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1 Introduction

Clustering is acknowledged as one of the most important 
unsupervised learning methods in machine learning field. 
As a pre-processing technique, clustering has been fre-
quently researched and widely applied to all kinds of prac-
tical scenes. It aims to categorize unlabeled samples into 
multiple classes based on the similarity between samples, 
and these multiple classes are often called clusters. In con-
trast to unsupervised learning, supervised learning needs a 
mass of labeled samples to assist cluster process. Neverthe-
less, labeled samples are relatively less in the real world 
because they are fairly difficult to get, so that it leads to 
undesirable clustering without the aid of labeled samples. 
Hence, the semi-supervised clustering [1] method emerges 
at the proper time. With a small amount of prior knowl-
edge provided in advance, it divides plentiful unlabeled 
examples into several groups with higher clustering perfor-
mance, and has become a hot spot in current research.

Despite a variety of clustering methods have been pro-
posed, none is applicable to all data sets and achieves satis-
factory clustering goals for all data sets. That is to say each 
clustering algorithm has own merits and demerits. Due to 
different data sets and different algorithms, as well as dif-
ferent parameters in the same algorithm, all these will lead 
to different results. By this token, how to select the proper 
algorithm is a significant and hard task for the users. The 
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emerging cluster ensemble approach presented by Strehl 
et al. [2] can just ameliorate this puzzle. Du et al. [3] pro-
pose a novel self-supervised learning framework for clus-
tering ensemble. Hao et al. [4] propose an improved clus-
tering ensemble method based link analysis. In general, the 
basic idea of cluster ensemble is to integrate a variety of 
clustering partitions by using a specific consensus function 
to generate the final decision that outperforms individual 
clustering.

Semi-supervised clustering ensemble applies these two 
strategies simultaneously, namely semi-supervised cluster-
ing and cluster ensemble. Similarly, it combines different 
clustering results of various semi-supervised clustering 
algorithms by using ensemble function to create a single 
target clustering with more optimal performance than those 
of individual semi-supervised clustering. What’s more, it 
has strengths of low sensitivity to noise, outliers and varia-
bles. Yu et al. [5] propose a feature selection method based 
semi-supervised cluster ensemble framework for tumor 
clustering from bio-molecular data. Yu et  al. [6] propose 
an incremental semi-supervised clustering ensemble frame-
work for high dimensional data clustering.

At present, two typical approaches of semi-supervised 
clustering called constraint-based and metric-based are 
researched a lot. The former revises objective function 
of algorithm to guide the process of clustering by using 
supervised information provided in advance. Xiong et  al. 
[7] study the active learning problem of selecting pairwise 
constraints for semi-supervised clustering. Wang et al. [8] 
propose a semi-supervised nonnegative matrix factorization 
method with pairwise constraints. The latter exploits a spe-
cific distance/similarity metric for clustering to satisfy the 
given pairwise constraints. Yan et  al. [9] propose a semi-
supervised clustering method with multi-viewpoint based 
similarity measure. Yin et  al. [10] develop a semi-super-
vised fuzzy clustering algorithm with metric learning and 
entropy regularization simultaneously (SMUC). Although 
the two kinds of methods have their own singular focus 
respectively, they aren’t not only separated completely, but 
also exists symbiotic relationship between them. Inspired 
by the work of Bilenko et  al. [11], many scholars have 
begun to turn their attention to the field of exploitation of 
hybrid approaches, which aims to combine the advantages 
of constraint-based with that of metric-based. In order to 
sufficiently solve the violation problem of pairwise con-
straints and to mitigate the problem of manually tuning 
the kernel parameters owing to the fact that no sufficient 
supervision, an adaptive semi-supervised clustering kernel 
method based on metric learning (SCKMM) is proposed by 
Yin et  al. [12]. Arzeno and Vikalo [15] present an exten-
sion of soft-constraint semi-supervised affinity propaga-
tion (E-SCSSAP) which incorporates metric learning in 
the optimization objective and acquires desirable clusters. 

Reviewing previous related literature, we found that most 
researchers just take single objective function of the two 
factors into account, but relatively few researchers syn-
thesize the two different kinds of algorithms adopted the 
mechanism of ensemble. Different from these conventional 
methods, this paper presents a semi-supervised clustering 
ensemble approach in conjunction with the both.

Additionally, most of image data metric measures used 
in previous literature are merely based on intrinsic proper-
ties of pixels. As we all known, one pixel and its surround-
ing pixels are tightly linked, so that it is necessary and rea-
sonable to incorporate spatial characteristic in objective 
function. However, the most common way used in existing 
methods is selecting various means or statistical operators 
in a designated area around pixel as its spatial information, 
whose results still exist more or less deviation with the 
actual features. To mitigate the deviation, the paper con-
cerns the intrinsic feature of pixel as well as spatial char-
acteristic of its surroundings in metric measure simultane-
ously. Comparison experiments and analysis are made to 
validate the superiority of our method. The main contribu-
tions of this paper can be summarized as three aspects.

Firstly, this paper improves the performance of semi-
supervised clustering by introducing ensemble mecha-
nism, which unites different results respectively produced 
from constraint-based algorithm and metric-based algo-
rithm. They have certain preoccupations in their fields that 
one concentrates on the adjustment of objective function 
according to pairwise constraints while the other is con-
cerned with the introduction of metric function to measure 
the distance/similarity between samples more precisely. 
The combination method obtains benefits beyond what a 
single algorithm achieves.

Secondly, this paper proposes a metric-based semi-
supervised clustering algorithm, in which the metric meas-
ure is formulated by two styles. One is used for measuring 
the distance between general data samples, and the other 
is for image pixel samples. Out of consideration for pix-
els’ spatial properties, we conclude the point that metric 
between pixels should be collectively based on the inherent 
feature of pixels and its neighboring spatial information. 
The metric evaluation function is expressed as the ratio of 
the feature similarity based on spatial information to the 
distance based on inherent feature. This new perspective 
breaks through traditional single idea for pixels metric, and 
significantly improve the accuracy.

Thirdly, we conduct two group experiments respectively 
on general data sets and image data sets for performance 
evaluation of clustering. On the basis of the proposed 
approach, the former simply employs ensemble mechanism 
integrated a constraint-based method and a metric-based 
method with a general metric measure. Besides the stages 
of the former, the latter adds a space-based pixel similarity 
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to general metric measure that measures the similarity 
based on the inherent feature of pixels. It follows that our 
method not only applies to clustering of general data sets, 
but also to clustering of image data sets. Both of the two 
experiments complete targeted clustering on different data 
sets with high precision.

