{
��i

}
g
(
�i
)))

≤ h−1

(
n∑
i=1

(
��i g

(
�i
)))
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Since

then based on the score function s(�) = �� − �� , we can get 
the conclusion that s(�−) ≤s

(
AIFWEA

(
�1, �2,… , �n

))
. 

In a similar way, we can easily prove 
s
(
AIFWEA

(
�1, �2,… , �n

))
≤ s

(
�+

)
. Thus, Theorem  3.6 

holds, which completes the proof.

Theorem  3.7 (Monotonicity) Let �
i
=
(
��i

, ��i

)
(i = 1, 2, … , n) and �∗

i
=
(
��∗

i
, ��∗

i

)
(i = 1, 2, ⋯ , n) be 

two collections of IFNs, if ��i
≤ ��∗

i
 and ��∗

i
≤ ��i, for any i. 

Then

Proof Since

1 − ��
i
≥ 1 − ��∗

i

→

n∑
i=1

((
1 − ��

i

)
g
(
�
i

))

≥

(
n∑
i=1

((
1 − ��∗

i

)
g
(
�
i

)))
→ g

−1

(
n∑
i=1

((
1 − ��

i

)
g
(
�
i

)))

≤ g
−1

(
n∑
i=1

((
1 − ��∗

i

)
g
(
�
i

)))

��∗
i

≤ ��i → ��∗
i

g
�
�
i

�
≤ ��i g

�
�
i

�
→

n∑
i=1

�
��∗

i

g
�
�
i

��
≤

n∑
i=1

�
��i g

�
�i
��

→ h−1
�

n∑
i=1

�
��∗

i
g
�
�i
���

≤ h−1
�

n∑
i=1

�
��i

g
(
�
i

)))

then the score functions of IFNs � and �∗ are

�− = AIFWEA
(
�min, �min,⋯ , �min

)

=

(
g−1

(
n∑
i=1

((
1 −min

i

{
��i

})
g
(
�i
)))

,

h−1

(
n∑
i=1

(
max

i

{
��i

}
g
(
�i
))))

AIFWEA
(
�1, �2,⋯ , �n

)
=

(
g−1

(
n∑
i=1

((
1 − ��i

)
g
(
�i
)))

,

h−1

(
n∑
i=1

(
��i g

(
�i
))))

(10)
AIFWEA

(
�1, �2, … , �n

)
≤ AIFWEA

(
�∗
1
, �∗

2
, … , �∗

n

)

s(�) = g−1

(
n∑
i=1

((
1 − ��i

)
g
(
�i
)))

− h−1

(
n∑
i=1

(
��i g

(
�i
)))

,

s(�∗) = g−1

(
n∑
i=1

((
1 − ��∗

i

)
g
(
�i
)))

− h−1

(
n∑
i=1

(
��∗

i
g
(
�i
)))

With the inequalities

we know s(�) ≤ s(�∗), based on which we can see that 
Eq. (10) holds.

4  The application of the EOL-IFN-As 
and the AIFWEA operator

In this section, we apply the AIFWEA operator to develop 
a MCDM method, which involves the following steps:Step 
1 Consider a MCDM problem, there are m alternatives 
Yi(i = 1, 2, … , m) and n criteria Gj(j = 1, 2, … , n). The 
decision maker constructs the decision matrix R =

(
�ij
)
m×n

, 
where �ij represents the degree that the decision maker pre-
fers the alternative Yi with respect to the criterion Gj. More-
over, the weights of the criteria are expressed as the IFNs 
�j =

(
��j

, ��j

)
(j = 1, 2, … , n), where �� j

 indicates the 

degree that the decision maker prefers the criterion Gj, and 
v� j

 indicates the degree that the decision maker does not 

prefers the criterion Gj.
Step 2 Transform the decision matrix R =

(
�ij
)
m×n

 into 
the normalized decision matrix D =

(
�ij
)
m×n

, where

Step 3 Utilize the AIFWEA operator to aggregate the 
characteristics �ij(i = 1, 2, … , m, j = 1, 2, … , n) and 
the IFNs �j =

(
��j

, ��j

)
( j = 1, 2, … , n) to get the overall 

value di = AIFWEA
(
�1, �2, … , �n

)
 of each alternative Yi.

