
Vol.:(0123456789)1 3

Int. J. Mach. Learn. & Cyber. (2018) 9:1069–1083 
DOI 10.1007/s13042-016-0626-8

ORIGINAL ARTICLE

Synchronization for memristive chaotic neural networks using 
Wirtinger‑based multiple integral inequality

Cheng‑De Zheng1 · Yue Zhang1 · Zhanshan Wang2 

Received: 27 December 2015 / Accepted: 22 December 2016 / Published online: 23 February 2017 
© Springer-Verlag Berlin Heidelberg 2017

1  Introduction

Based on physical symmetry arguments, Chua [7] pre-
dicted that besides the resistor, capacitor and inductor, 
there should be a fourth fundamental two-terminal circuit 
element called memristor (short for memory and resistor), 
which is defined by a nonlinear relationship between charge 
and flux linkage. About 40 years later, members of the 
Hewlett–Packard Laboratories [31] realized the memristor 
as a TiO2 nanocomponent. The memristor is a two-terminal 
passive device whose value depends on the magnitude and 
polarity of the voltage applied to it and the length of the 
time that the voltage has been applied. In other words, the 
memristor has variable resistance and exhibits the mem-
ory characteristics. For these properties, it is shown that 
the memristor device has many promising applications 
such as device modeling, signal processing, one of which 
is to emulate synaptic behavior. As well-known, artificial 
neural networks can be realized by nonlinear circuits. In 
the circuits, the connection weights are implemented by 
fixed value resistors, which are supposed to represent the 
strength of synaptic connections between neurons in brain. 
The strength of synapses changes and accords with Heb-
bian learning rule while the resistance is invariable [30]. 
In order to simulate the artificial neural network of human 
brain better, the resistor is replaced by the memristor, 
which leads to a new model of neural networks: memristor-
based neural networks.

In the last two decades, synchronization of chaos has 
been extensively studied. In the seminal paper [26], Pecora 
and Carroll first found that two chaotic trajectories with dif-
ferent initial conditions can be synchronized. Since then 
researchers around the world have been actively engaged in 
discovering different possible synchronization scenario of 
chaos and have presented many types of synchronization 
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approach due to their potential applications in secure com-
munication, biological networks, chemical reactions, bio-
logical neural networks, information processing, etc [1, 12, 
13, 19–22, 27, 28, 34–37, 46–52]. Recently, some achieve-
ments about synchronization control of memristor-based 
neural networks have been obtained. For instance, based 
on the drive-response concept, the differential inclusions 
theory and Lyapunov functional method, Wu et  al. [39] 
derived a delay-dependent feedback controller to achieve 
the exponential synchronization for memristor-based recur-
rent neural networks with time delays by use of linear 
matrix inequalities (LMIs), Wang et  al. [32] established 
several sufficient conditions to guarantee the exponential 
synchronization for coupled memristive neural networks 
with time delays also by applying LMIs approach, Mathi-
yalagan et  al. [23] proposed feedback controller gains to 
guarantee the exponential synchronization for delayed 
impulsive memristive BAM neural networks by using a 
time-varying Lyapunov function and LMIs technique, 
Wang et al. [33] obtained a sufficient condition to guarantee 
the exponential synchronization for a class of memristive 
chaotic neural networks with mixed delays and parametric 
uncertainties by using the comparison principle and LMIs 
form, Song et al. [30] designed two kinds of feedback con-
trollers and gave one new algebraic criterion and a matrix-
dependent condition to ensure the exponential synchroniza-
tion in the p-th moment of the stochastic memristive neural 
networks by means of the stochastic differential inclusions 
theory, Jiang et al. [10] presented several memoryless con-
trollers to guarantee the exponential synchronization for a 
class of memristor-based recurrent neural networks by use 
of LMIs, Jiang et al. [14] proposed a few sufficient condi-
tions for finite-time stability and finite-time synchroniza-
tion for a kind of memristor-based neural network with the 
designed controller by utilizing the matrix-norm inequality 
and LMIs.

However, the results of [4, 10, 14, 30, 32, 33, 38–40, 44, 
45] on synchronization or anti-synchronization control of 
delayed memristor-based neural networks were obtained 
under the following typical assumption:

As was pointed out in [41, 42] that this assumption 
holds only when f(x(t)) and f(y(t)) have different signs or 
f (x(t))f (y(t)) = 0. Hence, these results are useless to the 
theory and application in engineering. To establish effec-
tive synchronization conditions remains challenging.

During the past decade, the Jensen inequality [11] has 
been intensively used in the context of time-delay or sam-
pled-data systems since it is an appropriate tool to derive 
tractable stability conditions expressed in terms of LMIs. 
Recently, Fang and Park [8] introduced a multiple integral 
form of the Jensen inequality. To reduce conservatism, 

[A, Ā]f (x(t)) − [A, Ā]f (y(t)) ⊆ [A, Ā](f (x(t)) − f (y(t))).

Seuret and Gouaisbaut [29] presented a Wirtinger-based 
integral inequality which encompasses the Jensen one and 
significantly improves existing ones; Park et  al. [24] and 
Lee et al. [17] established double and multiple integral form 
of the Wirtinger-based integral inequality respectively, 
which encompass the Jensen ones [8, 11] and obtains more 
tighter lower bounds of double and multiple integral terms. 
In order to further reduce conservatism, very recently, Zeng 
et al. [43] developed a free-matrix-based inequality which 
encompasses the Wirtinger-based inequality [29] and is 
more tighter than existing ones.

Motivated by aforementioned discussion, in this paper 
we study the synchronization problem for a class of delayed 
memristive chaotic neural networks. First, based on the 
Wirtinger-based double integral inequality (see Lemma 2), 
two novel inequalities (see Lemma 1) are proposed, which 
are multiple integral forms of the Wirtinger-based integral 
inequality [29]. Next, by applying the reciprocally convex 
combination approach for high order case (see Lemma 6), 
a free-matrix-based inequality (see Lemma 5), novel delay-
dependent conditions are established to achieve the syn-
chronization for the memristive chaotic neural networks. 
All the results are based on dividing the bounding of acti-
vation function into two subintervals with equal length. 
Finally, a numerical example is provided to demonstrate the 
effectiveness of the theoretical results.

Notation: Throughout this paper, solutions of all the 
systems considered in the following are intended in Filip-
pov’s sense, where [a, b] represents the interval a ≤ t ≤ b. 
Let WT ,W−1 denote the transpose and the inverse of a 
square matrix W,   respectively. Let W > 0(<0) denote a 
positive (negative) definite symmetric matrix, In, 0n denote 
the identity matrix and the zero matrix of n−dimension 
respectively, 0m×n denotes the m × n zero matrix, the sym-
bol “*” denotes a block that is readily inferred by symme-
try. The shorthand col{M1,M2,… ,Mk} denotes a column 
matrix with the matrices M1,M2,… ,Mk. sym(A) is defined 
as A + AT , diag{⋅} stands for a diagonal or block-diago-
nal matrix, ℕ = {1, 2,… , n}. For 𝜒 > 0,([−𝜒 , 0];ℝn

)
 

denotes the family of continuous functions � from [−� , 0] 
to ℝn with the norm ||�|| = sup−�≤s≤0 |�(s)|. Matrices, 
if not explicitly stated, are assumed to have compatible 
dimensions.