We organize the remainder of this paper into four sec-
tions. Section  2 surveys related works about what we 
have done. In Sect. 3, the new semi-supervised clustering 
ensemble approach is illustrated and the process of cluster-
ing with our proposed approach is described in detail. Sec-
tion 4 provides experiment results and analysis. Finally we 
come to conclusions and look forward to several issues for 
future works in Sect. 5.

2  Related works

Semi-supervised clustering and clustering ensemble have 
been studied extensively, and the research topics in the 
fields of related are mainly distributed into three parts.

The first one is semi-supervised clustering learning 
approach. In real application, various useful prior knowl-
edge, such as class labels or pairwise constraints, are taken 
into account in clustering process. This strategy of tech-
nique is called semi-supervised clustering [16]. The popu-
lar semi-supervised clustering approach is mainly com-
posed of two categories called constraint-based method 
[16–20] and metric-based method [10, 21–23]. For the 
former, the linear-time constrained vector quantization 
error algorithm (LCVQE) [17] concerns on the problem of 
clustering with soft instance level constraints, in which a 
more intuitive objective function is introduced with lower 
computational complexity. Pairwise constrained maximum 
margin clustering approach (PMMC) [19] develops a set 
of effective loss functions for discouraging the violation of 
given pairwise constraints. For the later, the information 
theoretic metric method (ITML) [21] learns a Mahalano-
bis distance function by minimizing the differential rela-
tive entropy between two multivariate Gaussian under 
constraints on the distance function. Large margin nearest 
neighbor classification (LMNN) [22] focuses on how to 
learn a Mahalanobis distance metric for large margin near-
est neighbor from labeled example so that the k-nearest 
neighbors always belong to the same class while examples 
from different classes are separated by a large margin. But 
beyond that, several hybrid approaches have been proposed 
gradually. For instance, Bilenko et  al. [11] integrate the 
constraint-based method and distance-function learning 
method to form a hybrid method, which is a metric pair-
wise constrained k-means algorithm incorporated both met-
ric learning and the use of pairwise constraints in a uniform 
and principled manner (MPCK). Yin et  al. [12] propose 

an adaptive semi-supervised clustering kernel method 
based on metric learning (SCKMM), where the parameter 
of Gaussian kernel can be estimated through the objective 
function from pairwise constraints, and the pairwise con-
straint-based K-means is used to solve the violation of con-
straints. In addition, Lin et al. [13] proposes a semi-super-
vised grid clustering algorithm based on rough reduction 
(RSGrid). Zhang and Lu [14] provide a semi-supervised 
clustering approach using the kernel-based method based 
on KFCM (SSKFCM).

The second one is cluster ensemble learning approach. 
From the generation perspective, a set of diverse ensem-
ble members is generated and known as base clustering 
in various forms. Base clustering can result from different 
views, different initialization parameter, different methods, 
and so on. But then it is difficult to learn a suitable consen-
sus function to summarize the base clusterings and search 
for an optimal unified clustering decision. In light of that 
theoretical analysis, a great amount of well-known ensem-
ble methods emerge. Three graph-based ensemble methods 
are introduced in study [2], all of which partition clusters 
based on a constructed similarity graph. The cluster-based 
similarity partition algorithm (CSPA) uses METIS to par-
tition the induced similarity graph. The hyper-graph par-
tition algorithm (HGPA) uses HMETIS to partition the 
hyper-graph. The meta-clustering algorithm (MCLA) col-
lapses related hyper-edges and assigns each object to the 
collapsed hyper-edge in which it participates most strongly. 
An iterative voting consensus (IVC) [24] is a feature-based 
approach, in which each base clustering provides a clus-
ter label as a new feature describing each data point that 
is utilized to formulate the final solution. By exploiting the 
significance of attribute defined in rough set theory, Wang 
et  al. [25] apply the proposed two feature selection algo-
rithms to a cluster ensemble selection problem.

The third one is semi-supervised clustering ensemble 
learning approach. Due to the lack of prior knowledge 
about cluster labels, cluster ensemble is still a challenging 
problem. By leveraging limited supervision information 
in cluster ensemble, semi-supervised clustering ensem-
ble offers an effective solution to overcome this limitation 
and obtains accurate, robust and stable results. Wang et al. 
[26] construct semi-supervised cluster ensemble based 
on binary similarity matrix (BSMSCE), which takes the 
strengths of known information to improve the quality of 
clustering. Chen et  al. [27] analyze convergence of semi-
supervised clustering ensemble and proposed a new rela-
beling approach for semi-supervised clustering ensemble 
by majority voting (we called it MVSCE for short). Yu 
et al. [5] view the expert’s knowledge as constraints in the 
process of clustering and propose a framework called FS-
SSCE, which not only applies the feature selection tech-
nique to perform gene selection on the gene dimension, but 
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also selects an optimal subset of representative clustering 
solutions in the ensemble and improve the performance of 
tumor clustering using the normalized cut algorithm.

3  The proposed approach

3.1  An overview of the proposed approach

With the high stability and robustness, it is verified that 
cluster ensemble is an ideal alternative for a single cluster-
ing algorithm. For the purpose of improving performance 
of individual semi-supervised clustering algorithm, the 
paper makes great efforts to study about semi-supervised 
clustering ensemble, and introduces ensemble technique 
combining constraint-based semi-supervised cluster-
ing method and metric-based semi-supervised clustering 
method. We refer to the proposed hybrid semi-supervised 
clustering ensemble algorithm as HSCE for short. The pro-
cedure of our proposed approach is showed in Fig. 1.

Figure  1 shows the clustering process based on the 
proposed semi-supervised clustering ensemble approach. 
Based on the semi-supervised clustering ensemble model, 
the clustering process of HSCE can be described concisely 
as follows. (a) Supervised information (also called prior 
knowledge, such as class labels, pairwise constraints and 
the number of clusters) are specified in advance for fur-
ther clustering. (b) It is the second step—clustering and 
partition generation—that seems to be the most essential 

step. From the generation perspective, with assistance of 
supervised information, data points are divided into dif-
ferent clustering groups by using constraint-based semi-
supervised clustering approach and metric-based semi-
supervised clustering approach respectively. Thus, several 
clustering partitions are generated and known as base clus-
tering decisions. (c) Decisions integration. The consensus 
function employs a specific form of meta-level information 
matrix that stacks up all the previous base partition results, 
and it is available for deriving the final results with appeal-
ing properties superior to any individual one.