Step 4 Utilize the score function to calculate the 
scores s

(
di
)
(i = 1, 2, … , m) of the overall val-

uesdi(i = 1, 2, … , m), which also represent the scores of 
the alternatives Yi(i = 1, 2, … , m).

Step 5 Utilize the scores s
(
di
)
(i = 1, 2, … , m) to rank 

and select the alternatives Yi(i = 1, 2, … , m). If two alter-
natives Yk1 and Yk2 have the same scores, we have to calcu-
late the accuracy degrees h

(
dk1

)
 and h

(
dk2

)
 of these two 

alternatives. Then we rank the alternatives Yk1 and Yk2 by 
h
(
dk1

)
 and h

(
dk2

)
.

Example 4.1 Two past eight on April 20th, 2013, a vio-
lent earthquake occurred in Lushan County of Sichuan 
Province, Ya’an city. Most buildings in Longmen Town, 
the epicenter of the quake, collapsed and caused great dam-
age. After the rescue operation, with the great leadership 

g−1

(
n∑
i=1

((
1 − ��i

)
g
(
�i
)))

≤ g−1

(
n∑
i=1

((
1 − ��∗

i

)
g
(
�i
)))

,

h−1

(
n∑
i=1

(
��∗

i
g
(
�i
)))

≤ h−1

(
n∑
i=1

(
��i g

(
�i
)))

�ij =

{
�ij, for benifit attribute Gj

1 − �ij, for cost attribute Gj

, i = 1, 2, … , m, j = 1, 2, … , n
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of China central government and the State Council and the 
help from all circles of the society, post-earthquake recon-
struction goes well.

Now, the local government plans to build a new library 
for a middle school in Longmen town. Four construction 
companies present their designs and compete against each 
other for reaching the construction project. We have to 
choose the best design among those four designs.

A high level of earthquake resistance is strictly required 
and all these four designs perfectly meet the requirement. 
Besides, after discussion, four criteria are chosen to evalu-
ate these designs of library.

G1: Energy conservation and environmental protec-
tion, which mean that the library should be environmental 
friendly and save energy as much as possible. For example, 
the library should take the most advantage of the natural 
daylight instead of totally depending on the lamps.

G2: Functional and humanized, which require that the 
library should have complete and specific function zones 
in good architectural compositions. Those function zones 
don’t interact each other. Otherwise, the design would con-
sider the rationality of landscape with humanization design.

G3: Advanced building technique. It requires that the 
design should have a rational structure and construction 
scheme, which leads to a stronger and more sustainable 
building. With an advanced building technique, the build-
ing will be more accessible for erection and construction.

G4: Cost, which requires that the budget of the whole 
program should be reasonable and acceptable.

After carefully evaluating all the alternatives, the 
experts give the degrees that they prefer the alterna-
tives Yi (i = 1, 2, 3, 4) with respect to the criteria 
Gj (j = 1, 2, 3, 4) in some real numbers ranging from 0 to 
1 as shown in Table 1.

Meanwhile, the weight vector of all criteria is given as 
� = ((0.4, 0.4), (0.7, 0.2), (0.3, 0.5), (0.5, 0.4)).

In those four given criteria, the criterion G4 (cost) is a 
cost criterion, so we have to transform the decision matrix 
R =

(
�ij
)
m×n

 into the normalized decision matrix as follows 
(Table 2):

If we choose the AIFWEA operator based on Alge-
braic t-conorm and t-norm, in which g(t) = − log t, and 
h(t) = − log (1 − t), then the AIFWEA operator reduces to 
the IFWEA operator [9]:

Thus, the aggregated value of the alternative Y1 can be 
computed by

In the same way, we can easily get other aggregated 
values:

Then, we utilize the score function to calculate the 
scores of the aggregated values of those four alternatives:

After that, we rank the scores of those four crite-
ria, by which we get the ranking of the alternatives: 
Y1 > Y3 > Y4 > Y2. That is to say, the alternative Y1 is the 
best one.