2 � Problem description

The memristor-based recurrent neural network can be 
implemented by very large scale of integration circuits and 
the connection weights are implemented by the memristors. 
By Kirchoff’s current law, a general class of memristor-
based recurrent neural networks can be written in the form 
as:
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with initial conditions xi(t) = �i(t) ∈ ((−∞, 0];ℝ
)
, where 

i ∈ ℕ, n corresponds to the number of units in a neural net-
work, xi(t) is the voltage of the capacitor �i, ci > 0 repre-
sents the rate with which the i-th unit will reset its poten-
tial to the resting state in isolation when disconnected from 
the network and external inputs at time instant t, fj(⋅) is the 
feedback function, �(t) is the discrete transmission time-
varying delay satisfying 0 ≤ 𝜏(t) ≤ 𝜏, where 𝜏 is a real con-
stant. aij(xi(t)), bij(xi(t)) represent the memristive synaptic 
weights, and

where �ij, �̃ij are the memductance of the resistor �ij, �̃ij 
respectively. �ij denotes the resistor between the continu-
ous feedback function fi(xi(t)) and xi(t); �̃ij denotes the 
resistor between the feedback function fi(xi(t − �(t))) and 
xi(t). �i denotes the external input or bias from outside the 
neural networks at time instant t.

As well-known, aij(xj(t)), bij(xj(t)) will change as 
pinched hysteresis loops change [5]. According to the 
feature of the memristor and the current–voltage charac-
teristics, we have

and aij(±Tj) = áij or àij, bij(±Tj) = b́ij or b̀ij, where switch-

ing jumps Tj > 0, áij, àij, b́ij, b̀ij(i, j ∈ ℕ) are known con-
stants. To state conveniently, we denote 
a
ij
= min{áij, àij}, āij = max{áij, àij}, 

b
ij
= min{b́ij, b̀ij}, b̄ij = max{b́ij, b̀ij}.

To ensure the existence of the equilibrium point of 
system (1), the following assumption is given.

Assumption 1  The neural activation functions are 
bounded, fj(±Tj) = 0, and satisfy the following Lipschitz 
conditions with Lipschitz constants 𝜎j > 0

For notational simplicity, we denote 
Σ = diag{�1, �2,… , �n}.

(1)

ẋi(t) = − cixi(t) +

n∑
j=1

aij(xj(t))fj(xj(t))

+

n∑
j=1

bij(xj(t))fj(xj(t − 𝜏(t))) + Ji, t > 0,

aij(xi(t)) =
�ij

�i

sgnij, bij(xi(t)) =
�̃ij

�i

sgnij,

Ji =
�i

�i

, sgnij =

{
1, i ≠ j,

−1, i = j,

aij(xj(t)) =

{
áij, |xj(t)| < Tj,

àij, |xj(t)| > Tj,
bij(xj(t)) =

{
b́ij, |xj(t)| < Tj,

b̀ij, |xj(t)| > Tj,

|fj(u) − fj(v)| ≤ �j|u − v|, u, v ∈ ℝ, j ∈ ℕ.

Throughout this paper, we will use the definitions in the 
sequel:

Definition 1  ([3]) Suppose E ⊆ ℝ
n, then x → F(x) is 

called a set-valued map, if for each point x ∈ E, there exists 
a nonempty set F(x) ⊆ ℝ

n. A set-valued map F with non-
empty values is said to be upper semi-continuous at x0 ∈ E, 
if for any open set N containing F(x0), there exists a neigh-
borhood M of x0 such that F(M) ⊆ N. The map F(x) is 
said to have a closed (convex, compact) image if for each 
x ∈ E, F(x) is closed (convex, compact).

Definition 2  ([9]) For the system ẋ(t) = F(x), x ∈ ℝ
n 

with discontinuous right-hand sides, a set-valued map is 
defined as follows:

where co{G} is the closure of the convex hull of set 
G,B(x, �) = {y:‖y − x‖ ≤ �}, and �(E) is the Leb-
esque measure of set E. A solution in Filippov’s sense 
of the Cauchy problem for this system with initial con-
dition x(0) = x0 is an absolutely continuous function 
x(t), t ∈ [0, T], 0 < T ≤ ∞, which satisfies x(0) = x0 and 
differential inclusion:

Since the system (1) is a differential equation with dis-
continuous right-hand side, its solution in the conventional 
sense does not exist. Based on the theory of differential 
inclusions and the definition of Filippov solution [9], the 
model (1) can be rewritten as the following differential 
inclusion:

Obviously, Φ(s) is an upper semi-continuous, closed, con-
vex and bounded set-valued map for all s ∈ ℝ. From [2, 
18] there exists a Filippov solution for the model (1) with 
Assumption 1.

The system (1) is considered as a drive system. Based 
on the drive-response concept for synchronization of cou-
pled chaotic systems, which was initially proposed by 
Pecora and Carroll in [26], the corresponding response 
system of (1) is given in the following form:

Φ(x) =
⋂
𝛿>0

⋂
𝜇(M)=0

co{F(B(x, 𝛿)�M)},

ẋ(t) ∈ Φ(x), for almost all t ∈ [0, T].

ẋi(t) ∈ Φ(xi) = − cixi(t) +

n∑
j=1

[a
ij
, āij]fj(xj(t))

+

n∑
j=1

[b
ij
, b̄ij]fj(xj(t − 𝜏(t))) + Ji, t > 0.
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with initial conditions yi(t) = �i(t) ∈ ((−∞, 0];ℝ
)
, where 

ui(t) ∈ ℝ is the state feedback controller given to achieve 
the synchronization between the drive system and the 
response system.

Let ei(t) = yi(t) − xi(t) be the synchronization error and 
from the theory of differential inclusion, we can get the 
synchronization error system as follows:

In this paper, the control input vector with state feedback is 
designed as follows:

where u(t) = (u
1

(t), u
2

(t),… , u
n
(t))T ∈ ℝ

n
, e(t) = (e

1

(t)

e
2

(t),… , e
n
(t))T ∈ ℝ

n
. For convenience, we denote 

gj(ej(t)) = fj(yj(t)) − fj(xj(t)). From Assumption 1, we 
obtain that

for any u, v ∈ ℝ.

Based on the results of Wirtinger-based integral ine-
quality [29], Wirtinger-based double integral inequal-
ity [24] and Wirtinger-based multiple integral inequality 
[17], we introduce the following Wirtinger-based multi-
ple integral inequality:

Lemma 1  (See Appendix I for a proof) Given a non-
negative integer � and a positive definite matrix X ∈ ℝ

n×n. 
For any continuous function �:[a, b] → ℝ

n,  the following 
inequality holds:

(2)

ẏi(t) = − ciyi(t) +

n∑
j=1

aij(yj(t))fj(yj(t))

+

n∑
j=1

bij(yj(t))fj(yj(t − 𝜏(t))) + ui(t) + Ji, t > 0,

(3)

ėi(t) = − ciei(t) +

n∑
j=1

[
aij(yj(t))fj(yj(t)) − aij(xj(t))fj(xj(t))

]

+

n∑
j=1

[
bij(yj(t))fj(yj(t − 𝜏(t))) − bij(xj(t))fj(xj(t − 𝜏(t)))

]

+ ui(t), t > 0,

ei(t) =𝜑i(t) − 𝜙i(t), t ∈ (−∞, 0].

(4)u(t) = G1e(t) + G2e(t − �(t)),

(5)
|gj(u) − gj(v)| ≤ �j|u − v|, |gj(u)| ≤ �j|u|, gj(0) = 0, j ∈ ℕ

where

Especially, let �:[a, b] → ℝ
n be differentiable and its deriv-

ative be continuous, then for any positive integer i and any 
positive definite matrix X ∈ ℝ

n×n, the following inequality 
holds:

where

Lemma 2  (Seuret et  al. [29], Park et  al. [24], Lee 
et  al. [17]) Given a non-negative integer � and a positive 
definite matrix X ∈ ℝ

n×n. For any continuous function 
�:[a, b] → ℝ

n, the following inequality holds:

(6)
Θ𝚤(a, b, 𝜗,X) ≥ (𝚤 + 1)!

