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1  Introduction

In recent years, frequent major accidents during coal min-
ing have attracted public attention and aroused extensive 
social concern. The scientific implementation of safety 
evaluations for coal mines represents a vital opportunity 
for effectively reducing coal mine accidents and achieving 
stable improvements in the working conditions in mines. A 
safety evaluation of coal mines involves comprehensively 
evaluating risks and ranking the extant projects. Because 
each coal mine can be characterized under multiple evalu-
ation criteria, such as geological conditions, environmen-
tal security, technological advancement, and management 
quality, it is difficult for evaluators to make appropriate 
judgments about safety without applying scientific meth-
ods. Multi-criteria decision-making (MCDM) methods are 
therefore useful tools to assist in the safety evaluation of 
coal mines, and some MCDM methods have been specifi-
cally developed to address these problems [1, 2].

As society has evolved, decision-making problems have 
become more complex, such that it is now difficult for 
decision-makers to express specific preferences or opinions 
under uncertain and fuzzy environments, like in coal mine 
safety evaluation problems. To deal with fuzzy informa-
tion, Zadeh [3] proposed fuzzy sets (FSs), which are now 
considered to be a useful tool in solving decision-making 
problems [4, 10, 25]. However, in some cases, the mem-
bership degree alone cannot describe information with suf-
ficient precision. In order to address this issue, Atanassov 
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[5] introduced intuitionistic fuzzy sets (IFSs), which meas-
ure both membership degree and non-membership degree. 
Since their introduction, IFSs have been researched in 
great detail, and some extensions have been developed and 
applied to MCDM problems [6, 7, 23, 54]. Torra and Naru-
kawa [8] first introduced the hesitant fuzzy sets (HFSs), an 
extension of traditional FSs that permits the membership 
degree of an element to be a set of several possible values 
in [0, 1]; the main purpose of HFSs is to model the uncer-
tainty produced by human doubt when eliciting information 
[9].

Although fuzzy set theory has been developed and gen-
eralized, the need to define an element’s membership or 
non-membership degrees as specific values in [0, 1] greatly 
confines its applications in many practical problems. There-
fore, the above classic fuzzy sets are limited to use in quan-
titative environments, and they are incapable of handling 
qualitative information. However, in most decision-mak-
ing environments, the best expression of decision-makers’ 
preferences or opinions naturally takes a linguistic form 
because of the complexity of problems and the inherent 
vagueness of human preferences. Linguistic variables [10] 
are valid tools because the use of linguistic information 
reinforces the flexibility and reliability of classical decision 
models [11].

In recent years, linguistic variables that take the values 
of words or sentences from natural or artificial languages 
have been studied extensively and applied in various fields 
[12–14]. Xu [15] defined operations and developed some 
aggregation operators for linguistic variables represented 
by a single linguistic term. Subsequently, Xu [16] pro-
posed uncertain linguistic variables (ULVs), which employ 
linguistic intervals rather than single linguistic values to 
depict fuzzy information; the use of a ULV suggests that 
the probabilities of all linguistic values in the interval are 
equal or obey a specific distribution [16–18]. Accompany-
ing the promotion of preliminary linguistic models, some 
extended linguistic concepts have been developed. Linguis-
tic sets consisting of several discrete linguistic terms have 
been proposed based on linguistic variables and HFSs, such 
as hesitant fuzzy linguistic term sets (HFLTSs) [19], hesi-
tant fuzzy linguistic sets (HFLSs) [20], linguistic hesitant 
fuzzy sets (LHFSs) [21], and multi-hesitant fuzzy linguis-
tic term sets (MHFLTSs) [22]. To improve the applicability 
of IFSs and accommodate them to complex and qualitative 
environments, Chen et  al. [23] proposed linguistic intui-
tionistic fuzzy numbers (LIFNs) by integrating linguistic 
models and IFSs. LIFNs simultaneously consider the lin-
guistic membership degree and linguistic non-membership 
degree, and they can effectively handle ambiguous and 
uncertain information.

Addressing decision-making problems with linguistic 
information implies the need for computing with words 

(CWW) [24, 25]. Several computational models have been 
developed to deal with linguistic information, and the pri-
mary ones are briefly described as follows. (1) One method 
involves the direct use of linguistic labels [15–18, 23, 26]; 
this method is easy to employ, but it cannot make the maxi-
mum use of the original information. (2) Another method 
represents linguistic information through fuzzy member-
ship functions that convert linguistic information into fuzzy 
sets, such as triangular fuzzy numbers, trapezoidal fuzzy 
numbers, and type-2 fuzzy sets [27, 28]. However, this 
method inevitably causes information loss and distortion 
during the transformation process. (3) Another method, 
developed based on cloud model, can precisely depict the 
fuzziness and randomness of qualitative concepts, and their 
application in decision-making problems can be found in 
lots of researches [29, 30, 36]. (4) One method introduced 
the 2-tuple linguistic representation model [31, 32], which 
reinforces the accuracy of linguistic computations while 
improving the fuzzy linguistic method by utilizing a sym-
bolic translation parameter [33, 34, 46, 47]. This method 
includes both a conversion process and an inverse conver-
sion process. Based on the elicitation of this idea and the 
numerical scale model of linguistic term sets [33, 46], and 
considering the shortcomings of previous linguistic meth-
ods, Wang et  al. [35] proposed linguistic scale functions 
(LSFs) to accommodate different semantic circumstances. 
LSFs are greatly flexible in addressing linguistic informa-
tion and can effectively avoid the loss and distortion of 
original information, and has been successfully applied in 
all kinds of linguistic models [7, 13, 21, 22, 36, 37].

Aggregation operators are important tools for facilitat-
ing information fusion in decision-making problems, and 
they represent a consistently active topic for research. Most 
aggregation operators suppose that the arguments are mutu-
ally independent; however, in many practical problems, 
aggregated values may be correlative. For example, in coal 
mine safety evaluation problems, environmental security 
may be affected by geological condition, and human diath-
esis may be affected by management level. To deal with 
these kinds of problems, interrelationships among criteria 
values must be considered, creating an opportunity to uti-
lize the Heronian mean (HM) operator [38]. Introduced by 
Beliakov et al. [38], the HM operator can capture the inter-
relationships among different aggregated arguments, mak-
ing it one of the most important information fusion tools 
applied in decision-making problems [39, 40].

Most existing aggregation operators are defined 
based on the algebraic product and algebraic sum; how-
ever, algebraic operations lack flexibility and robust-
ness. Frank operations [41], which are the generaliza-
tion of algebraic operations, can overcome this defect. 
Compared to algebraic operations, Frank operations are 
made to be more flexible through the introducing of a 
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parameter. In recent years, many scholars have studied 
Frank operations under fuzzy environments. Ji et al. [42] 
defined the single-valued neutrosophic Frank normalized 
prioritized Bonferroni mean aggregation operator. Zhang 
et  al. [43] proposed some intuitionistic fuzzy Frank 
power aggregation operators. Subsequently, Zhang [44] 
developed the interval-valued intuitionistic fuzzy Frank 
aggregation operators, and Qin et  al. [45] further pro-
posed some hesitant fuzzy Frank aggregation operators.