3.2  The constraint-based semi-supervised clustering 
Approach

3.2.1  Pairwise constraints

Generally, we hope to get more constraint information to 
aid clustering, because it is more easily obtained than class 
label information in practice. The pairwise constraints 
reflect prior knowledge about whether a pair of samples 
should be grouped together or not. It contains two types, 
namely must-link and cannot-link. Must-link indicates the 
two data points must be grouped in the same cluster marked 
as M =

{(
xi, xj

)}
 while cannot-link indicates the two data 

points must be grouped in different clusters marked as 
C =

{(
xi, xj

)}
. Pairwise constraints have transitivity and 

symmetry properties. Assume xi, xj, xk ∈ X, the properties 
are showed as follows.

Fig. 1  An overview of the 
proposed approach
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(1) Transitivity: (
xi, xk

)
∈ M ς

(
xk, xj

)
∈ M ⇒

(
xi, xj

)
∈ M,

(2) Symmetry: 
(
xi, xj

)
∈ M ⇒

(
xj, xi

)
∈ M, (

xi, xj
)
∈ C ⇒

(
xj, xi

)
∈ C.

3.2.2  The semi‑supervised spectral clustering algorithm 
based on pairwise constraints

In the section, the semi-supervised spectral clustering algo-
rithm based on pairwise constraints (SSCA) [20] is used as 
the constraint-based semi-supervised clustering approach in 
our approach. The process of SSCA is briefly described as 
below. Firstly, it revises distance matrix of samples according 
to pairwise constraints information. If 

(
xi, xj

)
∈ M then 

Dij = 0; if 
(
xi, xj

)
∈ C, then Dij = ∞. Secondly, it constructs 

the similarity matrix of samples according to this equation: 

wij = exp

�
−
‖xi−xj‖2

�i�j

�
, where �i =

1

k

k∑
n=1

��xi − xn
�� is a corre-

sponding parameter for each data point. And then spectral 
clustering algorithm is used to solve the eigenvalues and 
eigenvectors of Laplacian matrix, to which is transformed by 
the similarity matrix. Finally, it divides the sample set X into 
k clusters combining with kernel fuzzy c-means (KFCM) 
clustering [28].

3.3  The metric-based semi-supervised clustering 
approach

3.3.1  The large margin nearest cluster distance metric 
(LMNC)

From the study provided by Huang et al. [23], we learn that 
LMNC metric is a generalized inspired by Mahalanobis met-
ric. One common goal for metric learning is min–max prin-
ciple: minimize the distances between same-cluster samples 
meanwhile maximize the distances between different-cluster 
samples. A set of n labeled data is denoted as 

{(
xi, yi

)}n

i=1
,

where xi ∈ Rd, yi ∈ {1, 2, ...,K} represents discrete class 
labels. Let M be the symmetric matrix of size d × d, for 
any two given data points xi and xj on a vector space Rd, the 
squared distance measure between them can be expressed by 
Eq. (1).

(
xi, xk

)
∈ M ς

(
xk, xj

)
∈ C ⇒

(
xi, xj

)
∈ C

(1)D
(
xi, xj

)
=
(
xi − xj

)T
M
(
xi − xj

)

In general, M is a positive semi-definite matrix, i.e. 
� ≥ 0. To learn matrix � ∈ Rd×d, a cost function over this 
distance metric can be constructed by Eq. (2).

 where the weight matrix aij ∈ {0, 1} indicates that aij = 1 
if the class labels yi and yj match, otherwise aij = 0. zj rep-
resents the center of the jth cluster, c > 0 is a positive con-
stant, 

[
f
]
+
= max (f , 0) denotes the loss function. To reach 

min–max goal, we transform the loss metric problem into 
an optimization problem (3).

s.t. (1) �ijl ≥ 0, (2) M ≥ 0, (3) (
xi − zl

)T
M
(
xi − zl

)
−
(
xi − zj

)T
M
(
xi − zj

)
≥ 1 − �ijl.

This expression induces a slack variables �ijl to represent 
the loss function. This optimization problem can be solved 
by means of the gradient projection algorithm [29].

3.3.2  The similarity metric of image pixels based 
on spatial information (SMIP)

In contrast to ordinary approaches, the innovation of the 
pixel affinity presented by Na and Yu [30], is the affinity 
based on patch [31] and the edge information on the lines 
of two pixels.

The first step is to solve patch-based similarity. For an 
image I(x, y), the similarity of arbitrary two pixels i and j 
is denoted as Sij ∈ [0, 1]. Normally, the more i similar to j 
is, the higher the value of Sijis. Pixel’s neighbor informa-
tion should be considered to obtain stable feature due 
to the greater difference of the visual feature of single 
pixel. So the affinity based on patch can reflect the simi-
larity between pixels veritably and satisfactorily. Using 
the average L*a*b* color space, the weighted average 
features of pixels in certain patch can be calculated by 
∧

I (x, y) = I(x, y) ∗ G�(x, y) = I(x, y) ∗ G�(x) ∗ G�(y), where 
* represents convolution operation, (x, y) describes one pix-
el’s coordinate, G�(x, y)denotes a two-dimensional Gauss-
ian kernel function used �2 as a variance, � is designed 
for controlling the size. �I is the scale parameter for color 
feature. The patch-based similarity can be described as 
Eq. (4).