If we can choose other forms of t-conorm and t-norm, it 
may lead to a different aggregated values. For example, if 
we choose the AIFWEA operator based on Einstein 
t-conorm and t-norm, we have g(t) = log

(
2−t

t

)
 and 

h(t) = log
(

2-(1-t)

1−t

)
. The aggregated value of the alternative 

Y1 can be computed by

IFWEA
(
�1, �2, … , �n

)
=

(
n∏
i=1

�i
1−��i , 1 −

n∏
i=1

�i
��i

)

d1 = IFWEA
(
�1, �2, �3, �4

)
=

(
4∏
i=1

�1i
1−��i , 1 −

4∏
i=1

�1i
��i

)

= (0.58320, 0.32076)

d2 = (0.51916, 0.37390), d3 = (0.54919, 0.35043),

d4 = (0.53012, 0.36555)

s
(
d1

)
= 0.26244, s

(
d2

)
= 0.14526,

s
(
d3

)
= 0.19876, s

(
d4

)
= 0.16457.

d1 = IFWEA
�
�1, �2, �3, �4

�

=

⎛⎜⎜⎜⎜⎜⎝

2

4∏
i=1

�
2−�1i

�1i

�1−��i

+ 1

, 1 −
2

4∏
i=1

�
2−�1i

�1i

���i
+ 1

⎞⎟⎟⎟⎟⎟⎠
= (0.55879, 0.32730)

Table 1  Intuitionistic fuzzy decision matrix

�ij G1 G2 G3 G4

Y1 0.8 0.6 0.9 0.3
Y2 0.7 0.7 0.8 0.3
Y3 0.7 0.8 0.6 0.2
Y4 0.8 0.9 0.6 0.2

Table 2  Normalized intuitionistic fuzzy decision matrix

�ij G1 G2 G3 G4

Y1 0.8 0.6 0.9 0.7
Y2 0.7 0.7 0.8 0.7
Y3 0.7 0.8 0.6 0.8
Y4 0.8 0.9 0.6 0.8
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In the same way, we can easily get the aggregated values 
of the other alternatives:

and then calculate the score values of the aggregated values 
of the criteria Yi (i = 1, 2, 3, 4):

According to the scores of those four criteria, the rank-
ing of the alternatives should be: Y1 > Y3 > Y4 > Y2. That 
is to say, the alternative Y1 is the best one.

Therefore, the AIFWEA operator provides a new way 
to aggregate intuitionistic fuzzy information and make 
decisions. As we can see from the above example, the 
AIFWEA operator and the traditional IFWG operator can 
be applied in different situations. In the situation where the 
weights are given by real numbers, and the degrees that the 
decision maker prefers the alternatives with respect to the 
criteria are expressed by IFNs, we can use the traditional 
IFWG operators to help make decisions. In the situation 
where the weights of criteria are given by IFNs, the degrees 
that the decision maker prefers the alternatives with respect 
to the criteria are given by real numbers, where the tradi-
tional aggregation operators are not capable, we can use the 
AIFWEA operator to help make decisions. The IFWG oper-
ator can’t replace the AIFWEA operator in the latter situ-
ation because they are the different aggregation functions. 
The AIFWEA operator is AIFWEA

(
𝛼1, 𝛼2,… , 𝛼

n

)
= 𝜆1

𝛼1⊗

𝜆2
𝛼2 ⊗⋯⊗ 𝜆

n

𝛼n
(
𝜆
i
∈ (0, 1), i = 1, 2, … , n

)
, and the  

IFWG operator is IFWG
(
𝛼1, 𝛼2,… , 𝛼

n

)
= 𝛼1

𝜆1⊗

𝛼2
𝜆2 ⊗⋯⊗ 𝛼

n
𝜆n

(
𝜆
i
∈ (0, 1), i = 1, 2, … , n

)
. As we can 

see, the positions of the weights and the characteristics are 
different, thus the meanings of aggregations are different. 
This unique characteristic makes the AIFWEA operator 
play an irreplaceable role in fuzzy information aggregation 
system.