Based on the analysis above, the primary motivations 
for this paper are summarized as follows:

1.	 As established previously, LIFNs are helpful tools for 
decision-makers to present assessments under uncer-
tain or fuzzy environments. Thus, this paper introduces 
LIFNs as a mean to depict as fully as possible the com-
plex information involved in the process of evaluating 
safe coal mines.

2.	 Frank operations are more robust and flexible than 
other algebraic operations, but they have not been stud-
ied in the context of LIFNs. Therefore, this paper pro-
poses Frank operations for LIFNs.

3.	 Extant methods for evaluating coal mine safety cannot 
take into account the interrelationships among criteria 
values. In order to effectively evaluate coal mine safety, 
this paper proposes a linguistic intuitionistic aggrega-
tion operator based on the HM operator, thereby devel-
oping a comprehensive MCDM approach.

The rest part of this paper is organized as follows. In 
Sect.  2, some concepts are reviewed briefly. In Sect.  3, 
LIFNs is introduced, and the distance, comparison 
method and Frank operations of LIFNs are presented. 
In Sect.  4, a linguistic intuitionistic aggregation opera-
tor is developed, and some desirable properties and spe-
cial cases are discussed, and then, a method for address-
ing coal mine safety evaluation problems is described. 
In Sect.  5, a practical example of coal mine safety 
evaluation is used to verify the validity of the proposed 
method. A sensitivity analysis and a comparison analysis 
are then conducted. Finally, the conclusion is drawn in 
Sect. 6.

2 � Preliminaries

This section introduces some concepts, including lin-
guistic term sets, linguistic numerical scale models, 
intuitionistic fuzzy sets, and Frank operations, which are 
useful in the subsequent analysis.

2.1 � Linguistic term sets

Let S = {si|i = 0, 1, 2,⋯ , 2t} be a finite and completely 
ordered discrete term set with odd cardinality, where t is a 
nonnegative integer, and si represents a possible value for a 
linguistic variable. It is required that si and sj satisfy the fol-
lowing properties [10]: (1) The set is ordered si ≤ sj if and 
only if i ≤ j, and (2) The set obeys the negation operation 
neg(si) = sj if i + j = 2t.

The linguistic term set S is a discrete set, but a continu-
ous set is required to solve practical problems, especially in 
the process of aggregation operation. Xu [15] extended the 
discrete linguistic term set to its continuous form, which 
can be expressed as S̃ = {si|i ∈ k}, where k is a large posi-
tive real number, and si > sj if i > j. If si ∈ S, then si is the 
original linguistic term; otherwise, si is the virtual linguis-
tic term.

2.2 � Linguistic numerical scale models

The transformation from linguistic terms to numerical 
values requires the effective support of quantitative tools. 
Dong et  al. [33] first proposed the concept of numerical 
scale for a linguistic term set in order to accomplish this 
transformation. Subsequently, the numerical scale model 
was extended and applied widely in many fields [34, 
46–48]. Motivated by this idea, Wang et  al. [35] further 
proposed linguistic scale functions (LSFs) to convert lin-
guistic terms into real numbers, which have been improved 
based on psychological theory and prospect theory. In fact, 
each LSF can be regarded as a specific linguistic numerical 
scale model. In linguistic evaluation scales with increasing 
linguistic subscripts, the absolute deviation between any 
two adjacent linguistic subscripts may increase or decrease.

Definition 1 [33, 35]  Let si ∈ S be a linguistic term, 
in which S = {si|i = 0, 1, 2,⋯ , 2t}. If �i ∈ [0, 1] is a 
numerical value, then the LSF is mapped from si to �i
(i = 0, 1,⋯ , 2t), which is defined as follows:

where 0 ≤ 𝜃0 < 𝜃1 < ⋯ < 𝜃2t ≤ 1. In this situation, �i 
reflects the preference of decision-makers when they 
choose the linguistic term si, such that the function f  illus-
trates the semantics of si. A LSF is a strictly monotonously 
increasing function with respect to the subscript i. In the 
following, three kinds of LSFs are shown.

(1)f :si → �i(i = 0, 1,⋯ , 2t),
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1.	 The following LSF is defined based on the subscript 
function sub(si) = i:

The evaluation scale for the linguistic information 
presented above is divided evenly.

2.	 The following LSF is defined based on the exponential 
scale, and it is improved by comprehensively consider-
ing the real behavioral preference of decision-makers 
according to psychological theory:

Several researches have manifested the parameter a, 
which generally lies in the interval [1.36, 1.4] [49]. With 
the extension from the middle of the given linguistic 
term to both ends, the absolute deviation between adja-
cent linguistic terms also increases.

3.	 The following LSF is defined based on prospect theo-
ry’s value function, as well as the decision-makers’ dif-
ferent sensitivities with respect to the absolute devia-
tion between adjacent linguistic subscripts:

Several experiments have been done [50] to determine 
that � = � = 0.88. If � = � = 1, then LSF3 is reduced to 
LSF1. With the extension from the middle of the given 
linguistic term to both ends, the absolute deviation 
between adjacent linguistic terms decreases.

To preserve all of the given information and facili-
tate calculations, the above function can be extended to 
f ∗:S̃ → R+, where f ∗(si) = �i is a strictly monotonously 
increasing and continuous function. Therefore, the 
inverse function of f ∗ also exists, and it can be indicated 
as f ∗−1.

Recently, the linguistic numerical scale models have 
made additional progress. On the one hand, Dong et al. 
[51, 52] proved that they can provide a unified frame-
work to connect the traditional linguistic 2-tuples, vir-
tual linguistic model, proportional 2-tuples, and the 
model based on linguistic hierarchy. On the other hand, 
Li et al. [53] showed that the linguistic numerical scale 
models can support linguistic group decision making by 
providing a better semantic representation model to per-
sonalize individual semantics in CWW.

LSF1: f1(si) = �i =
i

2t
(i = 0, 1,⋯ , 2t).

LSF2: f2(si) = �i =

{
at−at−i

2at−2
(i = 0, 1, 2, ..., t)

at+ai−t−2

2at−2
(i = t + 1, t + 2, ..., 2t)

.

LSF3: f3(si) = �i =

{
t�−(t−i)�

2t�
(i = 0, 1, 2, ..., t)

t�+(i−t)�

2t�
(i = t + 1, t + 2, ..., 2t)

.

2.3 � Intuitionistic fuzzy sets

Definition 2 [5]  Let X be a universe of discourse; then, 
an IFS A in X can be defined as follows:

where uA:X → [0, 1] and vA:X → [0, 1] with 
0 ≤ uA(x) + vA(x) ≤ 1 for all x ∈ X. The functions uA 
and vA represent the membership degree and non-mem-
bership degree of x to A, respectively. Usually, �A(x) 
can be called the hesitation degree of x to A for x ∈ X if 
�A(x) = 1 − uA(x) − vA(x). When �A(x) = 0 for each x ∈ X, 
the IFS is reduced to a FS.

2.4 � Frank operations

Definition 3 [41]  Let a and b be two real numbers, which 
satisfy a, b ∈ [0, 1], and let � ∈ (1,+∞). Then, the Frank 
product ⊗F and Frank sum ⊕F between a and b can be 
defined as follows:

In addition, it can be easily proved that when � → 1, 
a⊕Fb → a + b − ab and a⊗Fb → ab. The Frank product 
and Frank sum reduce to the algebraic triangular norm and 
conorm, respectively.