(2)
�(L) =

∑
ij

aij
(
xi − zj

)T
M
(
xi − zj

)
+ c

∑
ijl

aij
(
1 − aij

)

[
1 +

(
xi − zj

)T
M
(
xi − zj

)
−
(
xi − zl

)T
M
(
xi − zl

)]
+

(3)Min
∑
ij

aij
(
xi − zj

)T
M
(
xi − zj

)
+ c

∑
ijl

aij
(
1 − aij

)
�ijl
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The second step is to solve edge-based similarity. In the 
light of the model conveyed by Cour et al. [32], we assume 
E(x, y) is edge information of image I(x, y), then the edge-
based similarity between two pixels i and j is formulated by 
Eq. (5).

 where P indicates one of the pixels in the line from pixel 
i to j, 

(
px, py

)
means its corresponding coordinate, �2

E
 repre-

sents the scale parameter of edge-based similarity.
According to the study of Martin et  al. [33], the patch 

that centers on one pixel p can be cut into two parts by 
diameter from one angle. The feature difference between 
two parts can be denoted as 
E(x, y, �, r) = ||E+(x, y) − E−(x, y)

||, where � is a cutting 
angle, E+ and E− respectively represent the features of two 
sides, r means radius. By adjusting cutting angle, the direc-
tion of cutting may be as near to the actual one as possible 
until the biggest difference generates. At this point, the 
edge information can be denoted as 
E(x, y) = max

�∈[0,180)
E(x, y, �, r). Applying the convolution the-

orem, the edge information at specific angle � can be calcu-
lated by equation E�(x, y) =

||I(x, y) ∗ ∇�G(x, y)
||. For higher 

calculating speed, the edge feature is approximately repre-
sented by that at four angles 0°, 45°, 90°, 135°, transformed 
to E(x, y) ≈ E0(x, y) + E45(x, y) + E90(x, y) + E135(x, y).

On account of convolution property: G�(x, y) = 
G(x, y) ∗ ∇�, further transformation, E(x, y) ≈ ||I2(x, y) ∗ ∇

0
||+||I2(x, y) ∗ ∇

45
|| + ||I2(x, y) ∗ ∇

90
|| + ||I2(x, y) ∗ ∇

135
||, where 

∇0,∇45,∇90,∇135 denote corresponding partial derivatives 
filters (v = 0.5�

√
2�, called normalizing factor).

(4)S
(1)

ij
= exp

⎛
⎜⎜⎜⎜⎝

−
����
∧

I (i) −
∧

I (j)
����
2

2

�2
I

⎞
⎟⎟⎟⎟⎠

(5)S
(2)

ij
= exp

⎛
⎜⎜⎜⎝

−maxp∈line(i,j)
���E

�
px, py

����
2

�2
E

⎞
⎟⎟⎟⎠

The third step is to solve final similarity. Integrating 
with the aforementioned approaches, we convey the final 
similarity as Eq. (6).

3.3.3  The proposed metric‑based semi‑supervised 
clustering approach

In this part, we combine the two methods aforementioned, 
namely LMNC and SMIP, to form a new metric function 
firstly. And then the generated combination function is 
applied to a semi-supervised clustering algorithm [34] by 
substituting its objective function to form a new metric-
based semi-supervised clustering algorithm. This algorithm 
proposed is called LSSC for short, which is used as the 
metric-based semi-supervised clustering approach in our 
proposed approach. Specifically, we formulate the similar-
ity between xi and xj by using a new metric function. The 
metric function is denoted as Eq. (7).

It is applied to cases where samples are pixels of one 
image, 

∧

D ij =
Sij

D(xi,xj)
 is the similarity for image pixel sam-

ples, where Sij is the space-based similarity calculated by 
Eq. (6). Otherwise Sij = 1, in the case of general data simi-
larity, and then 

∧

D ij =
1

D(xi,xj)
 is the similarity for general 

data samples, where D
(
xi, xj

)
 is the LMNC distance metric. 

The larger 
∧

D ij is, the more similar the pair samples are. The 
LSSC algorithm is described in Algorithm 1.

∇
�
=
�
−� � �

�
,∇

��
=

⎡⎢⎢⎣

−� � �

� � �

� � �

⎤⎥⎥⎦
,∇

��
=

⎡⎢⎢⎣

−�

�

�

⎤⎥⎥⎦
,∇

���
=

⎡⎢⎢⎣

� � −�

� � �

� � �

⎤⎥⎥⎦

(6)Sij =

√
S
(1)

ij
× S

(2)

ij

(7)
∧

D ij =
Sij

D
(
xi, xj

)

Algorithm 1. The LSSC Algorithm

Input data set { }nxxxX ,...,, 21= ; labeled data set








=
∧∧∧∧
mxxxX ,...,, 21 , nm ≤ ; the number of cluster k; the 

max-number of iterations t
Output cluster partition ( )kcccC ,...,, 21=

Process
1. Determine cluster centers. 

a. Extend
∧
X to adjacent data, which is assumed to belong to the same clustering, and generate labeled matrix

~
X . 

Partition
~
X into s different labeled subsets 







 ∗

iX

b. If s=k , k cluster centers 1

il

i l
i x X

v x
n ∗

∈

= ∑ , { }1,2,...,i k∈ , where in denotes the data total of the i-th cluster;

c. If s<k , s cluster centers 1

il

i l
i x X

v x
n ∗

∈

= ∑ , { }1,2,...,i s∈ , and the rest k-s cluster centers need further to be 

determined, k cluster centers are obtained by means of k-means, then remove s cluster centers nearest to iv and 

obtain the rest k-s ones;
d. If s>k , prompt error and reset labeled data. 
2. Partition clustering

a. Divide X into different clusters jc , { }1,2,...,j k∈ . Every data point is categorized into the nearest cluster center 

by calculating Eq. (7). 
3. Rebuild cluster centers

a. Recalculate cluster centers of jc : ∑∑ ∈
∈

=
jl

l

jl
l cx

lx

cx
x

b
j xv η

η
1 , where b is the number of iteration, 

lxη denotes the 

weight of lx in the collection data points of jc . 

4. Until tb ≥ the algorithm stops; otherwise turn back to step 2. 
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The third step is to solve final similarity. Integrating 
with the aforementioned approaches, we convey the final 
similarity as Eq. (6).

3.3.3  The proposed metric‑based semi‑supervised 
clustering approach

In this part, we combine the two methods aforementioned, 
namely LMNC and SMIP, to form a new metric function 
firstly. And then the generated combination function is 
applied to a semi-supervised clustering algorithm [34] by 
substituting its objective function to form a new metric-
based semi-supervised clustering algorithm. This algorithm 
proposed is called LSSC for short, which is used as the 
metric-based semi-supervised clustering approach in our 
proposed approach. Specifically, we formulate the similar-
ity between xi and xj by using a new metric function. The 
metric function is denoted as Eq. (7).

It is applied to cases where samples are pixels of one 
image, 

∧

D ij =
Sij

D(xi,xj)
 is the similarity for image pixel sam-

ples, where Sij is the space-based similarity calculated by 
Eq. (6). Otherwise Sij = 1, in the case of general data simi-
larity, and then 

∧

D ij =
1

D(xi,xj)
 is the similarity for general 

data samples, where D
(
xi, xj

)
 is the LMNC distance metric. 