5  Conclusions

In this paper, we have given the novel exponential opera-
tional laws, i.e., EOL-IFN-As and EOL-IFN-As, which 
construct the basic operational systems of IFSs and IFNs. 
Also we have investigated their properties and correla-
tions. Based on the EOL-IFN-As, we have developed the 
AIFWEA operator. Some specific cases of the AIFWEA 
operators have been developed, including Algebraic intui-
tionistic fuzzy weighted exponential aggregation operator 

d2 = (0.48080, 0.38923); d3 = (0.52312, 0.35714);

d4 = (0.49973, 0.37487)

s
(
d1

)
= 0.23149, s

(
d2

)
= 0.09157, s

(
d3

)
= 0.16598,

s
(
d4

)
= 0.12486

and Einstein intuitionistic fuzzy weighted exponential 
aggregation operator by assigning specific functions to 
t-conorm and t-norm. Moreover, these two new proposed 
aggregation operators also satisfy all the properties that 
the AIFWEA operator owns. Finally, we have used the 
AIFWEA operator to propose a MCDM method for solving 
the practical problems with intuitionistic fuzzy informa-
tion, and verified it by an illustrative example involving the 
section of designing scheme of the new library of a middle 
school.

Acknowledgements The authors would like to thank the editors 
and the anony- mous referees for their insightful and constructive 
comments and suggestions that have led to this improved version of 
the pa- per. The work was supported in part by the National Natural 
Science Foundation of China (Nos. 71571123, 71501135, 61273209 
and 71532007), the China Postdoctoral Science Foundation (No. 
2016T90863), and the Central University Basic Scientific Research 
Business Expenses Project (Nos. skgt201501 and skqy201649).

References

 1. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–356
 2. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 

20 87–96.
 3. Atanassov KT (1999) Intuitionistic Fuzzy sets. Theory and appli-

cations. Physica, Heidelberg
 4. Atanassov KT (1994) New operations defined over the intuition-

istic fuzzy sets. Fuzzy Sets Syst 61(2) 137–142.
 5. S.K. De, R. Biswas, A.R. Roy. Some operations on intuitionistic 

fuzzy sets. Fuzzy sets and Systems 114 (2000) 477–484.
 6. Xu ZS, Yager RR (2006) Some geometric aggregation operators 

based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433
 7. Xu ZS (2007) Intuitionistic fuzzy aggregation operations. IEEE 

Trans Fuzzy Syst 15:1179–1187
 8. Xu ZS (2012) Intuitionistic fuzzy aggregation and clustering. 

Studies in Fuzziness and Soft Computing, Springer
 9. Gou XJ, Xu ZS, Lei Q (2016) New operational laws and aggre-

gation method of intuitionistic fuzzy information. J Intell Fuzzy 
Syst 30:129–141

 10. Gou XJ, Xu ZS, Liao HC (2016) Exponential operations of 
interval-valued intuitionistic fuzzy numbers. Int J Mach Learn 
Cybern 7(3):501–518

 11. Gou XJ, Xu ZS (2017) Exponential operations for intuitionistic 
fuzzy numbers and interval numbers in multi-attribute decision 
making. Fuzzy Optim Decis Making 16(2):183–204

 12. Zhang X, Liu PD, Wang YM (2015) Multiple attrib-
ute group decision making methods based on intuitionistic 
fuzzy frank power aggregation operators. J Intell Fuzzy Syst 
29(5):2235–2246

 13. Liu PD, Teng F (2016) Multiple criteria decision making method 
based on normal interval-valued intuitionistic fuzzy generalized 
aggregation operator. Complexity 21(5):277–290

 14. Liu P (2016) The aggregation operators based on Archimedean 
t-conorm and t-norm for single-valued neutrosophic numbers and 
their application to decision making. Int J Fuzzy Syst 18(5):1–15