(b − a)𝚤+1
𝜌𝚤(a, b, 𝜗)

TX𝜌𝚤(a, b, 𝜗)

+
(𝚤 + 3)𝚤!

(b − a)𝚤+1
𝜌̄𝚤(a, b, 𝜗)

TX𝜌̄𝚤(a, b, 𝜗),

Θ𝚤(a, b, 𝜗,X) = ∫
b

a
∫

v1

a

⋯∫
v𝚤

a

𝜗(s)TX𝜗(s)dsdv𝚤 … dv1,

Θ0(a, b, 𝜗,X)

= ∫
b

a

𝜗(s)TX𝜗(s)ds;

𝜌𝚤(a, b, 𝜗) = ∫
b

a
∫

v1

a

⋯∫
v𝚤

a

𝜗(s)dsdv𝚤 … dv1,

𝜌0(a, b, 𝜗) = ∫
b

a

𝜗(s)ds;

𝜌̄𝚤(a, b, 𝜗) = 𝜌𝚤(a, b, 𝜗) −
𝚤 + 2

b − a
𝜌𝚤+1(a, b, 𝜗).

(7)
Θi(a, b, 𝜗̇,X) ≥ (i + 1)!

(b − a)i+1
�i(a, b, 𝜗)

TX�i(a, b, 𝜗)

+
(i + 3)i!

(b − a)i+1
𝜉i(a, b, 𝜗)

TX𝜉i(a, b, 𝜗),

ℏi(a, b, �) = −
(b − a)i

i!
�(a) + �i−1(a, b, �),

�i(a, b, �) =
(b − a)i

(i + 1)!
�(a) + �i−1(a, b, �) −

i + 2

b − a
�i(a, b, �).

Ω𝚤(a, b, 𝜗,X) ≥ (𝚤 + 1)!

(b − a)𝚤+1
𝛽𝚤(a, b, 𝜗)

TX𝛽𝚤(a, b, 𝜗)

+
(𝚤 + 3)𝚤!

(b − a)𝚤+1
𝛽𝚤(a, b, 𝜗)

TX𝛽𝚤(a, b, 𝜗),
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where

Especially, let �:[a, b] → ℝ
n be differentiable and its deriv-

ative be continuous, then for any positive integer i and any 
positive definite matrix X ∈ ℝ

n×n, the following inequality 
holds:

where

 Similar to the result of Ref. [17], we have the following 
conclusion:

Lemma 3  (See Appendix II for a proof) Let �:[a, b] → ℝ
n 

be continuous, i be a positive integer and c be a scalar with 
a < c < b. �i(a, b, �), �i−1(a, b, �) are defined in Lemmas 2 
and 3 respectively, then the following relations hold

In order to obtain the results, we need the following 
lemmas.

Ω𝚤(a, b, 𝜗,X) = ∫
b

a
∫

b

v1

…∫
b

v𝚤

𝜗(s)TX𝜗(s)dsdv𝚤 … dv1,

Ω0(a, b, 𝜗,X)

= ∫
b

a

𝜗(s)TX𝜗(s)ds;

𝛽𝚤(a, b, 𝜗) = ∫
b

a
∫

b

v1

…∫
b

v𝚤

𝜗(s)dsdv𝚤 … dv1,

𝛽0(a, b, 𝜗) = ∫
b

a

𝜗(s)ds;

𝛽𝚤(a, b, 𝜗) = 𝛽𝚤(a, b, 𝜗) −
𝚤 + 2

b − a
𝛽𝚤+1(a, b, 𝜗).

Ωi(a, b, 𝜗̇,X) ≥ (i + 1)!

(b − a)i+1
𝜓i(a, b, 𝜗)

TX𝜓i(a, b, 𝜗)

+
(i + 3)i!

(b − a)i+1
𝜔i(a, b, 𝜗)

TX𝜔i(a, b, 𝜗),

�
i
(a, b, �) =

(b − a)i

i!
�(b) − �

i−1(a, b, �),

�
i
(a, b, �) = −

(b − a)i

(i + 1)!
�(b) − �

i−1(a, b, �) +
i + 2

b − a
�
i
(a, b, �).

(8)

�i−1(a, b, �) = �i−1(a, c, �) +

i∑
j=1

(c − a)i−j

(i − j)!
�j−1(c, b, �),

(9)

�i−1(a, b, �) = �i−1(c, b, �) +

i∑
j=1

(b − c)i−j

(i − j)!
�j−1(a, c, �).

Lemma 4  (Chen et al. [6]) Under Assumption 1, the fol-
lowing inequalities hold for i, j ∈ ℕ

where âij = max{|a
ij
|, |āij|}, b̂ij = max{|b

ij
|, |b̄ij|}. That is, 

for any 𝜁ij(xj(t)), 𝜁ij(yj(t)) ∈ [a
ij
, āij], 𝜍ij(xj(t)), �ij(yj(t)) ∈

[b
ij
, b̄ij], we have

Lemma 5  (Zeng et  al. [43]) Let �:[a, b] → ℝ
n be dif-

ferentiable and its derivative be continuous, for symmet-
ric matrices R ∈ ℝ

n×n, X, Z ∈ ℝ
3n×3n, and any matrices 

Y ∈ ℝ
3n×3n, M,N ∈ ℝ

3n×n such that

the following inequality holds:

where � = col
{
�(b), �(a), 1

b−a
∫ b

a
�(s)ds

}
.

Lemma 6  (High order reciprocally convex combination, 
Kim et  al. [25], Lee et  al. [17]) Given a positive integer 
k,   two positive scalars p,  q such that p + q = 1. Assume 
that definite nonnegative symmetric constant matri-
ces X, Y ∈ ℝ

n×n and real constant matrices Si ∈ ℝ
n×n 

(i = 1, 2,… , k) satisfy

then for any two vectors �, � ∈ ℝ
n, the following inequality 

holds

|[a
ij
, āij]fj(xj(t)) − [a

ij
, āij]fj(yj(t))| ≤ âij𝜎j|xj(t) − yj(t)|,

|[b
ij
, b̄ij]fj(xj(t − 𝜏(t))) − [b

ij
, b̄ij]fj(yj(t − 𝜏(t)))|

≤ b̂ij𝜎j|xj(t − 𝜏(t)) − yj(t − 𝜏(t))|,

|𝜁ij(xj(t))fj(xj(t)) − 𝜁ij(yj(t))fj(yj(t))| ≤ âij𝜎j|xj(t) − yj(t)|,
|𝜍ij(xj(t))fj(xj(t − 𝜏(t))) − 𝜍ij(yj(t))fj(yj(t − 𝜏(t)))|
≤ b̂ij𝜎j|xj(t − 𝜏(t)) − yj(t − 𝜏(t))|.

⎡⎢⎢⎣

X Y M

∗ Z N

∗ ∗ R

⎤⎥⎥⎦
≥ 0

(10)

−�
b

a

𝜗̇(s)TR𝜗̇(s)ds ≤𝜛T

{
(b − a)

(
X +

1

3
Z

)

+ sym
{
M(I − I 0) + N(−I − I 2I)

}}
𝜛,

⎡⎢⎢⎢⎣

�
k

i

�
X Si

∗
�
k

i

�
Y

⎤
⎥⎥⎥⎦
≥ 0, ∀ i = 1, 2,… , k,
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where 
(
k

i

)
=

k!

i!(k−i)!
.