The larger 
∧

D ij is, the more similar the pair samples are. The 
LSSC algorithm is described in Algorithm 1.

∇
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(7)
∧

D ij =
Sij

D
(
xi, xj

)

Algorithm 1. The LSSC Algorithm

Input data set { }nxxxX ,...,, 21= ; labeled data set








=
∧∧∧∧
mxxxX ,...,, 21 , nm ≤ ; the number of cluster k; the 

max-number of iterations t
Output cluster partition ( )kcccC ,...,, 21=

Process
1. Determine cluster centers. 

a. Extend
∧
X to adjacent data, which is assumed to belong to the same clustering, and generate labeled matrix

~
X . 

Partition
~
X into s different labeled subsets 







 ∗

iX

b. If s=k , k cluster centers 1

il

i l
i x X

v x
n ∗

∈

= ∑ , { }1,2,...,i k∈ , where in denotes the data total of the i-th cluster;

c. If s<k , s cluster centers 1

il

i l
i x X

v x
n ∗

∈

= ∑ , { }1,2,...,i s∈ , and the rest k-s cluster centers need further to be 

determined, k cluster centers are obtained by means of k-means, then remove s cluster centers nearest to iv and 

obtain the rest k-s ones;
d. If s>k , prompt error and reset labeled data. 
2. Partition clustering

a. Divide X into different clusters jc , { }1,2,...,j k∈ . Every data point is categorized into the nearest cluster center 

by calculating Eq. (7). 
3. Rebuild cluster centers

a. Recalculate cluster centers of jc : ∑∑ ∈
∈

=
jl

l

jl
l cx

lx

cx
x

b
j xv η

η
1 , where b is the number of iteration, 

lxη denotes the 

weight of lx in the collection data points of jc . 

4. Until tb ≥ the algorithm stops; otherwise turn back to step 2. 

3.4  Consensus function

The CSPA algorithm [2] aims to obtain the final cluster-
ing �∗ from the set of M base clustering results marked as ∏

=
�
�1,�2, ...,�M

�
. In details, this algorithm constructs a 

N × N similarity matrix for each base clustering �m, and it is 
denoted as Sm, m ∈ {1, ...,M}. For two data samples xi and 
xj in �m, if xi and xj have the same class labels C

(
xi
)
= C

(
xj
)

, Sm
(
xi, xj

)
= 1; if not Sm

(
xi, xj

)
= 0. Then the M similarity 

matrix are merged to form a co-association (CO) matrix, 
which represented as CO

�
xi, xj

�
=

1

M

∑M

m=1
Sm

�
xi, xj

�
. This 

algorithm creates a similarity graph, where vertexes rep-
resent data points and edges’ weight represent similarity 
scores obtained from the CO matrix. Following that, the 
graph partitioning algorithm METIS is used to partition the 

similarity graph into k clusters and yield the final partition 
decision.

3.5  Complexity analysis

We also analyze the computational complexity of the 
HSCE algorithm. We refer to the corresponding time com-
plexity of HSCE as THSCE, which is estimated as follows:

THSCE = TSSCA + TLSSC + TCSPA.
where TSSCA is the computational cost of the constraint-

based SSCA algorithm and TLSSC is the computational 
cost of the metric-based LSSC algorithm. TSSCA and 
TLSSC serves as the computational complexity of the origi-
nal ensemble member generation algorithm. TCSPA is the 
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computational complexity of the final ensemble decision 
generation algorithm.

Concretely, TSSCA is affected by the number of instances 
n as follows: TSSCA = O(nlogn) [20]. For LSSC, step 1 
requires to determine k cluster centers, and thus has a 
complexity of O(k). Step 2 divide n instances into k clus-
ters, therefore requires O(nk). Step 3 recalculates the clus-
ter centers and its complexity is O(n). Step 2 and step 
3 compose an iteration process and the max-number of 
iterations is t. So TLSSC is estimated as follows: TLSSC = 
O(k) + O((O(nk) + O(n))t). The computational complexity 
of CSPA are as follows: TCSPA = O (n2km) [2], where n is 
the number of instances, k denotes the number of clusters 
in the final result, and m denotes the number of the original 
ensemble members (base clusterings). Overall, the compu-
tational complexity of HSCE is approximately O(n2km).

The space complexity of HSCE mainly depends on the 
initial size of the data sets, and thus the space complexity is 
O(mn), where m denotes the number of instances, n denotes 
the number of dimensions for general data sets, and m*n 
denotes the matrix of an image for image data sets.

4  Experiments

In this section, we apply the proposed approach to imple-
ment two groups of experiments. The first group makes 
some contrast tests on the proposed algorithm with the 
other related algorithms to verify clustering performance 
on general test data sets. The second group conducts com-
parison experiments for image data clustering comparing 
with several representative algorithms to evaluate the clus-
tering result.

We use Matlab as the programing language in our exper-
iment. The running environment consists of software and 
hardware. The configurations are described as follows. (a) 
Software: windows 64-bit operating system, MATLAB 
R2013a. (b) Hardware: CPU/Intel(R) Xeon(R), Graphics 
card/NVIDIA Quadro 5000, RAM/DDRA3 8 GB.

4.1  Comparison experiments on general data sets

4.1.1  Data set and experimental setting

In order to validate the effectiveness of our proposed clus-
tering algorithm, eight data sets are selected from UCI 
Machine Learning Repository [35] for following considera-
tions. Firstly, these data sets are widely used as benchmark 
data sets for machine learning and data mining research. 
In addition, these data sets enjoy different properties, of 
which three are binary-class and five are multiple-class. 

Furthermore, the dimensional representations are with dis-
tributions ranging from low to high. The detailed descrip-
tion of these data sets are showed in Table 1.

In this section, the SMIP need to be ignored. So, the 
metric function of LSSC algorithm uses the general form, 
i.e., 

∧

D ij =
1

D(xi,xj)
, where D

(
xi, xj

)
 is the LMNC distance 

metric between two instances. Some related parameters are 
set as reported in literature [20, 23]. In LSSC algorithm, 
the maximum of iterations is set as 150. The number of 
clusters k is set as the same as the ground-true class num-
ber. Next, we conduct three comparison experiments on 
UCI data sets. For each dataset, we repeat experiments for 
20 trials.