3 � LIFNs and relevant concepts

In this section, the concept of LIFNs is introduced, and the 
distance for LIFNs is defined. Moreover, after discussing 
the drawbacks of existing method for comparing LIFNs, a 
valid ranking method for LIFNs is proposed. Subsequently, 
the novel linguistic intuitionistic operations is developed 
based on Frank operations and LSFs.

3.1 � Linguistic intuitionistic fuzzy numbers

Definition 4 [23]  Let su, sv ∈ S̃[0,2t], where 
S̃[0,2t] = S̃ = {si|0 ≤ i ≤ 2t} is a continuous linguistic term 
set, 2t is the maximal subscript of the linguistic term si in S̃, 
and � = (su, sv). If u + v ≤ 2t, then we call � the linguistic 
intuitionistic fuzzy number (LIFN), and su and sv represent 

(2)A =
�⟨x, uA(x), vA(x)⟩�x ∈ X

�
,

a⊕F b = 1 − log𝜆

(
1 +

(𝜆1−a − 1)(𝜆1−b − 1)

𝜆 − 1

)
,

a⊗F b = log𝜆

(
1 +

(𝜆a − 1)(𝜆b − 1)

𝜆 − 1

)
.



1057Int. J. Mach. Learn. & Cyber. (2018) 9:1053–1068	

1 3

the linguistic membership degree and linguistic non-mem-
bership degree, respectively. Moreover, if su, sv ∈ S, then � 
is an original LIFN; otherwise, � is a virtual LIFN.

3.2 � Distance for LIFNs

Definition 5  Let �1 = (su1 , sv1 ) and �2 = (su2 , sv2 ) be two 
arbitrary LIFNs, and su1 , sv1 , su2 , sv2 ∈ S̃[0,2t]. When f ∗(si) is 
a LSF, d is a mapping, and d: � × � → R+, the Hamming 
distance between �1 and �2 can be defined as

Property 1  The following properties of distance meas-
urement described in Definition 5 can be easily proved:

1.	 0 ≤ dH(�1,�2) ≤ 1,
2.	 dH(�1,�2) = dH(�2,�1),
3.	 If �3 is an arbitrary LIFN, then 

dH(�1,�3) ≤ dH(�1,�2) + dH(�2,�3).

3.3 � Comparison method for LIFNs

Definition 6 [23]  Let � = (su, sv) be an arbitrary LIFN. 
Then, the linguistic score index and accuracy index of � 
can be defined as S(�) = u − v,and H(�) = u + v.

Definition 7 [23]  Let �1 =
{
su1 , sv1

}
and �2 =

{
su2 , sv2

}
be 

two arbitrary LIFNs. Based on Definition 6, the method for 
comparing ϕ1 and ϕ2 can be given as follows:

1.	 if s(𝜙1) < s(𝜙2), then 𝜙1 < 𝜙2.

2.	 if s(�1) = s(�2), then the following hold:

1.	 if H(𝜙1) < H(𝜙2), then 𝜙1 < 𝜙2.

2.	 if H(�1) = H(�2), then �1 = �2.

However, the above comparison method for LIFNs has 
obvious disadvantages that cannot be ignored. First, the 
score index and accuracy index are calculated directly 
based on the subscripts of linguistic terms; this not 
only leads to the loss and distortion of original informa-
tion, but also cannot reveal critical distinctions in the 
final results under various semantic situations. Second, 
the comparison method outlined above cannot sepa-
rately make use of the score index or accuracy index to 
obtain final rankings in some situations. Instead, it needs 
to combine both of these indices to compare different 

(3)

dH(�1,�2) =
1

2

(|||f
∗(su1 ) − f ∗(su2 )

||| +
|||f

∗(sv1 ) − f ∗(sv2 )
|||

+
|||f

∗(s2t−u1−v1 ) − f ∗(s2t−u2−v2 )
|||
)

LIFNs, resulting in a loss of coherence to some extent. 
Third, for some particular LIFNs, the above comparison 
method cannot account for the objective influence of the 
indeterminacy degree, and it cannot produce reasonable 
rankings. This is demonstrated in Example 1.

Example 1  Let S = {s0 =extremely poor, s1 = very poor, 
s2 = poor, s3 = slightly poor, s4 = fair, s5 = slightly good, 
s6 = good, s7 = very good, s8 = extremely good} be a lin-
guistic term set. Further, let �1 = (s3.2, s0.8),�2 = (s4.8, s2.8),

�3 = (s4, s3.6), and �4 = (s2, s0.4) be four LIFNs. Then, their 
linguistic score index and linguistic accuracy index can be 
calculated as follows:

Based on Definition 7, there is 𝜙1 ≻ 𝜙2 ≻ 𝜙4 ≻ 𝜙3.

Obviously, the comparison method described in Defi-
nition 7 suggests that �1 is bigger than �2, and �4 is big-
ger than �3. Although the linguistic score index of �1 is 
bigger than that of �2, and the linguistic score index of �4 
is bigger than that of �3, the complete information con-
tained within �2(i.e. s4.8 + s2.8) is greater than that con-
tained within �1(i.e. s3.2 + s0.4), and the complete infor-
mation contained within �3(i.e. s4 + s3.6) is greater than 
that contained within �4(i.e. s2 + s0.4). Therefore, it is 
unreasonable to conclude that �1 is bigger than �2, or that 
�4 is bigger than �3.

For this reason, it is necessary to explore a more appro-
priate comparison method for LIFNs. Szmidt and Kacpr-
zyk [54] comprehensively accounted for the indeterminacy 
degree of IFNs and the distance in pursuing the positive 
ideal solution; ultimately, they proposed an effective rank-
ing method for IFNs. In the same way, a valid ranking 
method for LIFNs can be developed based on the distance 
measurement of LIFNs, which appropriately considers 
the indeterminacy degree of LIFNs and can overcome the 
drawbacks of the comparison method described in Defini-
tion 7.

Definition 8  Let � = (su, sv) be an arbitrary LIFN, where 
su, sv ∈ S̃[0,2t]. Further, let f ∗(si) be a LSF, P = (s2t, s0) be 
the positive ideal point, and dH(P,�) be the Hamming dis-
tance between P and �. Then, a measurement function for � 
can be defined as

Based on the above definition, it is obvious that the 
smaller R(�) is, the better � is.

S(�1) = 2.4, S(�2) = 2, S(�3) = 0.4, and S(�4) = 1.6;

H(�1) = 4,H(�2) = 7.6,H(�3) = 7.6, and H(�4) = 2.4.

(4)R(�) = 0.5(1 + f ∗(s2t−u−v))dH(P,�)
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Example 2  Let �1,�2,�3, and�4be the same as in Exam-
ple 1. If LSF be f ∗

1
(si), then the measurement function 

value can be calculated as follows:

R(�1) = 0.4500, R(�2) = 0.2100, R(�3) = 0.2625, a n d 
R(�4) = 0.6375.