3 � Main results

Before presenting our results, for notational simplicity, 
we denote g(e(t)) = (g1(e1(t)), g2(e2(t)),… , gn(en(t)))

T , 
et = e(t), e𝜏 = e(t − 𝜏(t)), e𝜏 = e(t − 𝜏), and introduce a new 
vector as:

From the mean-value theorem for integral, it follows that

for any positive integer i. Therefore ð(t) can be well defined 
for �(t) = 0 or 𝜏(t) = 𝜏.

Let �j ∈ ℝ
n×(4m+7)n be block matrix entries, i.e. 

�j =
[
0n×(j−1)n In 0n×(4m+7−j)n

]
, j = 1, 2,… , 4m + 7. When 

1

pk
�TX� +

1

qk
�TX� ≥

�
�
�

�T�
X

∑k

i=1
Si

∗ Y

��
�
�

�
,

ð(t) = col

{
et, e𝜏 , e𝜏 , g(et), g(e𝜏), g(e𝜏), ė(t),

�
t

t−𝜏(t)

g(es)ds, �
t−𝜏(t)

t−𝜏

g(es)ds,

1

𝜏(t) �
t

t−𝜏(t)

esds,
1

𝜏 − 𝜏(t)

�
t−𝜏(t)

t−𝜏

esds,
1

𝜏(t)
𝛽1(t − 𝜏(t), t, et),

1

𝜏 − 𝜏(t)
𝛽1(t − 𝜏, t − 𝜏(t), et),

… ,
1

𝜏(t)
𝛽m−1(t − 𝜏(t), t, et),

1

𝜏 − 𝜏(t)
𝛽m−1(t − 𝜏, t − 𝜏(t), et),

1

𝜏(t)
𝜌1(t − 𝜏(t), t, et),

1

𝜏 − 𝜏(t)
𝜌1(t − 𝜏, t − 𝜏(t), et), … ,

1

𝜏(t)
𝜌m−1(t − 𝜏(t), t, et),

1

𝜏 − 𝜏(t)
𝜌m−1(t − 𝜏, t − 𝜏(t), et)

}
.

lim
𝜏(t)→0

+

1

𝜏(t) ∫
t

t−𝜏(t)

e
s
ds = e

t
, lim

𝜏(t)→𝜏−

1

𝜏 − 𝜏(t) ∫
t−𝜏(t)

t−𝜏

e
s
ds = e𝜏 ,

lim
𝜏(t)→0

+

1

𝜏(t)
𝜌
i
(t − 𝜏(t), t, e

t
) = lim

𝜏(t)→0
+

1

𝜏(t)
𝛽
i
(t − 𝜏(t), t, e

t
) = 0,

lim
𝜏(t)→0

+

1

𝜏(t)
𝜌
i
(t − 𝜏, t − 𝜏(t), e

t
) = lim

𝜏(t)→0
+

1

𝜏(t)
𝛽
i
(t − 𝜏, t − 𝜏(t), e

t
) = 0.

the control feedback matrices G1,G2 are given, we have the 
following synchronization result for error system (3).

Theorem 1  (See Appendix IV for a proof) Suppose that 
Assumption 1 holds. Given positive integer m,  constant sca-
lars 𝜇, 𝜏 > 0, and the control law (4). The controlled slave 
system (2) is globally asymptotically synchronized with the 
master system (1) for any 0 ≤ 𝜏(t) ≤ 𝜏, 𝜏̇(t) ≤ 𝜇, if there 
exist positive definite matrices K,,, ,Ui,Mi, Y ,, 
positive diagonal matrices P,Wj, Lj(j = 1, 2,… , 6), posi-
tive scalars �1, �2, real symmetric matrices D1,D2, and real 
matrices Hk,Ek(k = 1,… , 5),  ,Φil,Ψil such that the fol-
lowing LMIs hold

(11)� =

[ 
∗ 

]
≥ 0,

(12)ℤ =

[ +1 
∗  +2

]
≥ 0,

(13)
⎡⎢⎢⎣

H1 H2 H4

∗ H3 H5

∗ ∗ Y

⎤⎥⎥⎦
≥ 0,

(14)
⎡⎢⎢⎣

E1 E2 E4

∗ E3 E5

∗ ∗ Y

⎤⎥⎥⎦
≥ 0,

(15)

⎡⎢⎢⎢⎣

�
i

p

�
�i Φil

∗
�
i

p

�
�i(t)

⎤
⎥⎥⎥⎦
≥ 0,

(16)

⎡⎢⎢⎢⎣

�
i

p

�
�i Ψil

∗
�
i

p

�
�i(t)

⎤
⎥⎥⎥⎦
≥ 0, i = 1, 2,… ,m; l = 1, 2,… , i;

(17)
⎡⎢⎢⎣

Ξ + Ξ + �Ξ + Ξp n n
∗ −n𝜀1I 0

∗ ∗ −n𝜀2I

⎤⎥⎥⎦
< 0, p = 1, 2,
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where

1 =

[
0 D1

D1 0

]
, 2 =

[
0 D2

D2 0

]
,𝕌

i
=

[
U
i
0

0
i+2

i
U
i

]
,

𝕌
i
(t) =

[
U
i
(t) 0

0
i+2

i
U
i
(t)

]
,

𝕄
i
= diag

{
M

i
,
i + 2

i
M

i

}
, 𝕄

i
(t) = diag

{
M

i
(t),

i + 2

i
M

i
(t)
}
, 

=
[
0
n×6n P 0

n×4mn

]T
,

Ξ =sym
{
𝜂T
1
K𝜂7

}
− sym

{
𝜂T
7
P(𝜂7 + C𝜂1)

}

+ 𝜀1𝜂
T

1
ΣÂΣ𝜂1 + 𝜀2𝜂

T

2
ΣB̂Σ𝜂2

+
(
𝜂T
1

𝜂T
4

)(
𝜏2 + )col{𝜂1, 𝜂4}

−
(
𝜂T
3

𝜂T
6

)col{𝜂3, 𝜂6} − 𝜂T
r
𝕏𝜂

r

+ 𝜏2
(
𝜂T
1

𝜂T
7

)col{𝜂1, 𝜂7}

+ 𝜏𝜂T
1
D1𝜂1 − 𝜏𝜂T

2
(D1 − D2)𝜂2 − 𝜏𝜂T

3
D2𝜂3 − 𝜂T

b
ℤ𝜂

b

+ 𝜏𝜂T
7
Y𝜂7 +

m∑
i=1

(
𝜏 i

i!