On one hand, the number of supervised information 
(included pairwise constraints and labels) has effect on the 
result of semi-supervised clustering ensemble algorithm. 
In order to test the effectiveness of supervised information, 
we investigate the impact of supervised information on the 
performance of HSCE. In our experiments, we select the 
percent of supervised information as 0, 5, 10, 15, 20, 25% 
to analyze the effect of supervised information, where 0% 
means without any supervised information.

On the other hand, HSCE is compared with the follow-
ing eight representation semi-supervised clustering algo-
rithms. Two constraint-based clustering algorithms are 
LCVQE [17] and PMMC [19]. Two metric-based clus-
tering algorithms are ITML [21] and LMNN [22]. Three 
hybrid clustering algorithms which combined constraint-
based and metric-based are MPCKM [11], SCKMM 
[12] and ESCSSAP [15]. One semi-supervised cluster-
ing ensemble algorithm is MVSCE [27]. For the sake of 
fair comparison with other algorithms, we employ 20% 
of all the samples of each class as labeled samples, then 
those labeled samples are used to produce pairwise con-
straints in metric-based method. Meanwhile, we select 

Table 1  The characteristics of these data sets

Data set Number of 
instances

Number of 
dimensions

Number 
of clus-
ters

Segment 2310 19 7
Vowel 360 10 4
Ecoli 336 7 8
Grass 214 9 6
Iris 150 4 3
Ionosphere 351 34 2
Mushroom 8124 22 2
Statlog(heart) 270 13 2
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20% must-link constraints of all instances’ must-link con-
straints and 20% cannot-link constraints of all instances’ 
cannot-link constraints for each class in constraint-based 
method.

Furthermore, to obtain a better understanding of our 
work, we compare the proposed method with other semi-
supervised clustering algorithms based on the average 
running times, included LCVQE [17], ITML [21], SMUC 
[10] and RSGrid [13]. In this part of experiment, we test 
the time performance of HSCE on the whole dataset and 
employ 20% of supervised information for each dataset.

4.1.2  Evaluation criterion

In our experiments, we adopt two popular evaluation cri-
teria on the clustering performance.

a. Normalized mutual information (NMI for short). It 
reflects the coherence between the inferred clustering 
and the ground truth aggregation [36]. Let C be the 
random variable denoting the cluster assignments of 
data points, and K be the random variable denoting the 
underlying class labels, and then the NMI measure is 
defined as

 where I(X;Y) = H(X) − H(X|Y) is the mutual infor-
mation between the random variables X and Y, H(X) 
is the Shannon entropy of X, and H(X|Y) is the condi-
tional entropy of X given Y. The normalization by the 
average entropy of C and K makes the value of NMI 
stay between 0 and 1.

b. F-Measure. It evaluates the clustering result based on 
the underlying classes and considers the same-cluster 
pairs. Pairwise F-measure relies on the traditional 
information retrieval measures. It consists of precision 
index and recall index. The value of F-measure stays 
between 0 and 1. F-Measure is defined as

NMI =
2I(C;K)

H(C) + H(K)

Precision =

#Samples Correctly Predicted In Same Cluster

#Total Samples Predicted In Same Cluster

Recall =
#Samples Correctly Predicted In Same Cluster

#Total Samples In Same Cluster

F −Measure =
2 × Precision × Recall

Precision + Recall

For both two evaluation indexes, the larger the value it 
is, the more similar the groupings by clustering and those 
by the ground true class labels.

4.1.3  Experimental results and analysis

To obtain a comprehensive understanding of our work, we 
add the number of supervised information in the experi-
mental process for each data set gradually. For each case, 
the average NMI and F-measure values of HSCE are shown 
in Fig.  2. From these results, we get some interesting 
points. NMI and F-measure values of HSCE are consider-
ably improved as the percentage of supervised information 
increases. The more supervised information make the bet-
ter performance of semi-supervised clustering ensemble. 
This is due to the fact that more abundant labeled instances 
are, more reliable the metric measure is. At the same time, 
the more pairwise constraints are, the more completely the 
violation issue of pairwise constraints is solved. As a result, 
HSCE achieve better performance through adding prior 
knowledge.

Tables  2 and 3 separately summarize the NMI and 
F-Measure performance of the proposed semi-supervised 
clustering algorithm and the other eight algorithms based 
on the same proportion of constraints over different data 
sets. In the both tables, the top highest NMI and F-meas-
ure scores are highlighted in bold font. Table 4 reports the 
average running times of all the algorithms. From these 
comparison results, these semi-supervised clustering algo-
rithms demonstrate the significantly different degree on 
clustering performance. The detailed analysis of this group 
experiment is summarized as follows.

Firstly, as a whole, we observe that SCKMM, E-SCS-
SAP, MVSCE and HSCE can consistently achieve com-
prehensive better-performance with higher value on both 
two indexes, and outperform other algorithms obviously. 
This is due to the fact that a combination method of both 
pairwise constraints and metric measure can obtain perfor-
mance superior to other traditional single clustering meth-
ods (either constraint-based or metric-based). MVSCE 
and HSCE work well than other algorithms distinctly, we 
can verify that the cluster ensemble approaches are able to 
integrate multiple clustering solutions and provide a more 
accurate, robust and stable final result when compared with 
standard clustering algorithms.

Secondly, as can be seen from results, the two metric-
based methods achieve a little higher performance than 
the two constraint-based methods on most data sets. This 
observation can be explained that sufficient pairwise con-
straints and labeled instances are good for measuring the 
distance between instances with an accurate metric func-
tion, which can easily enforce samples from the same clus-
ter closely and samples from different clusters far apart.
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Fig. 2  NMI and F-measure values with supervised information increasing
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Thirdly, although HSCE fails to achieve the best per-
formance on few date sets, its values still extremely close 
to the best ones. This can be attributed to the fact that the 
proposed HSCE algorithm is considerably effective in uti-
lizing the pairwise constraints and learning accurate metric 

measure to improve clustering performance. In addition, 
HSCE refers to combine a number of base partitions for 
a particular data set into a consensus clustering solution. 
Cluster ensemble sufficiently improved the clustering result 
of individual clustering algorithm. Thus, the HSCE algo-
rithm provides an appealing clustering performance with 
high accurate, stable and meaningful.