Therefore, 𝜙2 ≻ 𝜙3 ≻ 𝜙1 ≻ 𝜙4 can be obtained, which 
is more reasonable than the ranking result in Example 1.

3.4 � Frank operations for LIFNs

In the following, some essential algorithms for LIFNs 
are established based on LSFs and Frank operations.

Definition 9  Let �1 = (su1 , sv1 ) and �2 = (su2 , sv2 ) be two 
arbitrary LIFNs, f ∗ be a LSF, f ∗−1 be the inverse function 
of f ∗, and 𝜆 > 0. Then, the operations for LIFNs can be 
defined as follows:

1.	
𝜙1⊕F𝜙2 =

(
f ∗−1

(
1 − log𝜆

(
1 +

(𝜆
1−f∗(su1

)
−1)(𝜆

1−f∗(su2
)
−1)

𝜆−1

))
,

f ∗−1
(
log�

(
1 +

(�
f∗(sv1

)
−1)(�

f∗(sv2
)
−1)

�−1

)))
;

2.	 𝜙1⊗F𝜙2 =

(
f ∗−1

(
log𝜆

(
1 +

(𝜆
f∗(su1

)
−1)(𝜆

f∗(su2
)
−1)

𝜆−1

))
,

f ∗−1
(
1 − log�

(
1 +

(�
1−f∗(sv1

)
−1)(�

1−f∗(sv2
)
−1)

�−1

)))
;

3.	 k⋅F�1 =

(
f ∗−1

(
1 − log�

(
1 +

(�
1−f∗(su1

)
−1)

k

(�−1)k−1

))
,

f ∗−1
(
log𝜆

(
1 +

(𝜆
f∗(sv1

)
−1)

k

(𝜆−1)k−1

)))
, k > 0;

4.	 𝜙1
̂Fk =

(
f ∗−1

(
log𝜆

(
1 +

(𝜆
f∗(su1

)
−1)

k

(𝜆−1)k−1

))
,

f ∗−1
(
1 − log𝜆

(
1 +

(𝜆
1−f∗(sv1

)
−1)

k

(𝜆−1)k−1

)))
, k > 0.

Property 2  Let � = (su, sv), �1 = (su1 , sv1 ), �2 = (su2 , sv2 ), 
and �3 = (su3 , sv3 ) be four arbitrary LIFNs, and k, k1, 
k2 > 0. Then, the following properties can be easily proved:

1.	 𝜙1⊕F𝜙2 = 𝜙2⊕F𝜙1,

2.	 𝜙1⊗F𝜙2 = 𝜙2⊗F𝜙1,

3.	 (𝜙1⊕F𝜙2)⊕F𝜙3 = 𝜙1⊕F(𝜙2⊕F𝜙3),

4.	 (𝜙1⊗F𝜙2)⊗F𝜙3 = 𝜙1⊗F(𝜙2⊗F𝜙3),

5.	 k⋅F(𝜙1⊕F𝜙2) = k⋅F𝜙1⊕Fk⋅F𝜙2,

6.	 (𝜙1⊗F𝜙2)
̂Fk = 𝜙1

̂Fk⊗F𝜙2
̂Fk,

7.	 (k1 + k2)⋅F𝜙 = k1⋅F𝜙⊕Fk2⋅F𝜙,

8.	 𝜙̂F(k1+k2) = 𝜙̂Fk1⊗F𝜙
̂Fk2 .

4 � Aggregation operator for LIFNs

Based on Frank operations and the HM operator, this sec-
tion proposes a linguistic intuitionistic fuzzy aggregation 
operator. Further, some desirable properties and special 
cases are discussed with regard to the parameters �,p, and 
q. Finally, a method for addressing MCDM problems with 
LIFNs is developed.

4.1 � Heronian mean (HM) operator

Definition 10 [38]  Let ai(i = 1, 2, ..., n) be a collection of 
nonnegative crisp data, and p, q ≥ 0; then

is called the Heronian mean (HM) operator with parameter.

4.2 � The linguistic intuitionistic fuzzy Frank improved 
weighted Heronian mean operator

In this subsection, the HM operator is extended to the 
situations in which the input arguments consist of linguis-
tic intuitionistic fuzzy information. The linguistic intui-
tionistic fuzzy Frank improved weighted Heronian mean 
(LIFFIWHM) operator, and its corresponding theorems are 
described below.

Definition 11  Let �i = (sui , svi )(i = 1, 2, ..., n) be a collec-
tion of LIFNs. For any p, q ≥ 0, the linguistic intuitionistic 
fuzzy Frank improved weighted Heronian mean (LIFFI-
WHM) operator can be defined as

(5)Hp,q(a1, a2, ..., an) =

(
2

n(n + 1)

∑n

i=1

∑n

j=i
a
p

i
a
q

j

) 1

p+q

,

(6)

LIFFIWHMp,q(𝜙1,𝜙2, ...,𝜙n)

=

⎛⎜⎜⎜⎜⎝

1
n

⊕F
i=1,j=i

wiwj

⋅F

n

⊕F
i=1,j=i

wiwj⋅F((𝜙i)
̂Fp⊗F(𝜙j)

̂Fq)

⎞⎟⎟⎟⎟⎠

̂F
1

p+q

,
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 where w = (w1,w2, ...,wn) is the weight vector of 
�i(i = 1, 2, ..., n), wi ≥ 0, and 

∑n

i=1
wi = 1.

According to the Frank operations of LIFNs, the follow-
ing results can be obtained.

Theorem  1  Let �i = (sui , svi )(i = 1, 2, ..., n) be a collec-
tion of LIFNs, and p, q ≥ 0. Then, the aggregated value 
obtained by the LIFFIWHM operator is

where k = 1
n

⊕F
i=1,j=i

wiwj

.

In the following, some desirable properties of the LIFFI-
WHM operator will be discussed.

Theorem  2 (idempotency)  Let � = �i for all 
i = 1, 2, ..., n; then, LIFFIWHMp,q(�1,�2, ...,�n) = �.

Theorem  3 (monotonicity)  Let ai = (su(ai), sv(ai))

(i = 1, 2, ..., n) and bi = (su(bi), sv(bi))(i = 1, 2, ..., n) be  
two collection of LIFNs. For any p, q ≥ 0, if 

(7)

LIFFIWHMp,q(𝜙1,𝜙2, ...,𝜙n) =

⎛
⎜⎜⎜⎜⎝

1
n

⊕F
i=1,j=i

wiwj

⋅F

n

⊕F
i=1,j=i

wiwj ⋅F ((𝜙i)
∧Fp ⊗F (𝜙j)

∧Fq)

⎞
⎟⎟⎟⎟⎠

∧F
1

p+q

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f ∗−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

log𝜆

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + (𝜆 − 1)

⎛⎜⎜⎜⎜⎜⎜⎝

1 −

�
n∏

i=1,j=i

�
(𝜆−1)p+q−(𝜆

f∗(sui
)
−1)p(𝜆

f∗(suj
)
−1)q

(𝜆−1)p+q+(𝜆−1)(𝜆
f∗(sui

)
−1)p(𝜆

f∗(suj
)
−1)q

�wiwj

�k

1 + (𝜆 − 1)