)2

𝜂T
7

(
U
i
+M

i

)
𝜂7

−

m∑
i=1

{(
𝜂
𝜙

i−1

)T
i
(t)𝜂

𝜙

i−1

+
(
𝜂
𝜓

i−1

)T
i
(t)𝜂

𝜓

i−1

}

+
(
𝜂T
1

𝜂T
2

𝜂T
10

){
𝜏(t)

(
H1 +

1

3
H3

)

+ sym
{
H4(I − I 0) + H5(−I − I 2I)

}}
col{𝜂1, 𝜂2, 𝜂10}

+
(
𝜂T
2

𝜂T
3

𝜂T
11

){
[𝜏 − 𝜏(t)]

(
E1 +

1

3
E3

)

+ sym
{
E4(I − I 0) + E5(−I − I 2I)

}}
col{𝜂2, 𝜂3, 𝜂11},

Ξ = sym
{
�T
7
P(G1�1 + G2�2)

}
,

Ξ̃ =
(
�T
1
�T
4

)col{�1, �4} − (1 − �)
(
�T
2
�T
5

)col{�2, �5},
Ξ1 = − (�4 + Σ�1)

T
W1�4 − (�5 + Σ�2)

T
W2�5 − (�6 + Σ�3)

T
W3�6

− [�4 − �5 + Σ(�1 − �2)]
T

×W4(�4 − �5) − [�5 − �6 + Σ(�2 − �3)]
T
W5(�5 − �6)

− [�4 − �6 + Σ(�1 − �3)]
T
W6(�4 − �6),

Ξ2 = − �4TL1(�4 − Σ�1)

− �T
5
L2(�5 − Σ�2) − �T

6
L3(�6 − Σ�3)

− (�4 − �5)
T
L4[�4 − �5

− Σ(�1 − �2)] − (�5 − �6)
T
L5[�5 − �6 − Σ(�2 − �3)]

− (�4 − �6)
T
L6[�4 − �6 − Σ(�1 − �3)],

with

Remark 1  By dividing the interval satisfied by the acti-
vation function into two equal subintervals (40) and (51), 
the information of the activation function is taken fully into 
account. This may lead to high effective results.

In order to show the design of the estimate gain matrices 
G1,G2, we propose the following result.

Ui(t) =

m�
j=i

[𝜏 − 𝜏(t)]j−i

(j − i)!
Uj, Mi(t) =

m�
j=i

[𝜏(t)]j−i

(j − i)!
Mj,

i(t) =

�
�i

∑i

p=1
Φip

∗ �i(t)

�
,

𝜂b = col
�
𝜏(t)𝜂10, 𝜂1 − 𝜂2, [𝜏 − 𝜏(t)]𝜂11, 𝜂2 − 𝜂3

�
,

𝜂r = col
�
𝜏(t)𝜂10, 𝜂8, [𝜏 − 𝜏(t)]𝜂11, 𝜂9

�
,

𝜂
𝛽

i
= [𝜏 − 𝜏(t)]𝜂9+2i + 𝜏(t)

i�
j=1

[𝜏 − 𝜏(t)]i−j

(i − j)!
𝜂8+2j,

i(t) =

�
�i

∑i

p=1
Ψip

∗ �i(t)

�
,

𝜂
𝜙

i
= col

�
[𝜏 − 𝜏(t)]i

i!
𝜂2 − [𝜏 − 𝜏(t)]𝜂9+2i, −

[𝜏 − 𝜏(t)]i

(i + 1)!
𝜂2

− [𝜏 − 𝜏(t)]𝜂9+2i + (i + 2)𝜂11+2i,

[𝜏(t)]i

i!
𝜂1 − 𝜏(t)𝜂8+2i,

−
[𝜏(t)]i

(i + 1)!
𝜂1 − 𝜏(t)𝜂8+2i + (i + 2)𝜂10+2i

�
,

𝜂
𝜓

i
= col

�
−

[𝜏(t)]i

i!
𝜂2 + 𝜏(t)𝜂6+2m+2i,

[𝜏(t)]i

(i + 1)!
𝜂2 + 𝜏(t)𝜂6+2m+2i − (i + 2)𝜂6+2m+2i,

−
[𝜏 − 𝜏(t)]i

i!
𝜂3 + [𝜏 − 𝜏(t)]𝜂7+2m+2i,

[𝜏 − 𝜏(t)]i

(i + 1)!
𝜂3 + [𝜏 − 𝜏(t)]𝜂7+2m+2i

− (i + 2)𝜂7+2m+2i

�
.
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Theorem  2  Suppose that Assumption 1 holds. Given 
positive integer m,   constant scalars � and 𝜏 > 0

. The controlled slave system (2) is globally asymptoti-
cally synchronized with the master system (1) for any 
0 ≤ 𝜏(t) ≤ 𝜏, 𝜏̇(t) ≤ 𝜇, if there exist positive definite matri-
ces K,,, ,Ui,Mi(i = 1, 2,… ,m),Y ,, positive diag-
onal matrices P,Wj, Lj(j = 1, 2,… , 6), positive scalars 
�1, �2, real symmetric matrices D1,D2, and real matrices 
P1,P2,Hk,Ek(k = 1,… , 5),  ,Φp,Ψp(p = 1, 2, 3, 4) such 
that inequalities (11)–(16) and the following LMIs hold

where Ξ̂ = sym
{
�T
7
(P1�1 + P2�2)

}
, and the other parame-

ters are all the same as those defined in Theorem 1. Moreo-
ver, the estimation gain matrices are Gl = P−1Pl, l = 1, 2.

Proof  Let Pl = PGl(l = 1, 2) and following the same line 
as in Theorem 1, we can conclude the result of Theorem 2. 
� □

Remark 2  Note that the inequality (10) of Lemma 5 is 
composed of a set of slack variables, which provides extra 
freedom and may be less conservative than others in the 
literature. It is worth mentioning that the Wirtinger-based 
inequality proposed in Lemma 2 [29], which is shown more 
tighter than the well-known Jensen inequality, is a special 
case of (10). Thus Theorems 1 and 2, which are established 
by means of Lemma 5, may lead to less conservative result.

When the time varying delay �(t) is not differentiable or 
𝜏̇(t) is unknown, the results in Theorems 1, 2 are no longer 

(18)
⎡⎢⎢⎣

Ξ + �Ξ + �Ξ + Ξl n n
∗ −n𝜀1I 0

∗ ∗ −n𝜀2I

⎤⎥⎥⎦
< 0, l = 1, 2,

applicable. For this case, from the proofs of Theorems 1, 2 
one can obtain the following corollaries.

Corollary 1  Suppose that Assumption 1 holds. Given 
positive integer m,   constant  scalars 𝜏 > 0, and the con-
trol law (4). The controlled slave system (2) is glob-
ally asymptotically synchronized with the master sys-
tem (1) for any 0 ≤ 𝜏(t) ≤ 𝜏, if there exist positive 
definite matrices K,, ,Ui,Mi(i = 1, 2,… ,m),Y ,, 
positive diagonal matrices P,Wj, Lj(j = 1, 2,… , 6), 
real symmetric matrices D1,D2, and real matrices 
Hk,Ek(k = 1,… , 5), ,Φp,Ψp(p = 1, 2, 3, 4) such that 
(11)–(16) and the following LMIs hold

where the parameters are all the same as those defined in 
Theorem 1.

Corollary 2  Suppose Assumption that 1 holds. 
Given positive integer m and constant scalars 𝜏 > 0. 
The controlled slave system (2) is globally asymp-
totically synchronized with the master system (1) 
for any 0 ≤ 𝜏(t) ≤ 𝜏, if there exist positive definite 
matrices K,, ,Ui,Mi(i = 1, 2,… ,m),Y ,, posi-
tive diagonal matrices P,Wj, Lj(j = 1, 2,… , 6), 
real symmetric matrices D1,D2, and real matrices 
P1,P2,Hk,Ek(k = 1,… , 5), ,Φp,Ψp(p = 1, 2, 3, 4) such 
that (11)–(16) and the following LMIs hold

(19)
⎡⎢⎢⎣

Ξ + Ξ + Ξl n n
∗ −n𝜀1I 0

∗ ∗ −n𝜀2I

⎤⎥⎥⎦
< 0, l = 1, 2,

−3
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)

Fig. 1   Chaotic attractor of Example 1
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−3
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−1
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3
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x1
y1

Fig. 2   The phase trajectories of t − x
1

(t) − y
1

(t)
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where the parameters are all the same as those defined in 
Theorem 2. Moreover, the estimation gain matrices are 
Gl = P−1Pl, l = 1, 2.