Fourthly, two different evaluation metric are used to 
evaluate results, namely NMI and F-measure. The two 
index results are not always consistent on all data sets. 
For example, on the same data set Vowel, the NMI value 
of E-SCSSAP is slightly higher than HSCE. And yet, the 
F-measure performance of HSCE is better than E-SCS-
SAP. This phenomenon indicates the chosen of evalua-
tion index is important for evaluating the performance of 
clustering algorithm. Adopting more than one evaluation 
index can measure clustering results more accurately and 
comprehensively.

In this section, the average time consumptions for 20 tri-
als of each clustering algorithm are reported in Table 4. In 
addition to the aforementioned factors about running envi-
ronment, the runtime of proposed method is related to data 
sets, the attributes of data sets, the number of iterations and 
the number of clusters, and so on. From these experimental 
results, it can be seen that the time performance of HSCE 
is generally efficient and considerable within an acceptable 
time. Although it is not the fastest algorithm on most data 
sets, we can learn from the experimental results that HSCE 

Table 2  Evaluation of 
clustering performance on NMI 
for nine algorithms

Data set LCVQE PMMC ITML LMNN MPCKM SCKMM E-SCSSAP MVSCE HSCE

Segment 0.696 0.734 0.685 0.758 0.534 0.837 0.847 0.848 0.853
Vowel 0.592 0.669 0.577 0.603 0.557 0.795 0.816 0.784 0.790
Ecoli 0.716 0.802 0.666 0.620 0.642 0.831 0.879 0.796 0.882
Grass 0.579 0.668 0.646 0.719 0.508 0.863 0.865 0.855 0.894
Iris 0.699 0.854 0.902 0.854 0.683 0.894 0.888 0.903 0.893
Ionosphere 0.737 0.729 0.779 0.761 0.737 0.786 0.811 0.779 0.826
Mushroom 0.815 0.854 0.860 0.853 0.726 0.904 0.872 0.883 0.891
Statlog (heart) 0.713 0.706 0.714 0.763 0.779 0.812 0.834 0.862 0.849

Table 3  Evaluation of 
clustering performance on 
F-Measure for nine algorithms

Data set LCVQE PMMC ITML LMNN MPCKM SCKMM E-SCSSAP MVSCE HSCE

Segment 0.768 0.732 0.721 0.728 0.731 0.969 0.923 0.928 0.937
Vowel 0.679 0.744 0.749 0.762 0.694 0.843 0.836 0.859 0.861
Ecoli 0.828 0.957 0.960 0.971 0.788 0.965 0.971 0.976 0.968
Grass 0.624 0.642 0.664 0.697 0.671 0.851 0.875 0.847 0.919
Iris 0.771 0.926 0.963 0.933 0.888 0.967 0.958 0.966 0.973
Ionosphere 0.976 0.879 0.892 0.980 0.926 0.945 0.979 0.981 0.987
Mushroom 0.890 0.971 0.977 0.974 0.869 0.976 0.973 0.976 0.972
Statlog(heart) 0.852 0.856 0.864 0.892 0.753 0.894 0.900 0.897 0.908

Table 4  Comparison of average running times (s)

Data set Algorithm Time

Segment ITML 0.13
HSCE 7.65

Vowel ITML 0.04
SMUC 18.78
HSCE 1.47

Ecoli LCVQE 0.01
HSCE 1.29

Grass LCVQE <0.01
HSCE 0.72

Iris LCVQE <0.01
ITML 0.03
HSCE 0.58

Ionosphere LCVQE <0.01
ITML 0.18
SMUC 2.10
HSCE 1.32

Mushroom RSGrid 25.16
HSCE 23.84

Statlog(heart) HSCE 0.83
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works stably. Furthermore, it demonstrates the proposed 
method is feasible, reasonable and ideal on the efficiency.

4.2  Comparison experiments on image data sets

4.2.1  Data set and experimental setting

To illustrate the implementation of the proposed method 
for image pixels clustering, eight images in the size of 
481  ×  321 are randomly chosen from the Berkeley Seg-
mentation Data Set (BSDS500) [37], as showed in Table 5. 
For comparison, we also implement image data clustering 
using the following four methods. (a) K-means, an unsu-
pervised clustering algorithm. (b) LSSC, a metric-based 
semi-supervised clustering algorithm proposed in this 
paper. (c) SSKFCM [14], a semi-supervised clustering 
approach using the kernel-based method based on KFCM; 
(d) BSMSCE [26], a semi-supervised clustering ensemble 
algorithm.

Feature extraction is a foundational step and a premise 
to generate satisfied clustering results for image data. In the 
experiments, we extract two parts of characteristics of an 
image, namely immanent characteristic and spatial infor-
mation. On one hand, the immanent characteristic we need 
to extract concretely included the color feature at one pixel 
site, the surrounding texture feature LBP value, and the 
color gradient which denotes sudden change when meet-
ing region edge or noise pixels. On the other hand, from 
the perspective of spatial information, we extract the color 
feature of pixels based on CIE L*A*B* space and the edge 
information of image. The result of feature extraction fits 
more closely with human perception.

In this section, LMNC and SMIP are combined to form 
the metric function of LSSC algorithm, which is conveyed 
as 

∧

D ij =
Sij

D(xi,xj)
. The LMNC metric method for SSCA algo-

rithm mainly measures based on the extracted immanent 
characteristic, which are the color gray value at one pixel 
site, the color gradient value calculated by Sobel operator 
and the texture feature LBP value of neighborhood pixels 
(with 3 × 3 windows). Meanwhile the SMIP metric method 
considers the patch-based color feature similarity and the 
edge-based spatial feature similarity. In other words, the 
extracted spatial information is used to compute the SMIP 
metric.

Likewise, the experimental conditions are set as 
reported in literature [20, 23, 30]. Firstly, the maximum 
of iterations is set as 150 in LSSC algorithm. In addi-
tion, we need to provide some information. We ran-
domly sample some pixels from different partitions of an 
image as labeled data. Those labeled pixels are used in 
metric-based LSSC algorithm. The pixels with the same 
label indicate they are similar, while with different labels 
dissimilar. Then the set of must-links M and the set of 
cannot-links C can be obtained respectively. Those con-
straint information are used in constraint-based SSCA 
algorithm. The number of clusters k is set as the same as 
the ground-true class number.