�
n∏

i=1,j=i

�
(𝜆−1)p+q−(𝜆

f∗(sui
)
−1)p(𝜆

f∗(suj
)
−1)q

(𝜆−1)p+q+(𝜆−1)(𝜆
f∗(sui

)
−1)p(𝜆

f∗(suj
)
−1)q

�wiwj

�k

⎞⎟⎟⎟⎟⎟⎟⎠

1

p+q ⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

f ∗−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 − log𝜆

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 + (𝜆 − 1)

⎛⎜⎜⎜⎜⎜⎜⎝

1 −

�
n∏

i=1,j=i

�
(𝜆−1)p+q−(𝜆

1−f∗(svi
)
−1)p(𝜆

1−f∗(svj
)
−1)q

(𝜆−1)p+q+(𝜆−1)(𝜆
1−f∗(svi

)
−1)p(𝜆

1−f∗(svj
)
−1)q

�wiwj

�k

1 + (𝜆 − 1)

�
n∏

i=1,j=i

�
(𝜆−1)p+q−(𝜆

1−f∗(svi
)
−1)p(𝜆

1−f∗(svj
)
−1)q

(𝜆−1)p+q+(𝜆−1)(𝜆
1−f∗(svi

)
−1)p(𝜆

1−f∗(svj
)
−1)q

�wiwj

�k

⎞⎟⎟⎟⎟⎟⎟⎠

1

p+q ⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

su(ai) ≥ su(bi) and sv(ai) ≤ sv(bi) for all i = 1, 2, ..., n, then 
LIFFIWHMp,q(a1, a2, ..., an) ≥ LIFFIWHMp,q(b1, b2, ..., bn).

Theorem  4 (boundedness)  Let �i = (sui , svi )

(i = 1, 2, ..., n) be a collection of LIFNs, a = (su(a), sv(a))

= (max
i

{sui}, min
i

{svi}), and b = (su(b), sv(b)) = (min
i

{sui},

max {svi}). Then, b ≤ LIFFIWHMp,q(�1,�2, ...,�n) ≤ a.

Theorem  2 can be easily proved according to the prop-
erties of LIFNs’ operations as described in Property 2. The 
proofs of Theorem  1 and Theorems 3–4 are shown in the 
Appendix.

In the following, some special cases of the LIFFIWHM 
operator will be discussed.

1.	 If q = 0, then the LIFFIWHM operator degenerates 
to the linguistic intuitionistic fuzzy Frank generalized 
weighted average (LIFFGWA) operator as follows:
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 where w�
k =

n

⊕F
j=k

wkwj

n

⊕F
i=1,j=i

wiwj

, (k = 1, 2, ..., n), w′
k ≥ 0, and 

n∑
k=1

w�
k = 1.

2.	 If p = 1 and q = 0, then the LIFFIWHM operator 
degenerates to the linguistic intuitionistic fuzzy Frank 
weighted average (LIFFWA) operator as follows:

3.	 If p → 0 and q = 0, then the LIFFIWHM opera-
tor reduces to the linguistic intuitionistic fuzzy Frank 
weighted geometric (LIFFWG) operator as follows:

4.	 If � → 1, then the LIFFIWHM operator reduces to the 
linguistic intuitionistic fuzzy improved weighted Hero-
nian mean (LIFIWHM) operator as follows:

(8)

LIFFGWA(𝜙1,𝜙2, ...,𝜙n) =

�
n

⊕F
k=1

w�
k
⋅F ((𝜙k)

∧
Fp)

�∧F
1

p

=

⎛
⎜⎜⎜⎜⎜⎝

f ∗−1

⎛
⎜⎜⎜⎜⎜⎝

log𝜆

⎛
⎜⎜⎜⎜⎜⎝

1 + (𝜆 − 1)

⎛
⎜⎜⎜⎜⎝

1 −
n∏

k=1

�
(𝜆−1)p−(𝜆

f∗(suk
)
−1)p

(𝜆−1)p+(𝜆−1)(𝜆
f∗(suk

)
−1)p

�w�
k

1 + (𝜆 − 1)
n∏

k=1

�
(𝜆−1)p−(𝜆

f∗(suk
)
−1)p

(𝜆−1)p+(𝜆−1)(𝜆
f∗(suk

)
−1)p

�w�
k

⎞
⎟⎟⎟⎟⎠

1

p ⎞⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

,

f ∗−1

⎛
⎜⎜⎜⎜⎜⎝

1 − log𝜆

⎛
⎜⎜⎜⎜⎜⎝

1 + (𝜆 − 1)

⎛
⎜⎜⎜⎜⎝

1 −
n∏

k=1

�
(𝜆−1)p−(𝜆

1−f∗(svk
)
−1)p

(𝜆−1)p+(𝜆−1)(𝜆
1−f∗(svk

)
−1)p

�w�
k

1 + (𝜆 − 1)
n∏

k=1

�
(𝜆−1)p−(𝜆

1−f∗(svk
)
−1)p

(𝜆−1)p+(𝜆−1)(𝜆
1−f∗(svk

)
−1)p

�w�
k

⎞
⎟⎟⎟⎟⎠

1

p ⎞⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

(9)

LIFFWA(𝜙1,𝜙2, ...,𝜙n) =
n

⊕F
k=1

w�
k
⋅F (𝜙k)

=

(
f ∗−1

(
1 − log𝜆

(
1 +

n∏
k=1

(𝜆
1−f ∗(suk

)
− 1)w

�
k

))
,

f ∗−1

(
log𝜆

(
1 +

n∏
k=1

(𝜆
f ∗(svk

)
− 1)w

�
k

)))
.

(10)

LIFFWG(�1,�2, ...,�n) =

n∏
k=1

⋅F�
w�
k

k

=

(
f ∗−1

(
log�

(
1 +

n∏
k=1

(�
f ∗(suk

)
− 1)w

�
k

))
,

f ∗−1

(
1 − log�

(
1 +

n∏
k=1

(�
1−f ∗(svk

)
− 1)w

�
k

)))
.

4.3 � A MCDM method for coal mine safety evaluation 
under linguistic intuitionistic fuzzy circumstance

Based on the previous discussions, this subsection employs 
the LIFFIWHM operator to develop a new MCDM method 
to handle coal mine safety evaluation problems.

Coal mine safety evaluation problems with linguistic 
intuitionistic fuzzy information involve a group of coal 
mines denoted by A = {a1, a2, ..., an}. Each coal mine is 
assessed by means of m criteria, denoted by 
C = {c1, c2, ..., cm}, whose weight vector is 
w = (w1,w2, ...,wn), satisfying wj ∈ [0, 1] and 

∑m

j=1
wj = 1. 

Let R = (�ij)m×n be the linguistic intuitionistic fuzzy evalu-
ation matrix, where �ij = (suij , svij ) is an evaluation value 

expressed by LIFNs, in which suij indicates the linguistic 

membership to which coal mine ai satisfies criterion cj, 
while svij indicates the linguistic non-membership to which 

coal mine ai satisfies criterion cj.