4 � Illustrative example

A simulation example will be given in this section to 
illustrate the effectiveness of the developed approach.

(20)
⎡⎢⎢⎣

Ξ + �Ξ + Ξl n n
∗ −n𝜀1I 0

∗ ∗ −n𝜀2I

⎤⎥⎥⎦
< 0, l = 1, 2.

Example 1  Consider the 3-dimensional delayed memris-
tor-based neural network (1) with the following parameters:

𝜏(t) =0.3 + 0.3 cos(t), fi(v) = tanh(�v� − 1), Ji = 0, ci =1.5, i = 1, 2, 3,

a11(v) =

�
1 +

𝜋

4
, �v� < 1,

0.9 +
𝜋

4
, �v� > 1,

, a12(v) =

�
−1.1, �v� < 1,

0.9, �v� > 1,
a13(v) =

�
1.0, �v� < 1,

1.5, �v� > 1,

a21(v) =

�
0.2, �v� < 1,

1.1, �v� > 1,
a22(v) =

�
0.9 +

𝜋

4
, �v� < 1,

1 +
𝜋

4
, �v� > 1,

a23(v) =

�
−0.6, �v� < 1,

−1.3, �v� > 1,

a31(v) =

�
1.0, �v� < 1,

0.9, �v� > 1,
, a32(v) =

�
−1.1, �v� < 1,

0.9, �v� > 1,
a33(v) =

�
1 +

𝜋

4
, �v� < 1,

0.9 +
𝜋

4
, �v� > 1,

b11(v) =

�
−
√
2 − 0.1, �v� < 1,

−
√
2, �v� > 1,

b12(v) =

�
1.1, �v� < 1,

−0.9, �v� > 1,
b13(v) =

�
−0.8, �v� < 1,

1.0, �v� > 1,
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Fig. 3   The phase trajectories of t − x
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(t) − y
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b21(v) =

�
−1.1, �v� < 1,

0.9, �v� > 1,
b22(v) =

�
−
√
2, �v� < 1,

−
√
2 − 0.1, �v� > 1,

b23(v) =

�
−1.0, �v� < 1,

0.8, �v� > 1,

b31(v) =

�
−0.8, �v� < 1,

1.0, �v� > 1,
b32(v) =

�
1.0, �v� < 1,

−0.9, �v� > 1,
b33(v) =

�
−
√
2 − 0.1, �v� < 1,

−
√
2, �v� > 1,

It is easy to see that the activation functions satisfy 
Assumption 1 with Σ = I3 and 𝜇 = 0.3, 𝜏 = 0.6. If we set 
m = 2, by resorting to the Matlab LMI Control Toolbox, 
we find that the LMIs in Theorem 2 are feasible and the 
control gain matrices are as follows

Figure  1 shows the neural network model 
has a chaotic attractor with initial values 
x1(t) = 0.5, x2(t) = −0.5, x3(t) = 1.5, t ∈ [−1, 0]. The 
initial values of the response system are taken as 
y1(t) = −0.5, y2(t) = 2.5, y3(t) = −0.3, t ∈ [−1, 0]. Fig-
ures 2, 3 and 4 depict the phase trajectories of the drive 
system and response system, respectively. Figure  5 
shows the error states. By numerical simulation, we can 
see that the dynamical behaviors of response system (2) 
synchronize with master system (1) as shown in Figs. 2, 
3, 4 and 5.

It is easy to see that above activation functions do not 
satisfy the assumptions in [4, 10, 14, 38, 39, 44, 45]. 
Therefore the conditions of [4, 10, 14, 38, 39, 44, 45] 
fail to verify the synchronization of this example.

5 � Conclusion

This paper deals with the synchronization problem for 
memristive chaotic neural networks with time-varying 
delays. Based on our proposed multiple integral forms of 
the Wirtinger-based integral inequality and the reciprocally 
convex combination approach for high order case, several 
novel delay-dependent conditions are established to achieve 
the synchronization for the memristive chaotic neural 

G
1

=

⎡
⎢⎢⎣

0.5194 −2.4359 −0.0946

1.2318 2.7617 0.1058

−1.8931 0.0582 2.1028

⎤
⎥⎥⎦
,

G
2

=

⎡⎢⎢⎣

−2.6240 0.6905 0.5419

−1.3279 −1.8124 0.0941

−2.0183 1.5187 1.9018

⎤⎥⎥⎦
.

networks with time-varying delays. Also, the control gain 
matrices are obtained. One numerical example shows the 
effectiveness of the theoretical results.

Appendix I

Proof of Lemma 1

We utilize the mathematical induction to prove inequality 
(6). Let � = 0, inequality (6) changes into the Wirtinger-based 
integral inequality [29]. That is, inequality (6) holds for � = 0. 
Now assume that inequality (6) holds for � = k, that is, for any 
scalar s (a < s < b), the following inequality holds

where �(s) = col
{
�k(a, s,�), �k+1(a, s,�)

}
 and

Note that matrix X > 0, thus Ω11(s) = −
2(k+2)k!

(s−a)k+1
X < 0 and 

Ω22(s) − Ω21(s)Ω11(s)
−1Ω12(s) = −

(k+3)!

2(s−a)k+3
X < 0. Applying 

Schur Complements to Ω(s) yields Ω(s) < 0. By Schur 
Complements again, (21) is equivalent to the following 
inequality:

(21)

0 ≤Θk(a, s,�,X) −
(k + 1)!

(s − a)k+1
�k(a, s,�)

TX�k(a, s,�)

−
(k + 3)k!

(s − a)k+1

[
�k(a, s,�) −

k + 2

s − a
�k+1(a, s,�)

]T

× X
[
�k(a, s,�) −

k + 2

s − a
�k+1(a, s,�)

]

=Θk(a, s,�,X) +�(s)TΩ(s)�(s),

Ω(s) =
[
Ωij(s)

]
2×2

=
(k + 2)k!

(s − a)k+1

[
−2X

k+3

s−a
X

∗ −
(k+2)(k+3)

(s−a)2
X

]
.

(22)
[
Θk(a, s,�,X) �(s)T

∗ Ω̃(s)

]
≥ 0,



1079Int. J. Mach. Learn. & Cyber. (2018) 9:1069–1083	

1 3

where

Since �Ω22(s) =
2(s−a)k+3

(k+3)!
X−1 > 0 and Ω̃

11

(s) − Ω̃
12

(s)Ω̃
22

(s)−1

�Ω
21

(s) =
k+1

2(k+2)!
X
−1 > 0, applying Schur Complements to 

Ω̃(s) leads to �Ω(s) > 0.
Integrating (22) from a to b yields

where ∫ b

a
�(s)ds = col

{
�k+1(a, b, �), �k+2(a, b, �)

}
 and

Applying Schur Complements again to (23) yields

where

Simple calculating yields that (24) is equivalent to inequal-
ity (6) with � = k + 1. This completes the proof.

Appendix II

Proof of Lemma 3

Equality (8) comes from Ref. [17], we only need to prove that 
equality (9) holds for any positive integer i. We utilize the 
mathematical induction again. Let i = 1, (9) changes into the 
following equality

That is, equality (9) holds for i = 1. Now assume that ine-
quality (9) holds for i = k. Set Γ(s) = ∫ s

a
�(v)dv, then Γ(s) is 

continuous on [a, b]. Based on the assumption of induction, 
we have

Ω̃(s) =
[
Ω̃ij(s)

]
2×2

= −Ω(s)−1 =
(s − a)k+1

(k + 1)!