4.2.2  Evaluation criterion

Here, we set the number of clusters equal to the number 
of ground-true clusters. Clustering accuracy (ACC) met-
ric is used to compare the clusters generated by these 
algorithms with the ground-true clusters to evaluate the 
image data clustering performance [38]. Clustering accu-
racy discovers the one-to-one relationship between clus-
ters and ground-true clusters and measures the extent to 
which each cluster contain data points from the corre-
sponding ground-true cluster. It sums up the whole 
matching degree between all pair ground-true cluster-
clusters. ACC can be computed as 

Table 5  The eight chosen original images

Image 1 Image 2 Image 3 Image 4

Image 5 Image 6 Image 7 Image 8
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Fig. 3  Clustering performance with different percent of labeled pixels



1098 Int. J. Mach. Learn. & Cyber. (2018) 9:1085–1100

1 3

Acc =
1

N
max

�
∑

Ck ,Lm

T
�
Ck, Lm

��
, where N is the total 

number of pixels in an image, Ck denotes the k-th cluster 
in final results, and Ck denotes the ground-truth m-th 
cluster. From the perspective of an image, T

(
Ck, Lm

)
 is 

the number of pixels belonging to ground-true cluster m 
that are assigned to cluster k. ACC computes the maxi-
mum sum of T

(
Ck, Lm

)
 for all pairs of clusters and 

ground-true clusters, and these pairs have no overlaps. 
The greater clustering accuracy means the better cluster-
ing performance.

4.2.3  Experimental results and analysis

Figure  3 illustrates the graphical ACC results of the five 
methods with different numbers of labeled pixels. As the 
percent of labeled pixels increases, the unsupervised clus-
tering K-means algorithm is used as the baseline cluster-
ing, whose performance is still a steadily numerical value. 
While the accuracy of other semi-supervised clustering 
algorithms reveals gradually increasing trend as a whole 
with the increase of labeled data. What’s more, Table 6 dis-
plays the experiment results of image data clustering per-
formance on ACC with 40% of labeled pixels, which shows 
the accuracy of the five algorithms with numerical value 
intuitively. From these results, we obtain several attractive 
insights.

Firstly, we observe that SSKFCM and LSSC often 
achieve the better performance than K-means on the eight 
images. K-means gets better grade only with few super-
vised information on image 2. But when the percent of 
labeled pixels reaches a certain number, both SSKFCM and 
LSSC algorithms behave better and better, and far exceeds 
K-means. It demonstrates that comparing with unsuper-
vised clustering, semi-supervised clustering methods can 
improve the clustering accuracy by effectively exploring 

the available information that is usually in the form of pair-
wise constraints and instance labels. As a result, the semi-
supervised clustering algorithms outperform other tradi-
tional unsupervised clustering methods.

Secondly, we can observe that the performance of the 
LSSC algorithm is always comparable to, and better than 
the SSKFCM algorithm when there are enough labeled 
information, even better than BSMSCE and HSCE few 
times. It can be understandable that the proposed LSSC 
method takes into full account of the intrinsic properties 
and spatial information of each pixel so that the metric 
function can measure the similarity more accurately, and 
easily make points from different clusters far apart and 
those from the same clusters closely. Thus, LSSC provides 
a more satisfying clustering results.

Thirdly, BSMSCE and HSCE can consistently out-
perform better than SSKFCM and LSSC in most of our 
experiments. This observation can be explained by the fact 
that both BSMSCE and HSCE respectively have a cluster 
ensemble mechanism in the process of determining accu-
rate and robust clustering decision from an ensemble of 
base clustering results. In other words, cluster ensemble 
combined different solutions of various clustering meth-
ods can achieve accuracy superior to those of individual 
clustering.

Fourthly, compare to HSCE, the performance of BSM-
SCE has a little advantage on image 3, image 4 and image 
8, and the performance of LSSC behave a little advantage 
on image 7. Nonetheless, for overall perspective, HSCE 
displays better than BSMSCE and LSSC in most cases. 
In view of image peculiarity, HSCE also obtains more 
supervised information by propagating limited pairwise 
constraints and considerably effective in utilizing the pair-
wise constraints, so that it not only performs the metric 
accurately, but also solve the violation issue effectively. 
Thereby, the clustering performance of HSCE is suffi-
ciently improved.

It is worth noting that HSCE improves the robustness 
as well as the quality of clustering results. HSCE nearly 
always achieves the best performance with steady devel-
opment trend on the eight images. This observation can be 
explained by the fact summing up the above.

5  Conclusion

In this paper, we present a novel semi-supervised cluster-
ing ensemble approach for data clustering. Our method is 
different from the previous studies that integrates the con-
straint-based method and the metric method into a semi-
supervised clustering ensemble approach in the hope of 
gaining the more optimal accuracy, robustness and stabil-
ity of clustering dramatically. Specifically, we construct a 

Table 6  ACC results with 40% of labeled pixels

Image Unsu-
pervised 
clustering

Semi-
supervised 
clustering

Semi-super-
vised cluster 
ensemble

Ours

K-means SSKFCM BSMSCE LSSC HSCE

1 0.873 0.901 0.932 0.925 0.962
2 0.792 0.843 0.918 0.874 0.936
3 0.655 0.832 0.897 0.837 0.913
4 0.569 0.767 0.854 0.793 0.876
5 0.766 0.882 0.934 0.916 0.943
6 0.745 0.907 0.914 0.879 0.929
7 0.796 0.913 0.946 0.921 0.957
8 0.690 0.790 0.847 0.803 0.915
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new metric function with two forms in our proposed met-
ric-based semi-supervised clustering algorithm. One is for 
general data clustering based on the LMNC distance met-
ric. The other is for image data clustering by combining the 
similarity of image pixels with the LMNC metric from the 
image perspective, concretely it builds collections of the 
inherent attributes and spatial information of pixels, which 
efficiently and accurately reflects the relationship between 
image pixels. Moreover, we conduct two group comparison 
experiments, respectively on general data sets and image 
data sets. Multiple comparison results indicate that this 
proposed scheme can achieve better clustering performance 
than a number of competing clustering algorithms on the 
whole. Empirically as well as theoretically, it confirms the 
feasibility and effectiveness of the proposed method with 
encouraging results.

However, what we are done still leaves much to be 
desired. For instance, we should add noise factors into the 
experiments to test the sensitivity of clustering algorithms 
to noise, which can reveal the stability and robustness of 
clustering approaches. At the same time, there are a great 
many interesting directions to extend our work. As we all 
known, clustering is often viewed as a foundation technol-
ogy in image process and computer vision. To investigate 
further, our future work will develop clustering into the 
mapping process from low-level features of images to high-
level semantic comprehension in conjunction with other 
related techniques.
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