(11)

lim
𝜆→1

LIFFIWHMp,q(𝜙1,𝜙2, ...,𝜙n)

= LIFIWHMp,q(𝜙1,𝜙2, ...,𝜙n)

=

⎛
⎜⎜⎜⎜⎝

1
n

⊕
i=1,j=i

wiwj

n

⊕
i=1,j=i

wiwj((𝜙i)
p ⊗ (𝜙j)

q)

⎞⎟⎟⎟⎟⎠

1

p+q

=

⎛⎜⎜⎜⎜⎝
f ∗−1

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
1 −

n�
i=1,j=i

�
1 − (f ∗(sui ))

p
(f ∗(suj ))

q
�

wiwj
n
⊕

i=1,j=i
wiwj

⎞⎟⎟⎟⎠

1

p+q ⎞⎟⎟⎟⎟⎠
,

f ∗−1

⎛⎜⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎝
1 −

n�
i=1,j=i

�
1 − (1 − f ∗(svi ))

p
(1 − f ∗(svj ))

q
�

wiwj
n
⊕

i=1,j=i
wiwj

⎞
⎟⎟⎟⎠

1

p+q ⎞⎟⎟⎟⎟⎠
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In the following, a MCDM method is developed to 
address coal mine safety evaluation problems under lin-
guistic intuitionistic fuzzy environments. The main proce-
dures are described as follows:

Step 1. Normalize the evaluation matrix.
First, it is necessary to normalize all evaluation values 

to the same magnitude grade in order to eliminate the influ-
ence of different dimensions on the operation process. The 
normalization of the evaluation values can be expressed as 
follows:

For benefit criteria, ��
ij = �ij = (suij , svij ); for cost crite-

ria, ��
ij = �c

ij
= (svij , suij )..

The normalized evaluation matrix is expressed as 
R� = (��

ij)m×n.
Step 2. Obtain comprehensive evaluations.
The comprehensive evaluation �′

i of coal mine ai can be 
obtained utilizing the LIFFIWHM operator.

Step 3. Calculate the measurement function value of 
each �′

i.
The measurement function value R(��

i)(i = 1, 2, ..., n) of 
�′

i can be calculated according to Definition 8.
Step 4. Rank all the alternatives and select the safest 

one.
Finally, all of the alternatives can be ranked, and the saf-

est one can be identified in accordance with R(��
i).

5 � Illustrative example

This section provides a practical coal mine safety evalua-
tion problem to highlight the applicability of the proposed 
method, confirm its suitability through a sensitivity analy-
sis, and demonstrate its strengths through a comparative 
analysis with other existing approaches.

Safety is not only a consistent concern in coal mining 
but also a fundamental topic during the process of coal 
mine production. Safety evaluation is one of the key ques-
tions in coal mining that must be emphasized at the highest 
levels, and it is therefore important to establish a scientific 
and feasible method for evaluating coal mine safety. The 
underground working conditions inherent in coal mining 
involve many perils and uncertainties, and decision-mak-
ers often have an ambiguous understanding of evaluation 
information. This situation is highly suitable for employ-
ing qualitative tools rather than numerical values to con-
duct assessments [1]. In this context, the proposed MCDM 
method based on LIFNs, as described in Sect.  4, can be 
used to address the practical problem of coal mine safety 
evaluation.

A state mining bureau reviews the safety conditions of 
five coal mines in a given area according to correlative 

assessment methods and production regulations. The five 
coal mines are denoted by A = {a1, a2, a3, a4, a5}. Many 
factors affect the safety environment, and the following four 
criteria are considered based on detailed investigation: c1, 
technological equipment; c2, geological conditions; c3, 
human diathesis; c4, management quality [1]. The weight 
vector for these criteria is w = (0.25, 0.22, 0.35, 0.18). Fur-
thermore, the linguistic terms provided in Example 1 are 
employed in the evaluation process; in order to obtain more 
original information and more accurately reflect reality, the 
evaluation values provided by experts are transformed into 
LIFNs and denoted by 
�ij = (suij , svij )(i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4). The trans-

formed evaluation matrix is presented in Table 1.

5.1 � Illustration of the proposed approach

The main procedures for identifying the safest coal mine 
are described in the following steps.

Step 1. Normalize the evaluation matrix.
There is no need to normalize the evaluations in this 

case, because all of the criteria are of the benefit type.
Step 2. Obtain comprehensive evaluations.
By using the LIFFIWHM operator (let � = 2,

p = q = 1, and LSF be f ∗
1
(si)), the comprehensive eval-

uations �i(i = 1, 2, 3, 4, 5) of each coal mine can be 
obtained as �1 = (s6.0797, s1.3349), �2 = (s5.4870, s1.5764), 
�3 = (s5.4734, s1.8375), �4 = (s5.4870, s1.9009), and 
�5 = (s5.4748, s1.8598).

Step 3. Calculate the measurement function value of 
each �i.

The measurement function value R(�i)(i = 1, 2, ..., n) 
of the comprehensive evaluation �i can be calculated 
according to Definition 8, with the following results:

R(�1) = 0.1288,R(�2) = 0.1754,R(�3) = 0.1715,R(�4)

= 0.1691, and R(�5) = 0.1710.
Step 4. Rank all alternatives and select the safest one.

Table 1   Transformed evaluation matrix

c1 c2 c3 c4

a1
(
s5, s1

) (
s6, s2

) (
s7, s1

) (
s5, s2

)

a2
(
s6, s2

) (
s6, s1

) (
s5, s2

) (
s5, s1

)

a3
(
s7, s1

) (
s5, s2

) (
s4, s3

) (
s6, s1

)

a4
(
s6, s2

) (
s6, s1

) (
s5, s2

) (
s5, s3

)

a5
(
s6, s1

) (
s4, s2

) (
s6, s2

) (
s5, s3

)
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Step 3 makes it clear that the final ranking of the five 
coal mines is a1 ≻ a4 ≻ a5 ≻ a3 ≻ a2, with the safest coal 
mine of a1.

5.2 � Discussion of the influence of parameters �, p, q

The above safety ranking of the coal mine options was 
obtained by the LIFFIWHM operator under the param-
eters � = 2 and p = q = 1. It is necessary to discuss 
whether or not the final rankings change when different 
values of these parameters are used. Moreover, since 
LSFs are utilized to deal with linguistic information, 
three different LSFs are always tested in this situation.

First, the influence of different values of � in the Frank 
operations is discussed, with the final rankings for the 
coal mines shown in Table 2.

The above data show that the rankings obtained based 
on LSF1 remain constant except where � = 1, while the 
rankings obtained based on LSF2 and LSF3 are always 
constant. However, it is worth noting that the rankings 
are different under different LSFs. This indicates that the 
LIFFIWHM operator is not sensitive to changing values 

of � under the semantic situation in the above coal mine 
safety evaluation problem. Moreover, the safest coal mine 
is always a1 no matter what value of � or LSF is used. The 
consistency of this result fully demonstrates the reliabil-
ity and accuracy of the proposed method.

Second, the influence on the final ranking of different 
values for parameters p and q is also analyzed. In order to 
precisely reflect the effect of the values of p and q, and the 
interrelationships between these values, the values of p and 
q can be divided into three categories. In the first category, 
the value of p exceeds that of q; the value of p equals that 
of q in the second category, and the value of p is smaller 
than that of q in the third category. The final rankings of the 
coal mines are shown in Table 3.