 15. Liu PD, Li YH, Chen YH (2015) Some generalized Einstein 
aggregation operators based on the interval-valued intuitionistic 
fuzzy numbers and their application to group decision making. 
Scientia Iranica-E 22(6):2684–2701



1269Int. J. Mach. Learn. & Cyber. (2018) 9:1261–1269 

1 3

 16. Xu ZS, Cai X (2012) Intuitionistic fuzzy information aggrega-
tion. Theory and Applications. Psychol Med 35(1):89–99

 17. Xu ZS (2010) A method based on distance measure for inter-
val-valued intuitionistic fuzzy group decision making. Inf Sci 
180(1):181–190

 18. Joshi D, Kumar S (2014) Intuitionistic fuzzy entropy and dis-
tance measure based TOPSIS method for multi-criteria decision 
making. Egypt Inform J 15(2):97–104

 19. Szmidt E, Kacprzyk J (2000) Distances between intuitionistic 
fuzzy sets. Fuzzy Sets Syst 114(3):505–518

 20. Ye J (2010) Fuzzy decision-making method based on the 
weighted correlation coefficient under intuitionistic fuzzy envi-
ronment. Eur J Oper Res 205(1):202–204

 21. Yuan Y, Guan T, Yan XB, Li YJ (2014) Multi-criteria decision 
making model based on interval-valued intuitionistic fuzzy num-
ber correlation coefficient. J Manag Sci China 17(4):11–18

 22. Wei GW, Wang HJ, Lin R (2011) Application of correlation 
coefficient to interval-valued intuitionistic fuzzy multiple attrib-
ute decision-making with incomplete weight information. Knowl 
Inf Syst 26(2):337–349

 23. Robinson J, Amirtharaj H (2015) Methods of intuitionistic 
fuzzy correlation in group decision making.  An application to 
MAGDM problems, LAP LAMBERT

 24. Xu ZS, Liao HC (2015) A survey of approaches to decision mak-
ing with intuitionistic fuzzy preference relations. Knowl Based 
Syst 80(C):131–142

 25. Gong ZW, Li LS, Forrest J, Zhao Y (2011) The optimal prior-
ity models of the intuitionistic fuzzy preference relation and their 
application in selecting industries with higher meteorological 
sensitivity. Exp Syst Appl 38(4):4394–4402

 26. Liao HC, Xu ZS (2014) Priorities of intuitionistic fuzzy prefer-
ence relation based on multiplicative consistency. IEEE Trans 
Fuzzy Syst 22(6):1669–1681

 27. Xu ZS, Cai X (2008) Dynamic intuitionistic fuzzy multi-attrib-
ute decision making. Int J Approx Reason 48(1):246–262

 28. Tan M, Shi Y, Zhan J, Yang JC (2015) Dynamic multi-criteria 
decision making model based on interval-valued intuitionistic 
fuzzy sets. Fire Control Command Control 40(12):36–39

 29. Chen W, Yang ZL, Zhou W, Chen H (2016) Dynamic intuition-
istic fuzzy compromise decision making method based on time 
degrees. Oper Res Manag Sci 25(2):83–89

 30. Cornelis C, Deschrijver G, De Cock M (2002) Intuitionistic 
fuzzy relational calculus: An overview Intelligent Systems, 2002. 
In: Proceedings. 2002 First International IEEE Symposium 1, pp 
340–345

 31. Lei Q, Xu ZS (2015) Fundamental properties of intuitionistic 
fuzzy calculus. Knowl Based Syst 76:1–16

 32. Ganesan G, Satish BNV (2014) Approximations on intuitionistic 
fuzzy predicate calculus through rough computing. J Intell Fuzzy 
Syst 27(4):1873–1879

 33. Wang JQ, Nie R, Zhang HY, Chen XH (2013) New operators on 
triangular intuitionistic fuzzy numbers and their applications in 
system fault analysis. Inf Sci 251(12):79–95

 34. Mahmood YA, Ahmadi A, Verma AK, Srividya A, Kumar U 
(2013) Fuzzy fault tree analysis: a review of concept and applica-
tion. Int J Syst Assur Eng Manag 4(1):19–32