[
X−1 s−a

k+2
X−1

∗
2(s−a)2

(k+2)(k+3)
X−1

]
.

(23)

[
Θk+1(a, b, �,X) ∫ b

a
�(s)Tds

∗ ∫ b

a
Ω̃(s)ds

]
≥ 0,

∫
b

a

Ω̃(s)ds =
(b − a)k+2

(k + 2)!

[
X−1 b−a

k+3
X−1

∗
2(b−a)2

(k+3)(k+4)
X−1

]
.

(24)

Θ
k+1(a, b, �,X) ≥

[
�
k+1(a, b, �)

�
k+2(a, b, �)

]T(
�

b

a

Ω̃(s)ds

)−1[
�
k+1(a, b, �)

�
k+2(a, b, �)

]
,

(
∫

b

a

Ω̃(s)ds

)−1

=
(k + 3)(k + 1)!

(b − a)k+2

[
2X −

k+4

b−a
X

∗
(k+3)(k+4)

(b−a)2
X

]
.

�0(a, b, �) = ∫
b

a

�(s)ds = ∫
b

c

�(s)ds + ∫
c

a

�(s)ds

= �0(c, b, �) + �0(a, c, �).

That is, inequality (9) holds for i = k + 1. This completes 
the proof.

Appendix III

Proof of Theorem 1

Consider the following Lyapunov–Krasovskii functional 
candidate:

where

�k(a, b, �) = ∫
b

a ∫
v1

a

⋯∫
vk−1

a ∫
vk

a

�(s)dsdvkdvk−1 … dv1

= �k−1(a, b,Γ) = �k−1(c, b,Γ)

+

k∑
j=1

(b − c)k−j

(k − j)!
�j−1(a, c,Γ)

= ∫
b

c ∫
v1

c

⋯∫
vk−1

c ∫
vk

a

�(s)dsdvkdvk−1 … dv1

+

k∑
j=1

(b − c)k−j

(k − j)! ∫
c

a ∫
v1

a

⋯∫
vj−1

a ∫
vk

a

�(s)

dsdvkdvj−1 … dv1

= ∫
b

c ∫
v1

c

⋯∫
vk−1

c

(
∫

c

a

�(s)ds + intvk
c
�(s)ds

)

dvkdvk−1 … dv1 +

k∑
j=1

(b − c)k−j

(k − j)!
�j(a, c, �)

= �k(c, b, �) +
(b − c)k

k!
�0(a, c, �)

+

k+1∑
l=2

(b − c)k+1−l

(k + 1 − l)!
�l−1(a, c, �) = �k(c, b, �)

+

k+1∑
j=1

(b − c)k+1−j

(k + 1 − j)!
�j−1(a, c, �).

V(et, t) = e(t)TKe(t) +

3∑
i=1

Vi(et, t),

V1(et, t) =�
t

t−𝜏(t)

𝜅(s)T𝜅(s)ds + 𝜏 �
t

t−𝜏 �
t

𝜃

𝜅(s)T𝜅(s)dsd𝜃

+ �
t

t−𝜏

𝜅(s)T𝜅(s)ds,
V2(et, t) =�

t

t−𝜏 �
t

𝜃

{
𝜏𝜈(s)T𝜈(s) + ė(s)TYė(s)

}
dsd𝜃,

V3(et, t) =

m∑
i=1

𝜏 i

i!

{
Ω

i
(t − 𝜏, t, ė(t),U

i
)

+ �
t

t−𝜏 �
vi

t−𝜏

⋯�
v2

t−𝜏 �
t

v1

ė(s)TM
i
ė(s)dv1dv2 … dv

i−1dvi

}
,
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with 𝜅(s) = col
{
es, g(es)

}
, 𝜈(t) = col

{
et, ė(t)

}
 and 

Ωi(⋅, ⋅, ⋅, ⋅)(i = 1, 2,… ,m) are defined in Lemma 1.
Calculating the time derivatives of V(et, t) along the tra-

jectories of the error system (3), we obtain

where

where Θi(⋅, ⋅, ⋅, ⋅)(i = 0, 1,… ,m − 1) are defined in 
Lemma 1.

When 0 < 𝜏(t) < 𝜏, by utilizing the Jensen integral ine-
quality [11] and reciprocally convex combination [25], we 
obtain from (11) that

where 𝜅̃(t) = col
{ ∫ t

t−𝜏(t)
𝜅(s)ds, ∫ t−𝜏(t)

t−𝜏
𝜅(s)ds

}
.

Inspired by the work of [15], the following zero equali-
ties with any symmetric matrices Di(i = 1, 2) are proposed 
according to the Leibniz-Newton formula:

(25)
V̇(et, t) = 2e(t)TKė(t) +

3∑
i=1

V̇i(et, t),

(26)
V̇
1

(e
t
, t) =𝜅(t)T

( + 𝜏2 + )𝜅(t)
− [1 − 𝜏̇(t)]𝜅(t − 𝜏(t))T𝜅(t − 𝜏(t))

(27)

− 𝜏 �
t

t−𝜏

𝜅(s)T𝜅(s)ds − 𝜅(t − 𝜏)T𝜅(t − 𝜏),

V̇2(et, t) = 𝜏2𝜈(t)T𝜈(t) + 𝜏 ė(t)TYė(t)

− �
t

t−𝜏

{
𝜏𝜈(s)T𝜈(s) + ė(s)TYė(s)

}
ds,

(28)

V̇
3

(e
t
, t) =

m∑
i=1

𝜏 i

i!

{
𝜏 i

i!
ė(t)T (U

i
+M

i
)ė(t)

− Ω
i−1(t − 𝜏, t, ė(t),U

i
) − Θ

i−1(t − 𝜏, t, ė(t),M
i
)

}
,

(29)

− 𝜏 �
t

t−𝜏

𝜅(s)T𝜅(s)ds

= −𝜏 �
t

t−𝜏(t)

𝜅(s)T𝜅(s)ds − 𝜏 �
t−𝜏(t)

t−𝜏

𝜅(s)T𝜅(s)ds

≤ −
𝜏

𝜏(t)

(
�

t

t−𝜏(t)

𝜅(s)ds

)T


(
�

t

t−𝜏(t)

𝜅(s)ds

)

−
𝜏

𝜏 − 𝜏(t)

(
�

t−𝜏(t)

t−𝜏

𝜅(s)ds

)T


(
�

t−𝜏(t)

t−𝜏

𝜅(s)ds

)

≤ −𝜅̃(t)T
[ 
∗ 

]
𝜅̃(t),

By utilizing the Jensen integral inequality [11] and recipro-
cally convex combination [25], we get from (12) that

where 𝜈̃(t) = col
{ ∫ t

t−𝜏(t)
𝜈(s)ds, ∫ t−𝜏(t)

t−𝜏
𝜈(s)ds

}
.

Based on Lemma 5, from inequalities (13)–(14) we get 
that

where

(30)𝜏eT
t
D1et − 𝜏eT

𝜏
D1e𝜏 − 2𝜏 ∫

t

t−𝜏(t)

e(s)TD1ė(s)ds = 0,

(31)𝜏eT
𝜏
D2e𝜏 − 𝜏eT

𝜏
D2e𝜏 − 2𝜏 ∫

t−𝜏(t)

t−𝜏

e(s)TD2ė(s)ds = 0.