Table 3 shows that the rankings of the coal mines change 
with varying values of p and q under different LSFs. The 
safest coal mine is always a1, except in  situations where 
p = 0.1, q = 0 and p = 1, q = 0 under LSF2. In addition, 
it is worth noting that the rankings are basically same 
with different values of �, but they apparently change with 
changes to p and q. This suggests that the LIFFIWHM 
operator is more sensitive to variations in p and q than to 

Table 2   Rankings of coal 
mines with different LSFs and �

LSF1 LSF2 LSF3

� = 1 a1 ≻ a4 ≻ a3 ≻ a5 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3

� = 2 a1 ≻ a4 ≻ a5 ≻ a3 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3

� = 5 a1 ≻ a4 ≻ a5 ≻ a3 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3

� = 8 a1 ≻ a4 ≻ a5 ≻ a3 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3

� = 10 a1 ≻ a4 ≻ a5 ≻ a3 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3

� = 20 a1 ≻ a4 ≻ a5 ≻ a3 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3

Table 3   Rankings of coal 
mines with different LSFs and 
p, q

LSF1 LSF2 LSF3

p → 0, q = 0 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3 a1 ≻ a3 ≻ a4 ≻ a5 ≻ a2 a1 ≻ a4 ≻ a2 ≻ a5 ≻ a3

p = 0.1, q = 0 a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5 a3 ≻ a1 ≻ a4 ≻ a2 ≻ a5 a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5

p = 1, q = 0 a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5 a3 ≻ a1 ≻ a4 ≻ a2 ≻ a5 a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5

p = 2, q = 1 a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5 a1 ≻ a3 ≻ a4 ≻ a5 ≻ a2 a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5

p = 5, q = 1 a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5 a1 ≻ a3 ≻ a4 ≻ a5 ≻ a2 a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5

p = q = 0.1 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3 a1 ≻ a3 ≻ a4 ≻ a5 ≻ a2 a1 ≻ a4 ≻ a2 ≻ a5 ≻ a3

p = q = 1 a1 ≻ a4 ≻ a5 ≻ a3 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a4 ≻ a5 ≻ a2 ≻ a3

p = q = 2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a3 ≻ a4 ≻ a5 ≻ a2

p = q = 5 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2

p = 0.001, q = 1 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2 a1 ≻ a5 ≻ a4 ≻ a2 ≻ a3

p = 0.1, q = 1 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2 a1 ≻ a5 ≻ a4 ≻ a2 ≻ a3

p = 0.5, q = 1 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2 a1 ≻ a5 ≻ a3 ≻ a4 ≻ a2 a1 ≻ a5 ≻ a4 ≻ a2 ≻ a3

p = 1, q = 2 a1 ≻ a5 ≻ a3 ≻ a4 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2

p = 1, q = 5 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2 a1 ≻ a3 ≻ a5 ≻ a4 ≻ a2
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changes in � under the semantic situation in this coal mine 
safety evaluation problem.

The preceding discussion demonstrates that the values 
of �, p and q, as well as the LSF, can influence the final 
ranking of the coal mines. Broadly, �, p and q are correlated 
with the thinking mode of the decision-makers. The bigger 
the values of �, p and q, the more optimistic the decision-
makers are; meanwhile, the smaller the values of �, p and 
q, the more pessimistic the decision-makers are. Therefore, 
the proposed method for evaluating coal mine safety is very 
flexible, and decision-makers can choose appropriate val-
ues of �, p and q and different LSFs according to their pref-
erences and actual semantic situation in order to obtain the 
most precise result.

6 � Comparative analysis and discussion

In order to further verify the validity of the method pro-
posed in this paper, we conducted a comparative analy-
sis by applying other existing methods to the example 
described above in the context of LIFNs or ULVs.

In their method, Chen et al. [23] proposed many aggre-
gation operators based on LIFNs to aggregate evalua-
tion information, such as the linguistic intuitionistic fuzzy 
weighted averaging (LIFWA) and linguistic intuitionistic 
fuzzy weighted geometric (LIFWG) operators. Then, the 
alternatives were ranked utilizing the linguistic score index 
and accuracy index.

Other scholars have proposed a series of aggregation 
operators for ULVs under uncertain linguistic environ-
ments, and some were selected for comparison here. Xu 
[16] proposed the uncertain linguistic weighted averag-
ing (ULWA) operator, Xu [17] proposed the uncertain 
linguistic weighted geometric mean (ULWGM) operator, 
and Wei et al. [18] proposed both the uncertain linguistic 
weighted Bonferroni mean (ULWBM) operator and the 
uncertain linguistic weighted geometric Bonferroni mean 
(ULWGBM) operator.

The coal mine safety evaluation problem presented 
above can be addressed using these methods. First, the 

LIFNs must be transformed into ULVs. Let (su, sv) be a 
LIFN; then, [su, s2t−v] is an ULV, and su and s2t−v are the 
lower and upper limits, respectively [23]. For example, 
LIFN (s5, s1) can be transformed into ULV [s5, s7]. The 
ranking results acquired utilizing different methods are 
displayed in Table 4.

The data in Table 4 show that the same ranking is pro-
duced by Chen et  al.’s method with the LIFWG opera-
tor [23], Xu’s method with the ULWA operator [16], Xu’s 
method with the ULWGM operator [17], and Wei et al.’s 
method with the ULWGBM operator [18]. In contrast, 
Chen et  al.’s method with the LIFWA operator [23] and 
Wei et al.’s method with the ULWBM operator [18] pro-
duce two other rankings.

However, the rankings obtained by these extant 
methods are consistently different from the proposed 
method’s results in all cases. There are some possible 
reasons for this difference in rankings. First, the extant 
methods and the proposed method use different opera-
tions. The operations in the extant methods are defined 
by simply dealing with the subscript of the linguistic 
term; this strategy has some non-negligible shortcom-
ings and leads to the loss and distortion of the original 
information. However, the operations in the proposed 
method are constructed based on Frank operations and 
LSFs, which can effectively negate the drawbacks in the 
preexisting methods; additionally, different parameter 
values of � and different LSFs are flexible and applica-
ble under distinct semantic situations. Second, Chen 
et al.’s method [23], Xu’s method [16], and Xu’s method 
[17] do not consider the interrelationships among dif-
ferent input arguments, while the proposed method take 
these relationships into account with the HM operator. 
Although Wei et  al.’s method using both ULWBM and 
ULWGBM [18] can reflect the correlations among dif-
ferent input arguments, there are two other drawbacks 
that cannot be ignored. On the one hand, the BM opera-
tor generates some unnecessary redundancy. For exam-
ple, given a set of input variables xi(i = 1, 2, ..., n), the 
BM operator considers not only the correlation between 
xi and xj(i ≠ j), but also the interrelationships between xj 