 35. Tan C, Yi W, Chen X (2015) Generalized intuitionistic fuzzy 
geometric aggregation operators and their application to multi-
criteria decision making. J Oper Res Soc 66(11):1919–1938

 36. Wang JQ, Han ZQ, Zhang HY (2014) Multi-criteria group deci-
sion-making method based on intuitionistic interval fuzzy infor-
mation. Group Decis Negot 23(4):715–733

 37. Peng JJ, Wang JQ, Wu XH, Zhang HY, Chen XH (2015) The 
fuzzy cross-entropy for intuitionistic hesitant fuzzy sets and 
their application in multi-criteria decision-making. Int J Syst Sci 
46(13):2335–2350

 38. Wang J, Li KJ, Zhang HY (2014) Multi-criteria decision-making 
method based on normal intuitionistic fuzzy-induced generalized 
aggregation operator. TOP 22:1103–1122

 39. Chen TY (2015) The inclusion-based TOPSIS method with 
interval-valued intuitionistic fuzzy sets for multiple criteria 
group decision making. Appl Soft Comput 26:57–73

 40. Wang C, Wang J (2015) A multi-criteria decision-making 
method based on triangular intuitionistic fuzzy preference infor-
mation. Intell Autom Soft Comput 22(3):1–10

 41. Yager RR (1988) On ordered weighted averaging aggregation 
operators in multi-criteria decision making. IEEE Trans Syst 
Man Cybern 18:183–190

 42. Tzeng GH, Huang JJ (2011) Multiple attribute decision mak-
ing: methods and applications. Lect Notes Econ Math Syst 
375:1–531.

 43. Zhou H, Wang J, Li XE, Wang JQ (2015) Intuitionistic hesitant 
linguistic sets and their application in multi-criteria decision-
making problems. Oper Res Int J 16(1):131–160

 44. Tian ZP, Wang J, Zhang HY, Wang JQ (2016) Multi-criteria 
decision-making based on generalized prioritized aggrega-
tion operators under simplified neutrosophic uncertain lin-
guistic environment. Int J Mach Learn Cybern. doi:10.1007/
s13042-016-0552-9

 45. Liu PD, Wang YM (2014) Multiple attribute group decision 
making methods based on intuitionistic linguistic power general-
ized aggregation operators. Appl Soft Comput 17(4):90–104

 46. Nguyen NT, Kreinovich V, Wojciechowski P (1997) Strict Archi-
medean t -norms and t -conorms as universal approximators. Int 
J Approx Reason 18(3–4):239–249

 47. Dudziak U (2013) Preservation of t-norm and t-conorm based 
properties of fuzzy relations during aggregation process[C]. In: 
Conference of the European Society for Fuzzy Logic and Tech-
nology. Atlantis Press, pp 376–383

 48. Lei Q, Xu ZS, Bustince H, Fernande J (2015) Intuitionistic fuzzy 
integrals based on Archimedean t-conorms and t-norms. Inf Sci 
327(C):57–70

 49. Xu ZS (2008) Intuitionistic fuzzy aggregation operators. IEEE 
Trans Fuzzy Syst 14(6):1179–1187

 50. Xia MM, Xu ZS, Zhu B (2012) Some issues on intuitionistic 
fuzzy aggregation operators based on Archimedean t-conorm 
and t-norm. Knowl Based Syst 31:78–88

https://doi.org/10.1007/s13042-016-0552-9
https://doi.org/10.1007/s13042-016-0552-9

	Exponential operational laws and new aggregation operators of intuitionistic Fuzzy information based on Archimedean T-conorm and T-norm
	Abstract 
	1 Introduction
	2 Preliminaries
	3 Exponential operational law of IFNs based on Archimedean t-conorm and t-norm
	3.1 Novel exponential operational laws
	3.2 Some basic properties of EOL-IFN-As
	3.3 The aggregation technique of EOL-IFN-As

	4 The application of the EOL-IFN-As and the AIFWEA operator
	5 Conclusions
	Acknowledgements 
	References