Table 4   Ranking results 
acquired utilizing different 
methods

Methods Ranking results

Chen et al.’s method with the LIFWA operator [23] a1 ≻ a3 ≻ a2 ≻ a5 ≻ a4

Chen et al.’s method with the LIFWG operator [23] a1 ≻ a2 ≻ a4 ≻ a5 ≻ a3

Xu’s method with the ULWA operator [16] a1 ≻ a2 ≻ a4 ≻ a5 ≻ a3

Xu’s method with the ULWGM operator [17] a1 ≻ a2 ≻ a4 ≻ a5 ≻ a3

Wei et al.’s method with the ULWBM operator [18] a1 ≻ a2 ≻ a3 ≻ a4 ≻ a5

Wei et al.’s method with the ULWGBM operator [18] a1 ≻ a2 ≻ a4 ≻ a5 ≻ a3
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and xi(i ≠ j). On the other hand, although the BM opera-
tor can reflect the interrelationships between each pair of 
xi and xj(i ≠ j), it ignores the relationship between xi and 
itself. However, the method proposed in this paper, which 
uses the HM operator, can counter these drawbacks of 
ULWBM and ULWGBM [18]. Finally, the extant meth-
ods and the proposed method have radically different 
ways to determine the final ranking for alternatives. Chen 
et  al.’s method [23] uses the linguistic score index and 
linguistic accuracy index to compare comprehensive 
evaluation values, and other three extant methods in Refs. 
[16, 18] obtain final rankings by utilizing the possibility 
degree and complementary matrix; in contrast, the pro-
posed method employs the new measurement function of 
LIFNs to compare the comprehensive evaluation values 
for each alternative, and then the final ranking is deter-
mined. Compared to the comparison method in Ref. [23], 
the proposed method in this paper is more reasonable and 
feasible, as discussed in Sect. 3.

Based on the above comparison analysis, we can con-
clude that the proposed method can be successfully uti-
lized in evaluating the safety of coal mines, and it can 
identify the safest coal mine more precise than other 
methods. By using LSFs, the proposed method is more 
flexible and effective in dealing with MCDM problems 
involving linguistic information, and it is more robust 
than the other extant methods that are based on algebraic 
operations because of the introduction of Frank opera-
tions. Moreover, the proposed method takes into account 
the correlations among different criteria values by utiliz-
ing the HM operator.

7 � Conclusion

To deal with situations where decision-makers employ 
qualitative values rather than real numbers to reflect the 
uncertainty and vagueness of coal mine safety evaluation 
problems, LIFSs were employed in this paper. In order to 
improve the applicability and validity of methods that use 
linguistic intuitionistic aggregation operators, the LIFFI-
WHM operator was proposed, and it was employed to 
establish an innovative MCDM approach for evaluating 
coal mine safety. First, a reliable comparison method and 
Frank operations were introduced for LIFNs. Then, with 
the aid of the LSFs, Frank operations, and HM operator, 

a novel linguistic intuitionistic aggregation operators 
was developed. Finally, the approach was tested using an 
example of coal mine safety evaluation problem, and it 
was further validated through a sensitivity analysis. The 
feasibility and reliability of the proposed approach were 
demonstrated through a comparison with other existing 
methods.

The main contributions of this research are the intro-
duction of the Frank operations for LIFNs, which are 
more robust and flexible than the existing linguistic intui-
tionistic operations, as well as the integration of LIFSs 
with the HM operator, which allows the developed opera-
tors not only to capture correlations among criteria values 
but also to accommodate situations where the input argu-
ments consist of linguistic intuitionistic fuzzy informa-
tion. Moreover, the proposed approach is fairly flexible to 
use; the results may change when different LSFs are used, 
and the parameters �,p, and q, all of which appear in the 
developed operators, may also affect the final results. 
Therefore, decision-makers can choose appropriate val-
ues for �,p, and q according to their preferences, and they 
can choose a proper LSF based on practical semantic cir-
cumstances to obtain the most accurate result.

Future research will focus on introducing many mean-
ingful models or methods to deal with linguistic intui-
tionistic fuzzy information in a broader CWW perspec-
tive, such as 2-tuple linguistic model [51], discrete fuzzy 
numbers linguistic computational model [25], and multi-
granular fuzzy linguistic method [14]. Moreover, we will 
consider developing some effective methods that use 
LIFNs to address problems involving incomplete infor-
mation [6] and non-cooperative behaviors [55], which 
occur extensively in practice.

Acknowledgements  The authors thank the editors and anonymous 
reviewers for their very helpful comments and suggestions. This 
work was supported by the National Natural Science Foundation of 
China (Nos. 71571193 and 71271218) and the Fundamental Research 
Funds for the Central Universities of Central South University (No. 
2016zzts213).

Appendix

Proof of Theorem.  In the following, Theorem 1 will be 
proved utilizing the mathematical induction on n.
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Proof  Firstly, the following equation needs to be proved.

1.	 For n  =  2, the following equation can be calculated 
easily.

2.	 If Eq. (11) holds for n = k, there is

Then, when n = k + 1, the following equation can be 
obtained

According to the operations of LIFNs, the following 
result can be calculated.

(12)
n

⊕F
i=1,j=i

wiwj ⋅F ((𝜙i)
∧Fp ⊗F (𝜙j)

∧Fq) =
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(
1 − log𝜆

(
1 + (𝜆 − 1)
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(
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)
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Equation (15) can be easily proved by utilizing the math-
ematical induction on k + 1, and the proof is omitted here.

Thus, by utilizing Eqs.  (13) and (15), Eq.  (14) can be 
converted into

That is, Eq. (12) also holds for n = k + 1. Thus, Eq. (12) 
is true for all n.

Then, by using Eq. (12), Eq. (6) can be calculated eas-
ily based on the operations of LIFNs, and Eq.  (7) can be 
eventually acquired. Therefore, the proof Theorem  1 is 
completed.

Proof of Theorem 3.

Proof  Let LIFFIWHMp,q(a1, a2, ..., an) = (su(a), sv(a))and 
LIFFIWHMp,q(b1, b2, ..., bn) = (su(b), sv(b)). Since f ∗, f ∗−1 
and log𝜆, (𝜆 > 1) is a strictly monotonously increasing and 
continuous function, and su(ai) ≥ su(bi) and su(aj) ≥ su(bj) for 

all i, j = 1, 2, ..., n, then the following inequalities can be 
obtained.
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⇒ su(a) ≥ su(b).

In the same way, the inequality sv(a) ≤ sv(b) can 
also be obtained. Since su(a) ≥ su(b) and sv(a) ≤ sv(b),  
then, LIFFIWHMp,q

(
a1, a2, ..., an

)
≥ LIFFIWHMp,q(

b1, b2, ..., bn
)
.

Proof of Theorem 4.

Proof  Since su(a) ≥ sui and sv(a) ≤ svi for all i = 1, 2, ..., n, 
then according to Theorems 2 and 3, we can obtain 
LIFFIWHMp,q(�1,�2, ...,�n) ≤ LIFFIWHMp,q(a, a, ..., a) =

a. Since su(b) ≤ sui and sv(b) ≥ svi for all 
i = 1, 2, ..., n, then we can also obtain 
b = LIFFIWHMp,q(b, b, ..., b) ≤ LIFFIWHMp,q(�1,�2,

b = LIFFIWHMp,q(b, b, ..., b) ≤ LIFFIWHMp,q(�1,�2,. Thus, b ≤ LIFFIWHMp,q(�1,�2, ...,�n) ≤ a is true.
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