(32)

− 𝜏 �
t

t−𝜏

𝜈(s)T𝜈(s)ds − 2𝜏 �
t

t−𝜏(t)

e(s)TD1ė(s)ds

− 2𝜏 �
t−𝜏(t)

t−𝜏

e(s)TD2ė(s)ds

= −𝜏 �
t

t−𝜏(t)

𝜈(s)T ( +1)𝜈(s)ds

− 𝜏 �
t−𝜏(t)

t−𝜏

𝜈(s)T ( +2)𝜈(s)ds

≤ −
𝜏

𝜏(t)

(
�

t

t−𝜏(t)

𝜈(s)ds

)T

( +1)

(
�

t

t−𝜏(t)

𝜈(s)ds

)

−
𝜏

𝜏 − 𝜏(t)

(
�

t−𝜏(t)

t−𝜏

𝜈(s)ds

)T

( +2)

(
�

t−𝜏(t)

t−𝜏

𝜈(s)ds

)

≤ −𝜈̃(t)T
[ +1 
∗  +2

]
𝜈̃(t),

(33)

− �
t

t−𝜏

ė(s)TYė(s)ds

= −�
t

t−𝜏(t)

ė(s)TYė(s)ds − �
t−𝜏(t)

t−𝜏

ė(s)TYė(s)ds

≤ 𝜃(t)T
{
𝜏(t)

(
H1 +

1

3
H3

)
+ sym

{
H4

[
I −I 0

]

+ H5

[
−I −I 2I

]}}
𝜃(t)

+ 𝜄(t)T
{
[𝜏 − 𝜏(t)]

(
E1 +

1

3
E3

)
+ sym

{
E4

[
I −I 0

]

+ E5

[
−I −I 2I

]}}
𝜄(t).

𝜃(t) = col

{
e
t
, e𝜏 ,

1

𝜏(t) ∫
t

t−𝜏(t)

e
s
ds

}
,

𝜄(t) = col

{
e𝜏 , e𝜏 ,

1

𝜏 − 𝜏(t) ∫
t−𝜏(t)

t−𝜏

e
s
ds

}
.
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Applying Lemma 3 yields

Based on Lemmas 2, 3 and 6, if conditions (15)-(16) hold, 
then by simple calculating we obtain from inequalities 
(34)-(35) that

where 𝜓 �
𝜔
= col

{
𝜓
i−1(t − 𝜏, t − 𝜏(t), e

t
), 𝜔

i−1(t − 𝜏, t − 𝜏(t),

e
t
)
}
,𝜓 �

𝜔
= col

{
𝜓
i−1(t − 𝜏, t − 𝜏(t), e

t
), 𝜔

i−1(t − 𝜏, t − 𝜏(t), 
ℏ�
�
= col

{
ℏ
i−1(t − �(t), t, e

t
), �

i−1(t − �(t), t, e
t
)
}
, ℏ��

�
=

col
{
�
i−1(t − 𝜏, t − 𝜏(t), e

t
), 𝜉

i−1(t − 𝜏, t − 𝜏(t), e
t
)
}
.

Based on (3), the following equalities hold for any posi-
tive diagonal matrix P:

where C = diag{c1, c2, ..., cn},P = diag{p1, p2, ..., pn}.

According to Lemma 4 and the Cauchy inequality 
2�T� ≤ �TQ� + �TQ−1�, the following inequalities hold 
for any positive scalars �1, �2:

(34)Ωi−1(t − 𝜏, t, ė(t),Ui) = Ωi−1(t − 𝜏, t − 𝜏(t), ė(t),Ui)

(35)

+

i∑
j=1

[𝜏 − 𝜏(t)]i−j

(i − j)!
Ωj−1(t − 𝜏(t), t, ė(t),Ui),

Θi−1(t − 𝜏, t, ė(t),Mi) = Θi−1(t − 𝜏(t), t, ė(t),Mi)

+

i∑
j=1

[𝜏(t)]i−j

(i − j)!
Θj−1(t − 𝜏, t − 𝜏(t), ė(t),Mi).

(36)

m∑
i=1

𝜏 i

i!

{
Ω

i−1(t − 𝜏, t, ė(t),U
i
) + Θ

i−1(t − 𝜏, t, ė(t),M
i
)
}

=

m∑
i=1

𝜏 i

i!

{
Ω

i−1(t − 𝜏, t − 𝜏(t), ė(t),U
i
) + Ω

i−1(t − 𝜏(t), t, ė(t),
i
(t))

+ Θ
i−1(t − 𝜏(t), t, ė(t),M

i
) + Θ

i−1(t − 𝜏, t − 𝜏(t), ė(t),
i
(t))

}

≥
(

𝜏

𝜏 − 𝜏(t)

)i

(𝜓 �
𝜔
)T
[
U

i
0

0
i+2

i
U

i

]
𝜓 �
𝜔

+

(
𝜏

𝜏(t)

)i

(𝜓 ��
𝜔
)T
[

i
(t) 0

0
i+2

i


i
(t)

]
𝜓 ��
𝜔

+

(
𝜏

𝜏(t)

)i

(��
𝜉
)T
[
M

i
0

0
i+2

i
M

i

]
��
𝜉

+

(
𝜏

𝜏 − 𝜏(t)

)i

(���
𝜉
)T
[

i
(t) 0

0
i+2

i


i
(t)

]
���
𝜉

≥[ 𝜓 �
𝜔

𝜓 ��
𝜔

]T
i
(t)col

{
𝜓 �
𝜔
,𝜓 ��

𝜔

}
+
[
��
𝜉
���
𝜉

]T
i
(t)col

{
��
𝜉
,���

𝜉

}
,

(37)

0 = 2ė(t)TP[−ė(t) + ė(t)]

= 2ė(t)TP[−ė(t) − (C − G
1

)e(t) + G
2

e(t − 𝜏(t))]

+ 2

n∑
i,j=1

ėi(t)pi
[
aij(yj(t))fj(yj(t)) − aij(xj(t))fj(xj(t))

]

+ 2

n∑
i,j=1

ėi(t)pi
[
bij(yj(t))fj(yj(t − 𝜏(t))) − bij(xj(t))fj(xj(t − 𝜏(t)))

]
,

where Â = diag
{ n∑

i=1

â
2
i1
,

n∑
i=1

â
2
i2
, … ,

n∑
i=1

â
2
in

}
,

B̂ = diag
�∑n

i=1
b̂
2
i1
,
∑n

i=1
b̂
2
i2
, … ,

∑n

i=1
b̂
2
in

�
.

Inspired by the work of [16], the interval satisfied by 
the activation function is divided into the following two 
subintervals:

Case I:

It should be noted that the conditions (40) and (41) are 
equivalent to the following inequalities respectively:

Based on inequalities (42) and (43), the following matrix 
inequalities hold for any positive diagonal matrices 
Wi(i = 1,… , 6) with compatible dimensions:

(38)

2

n∑
i,j=1

ėi(t)pi
[
aij(yj(t))fj(yj(t)) − aij(xj(t))fj(xj(t))

]

≤
n∑

i,j=1

{
𝜀−1
1

ė2
i
(t)p2

i
+ 𝜀

1

[
aij(yj(t))fj(yj(t))

− aij(xj(t))fj(xj(t))
]
2

}

≤
n∑

i,j=1

{
𝜀−1
1

ė2
i
(t)p2

i
+ 𝜀

1

â2
ij
𝜎2

j

[
yj(t) − xj(t)

]
2

}

= n𝜀−1
1

ė(t)TP2ė(t) + 𝜀
1

e(t)TΣÂΣe(t),

× 2

n∑
i,j=1

ėi(t)pi
[
bij(yj(t))fj(yj(t − 𝜏(t)))

− bij(xj(t))fj(xj(t − 𝜏(t)))
]

≤
n∑

i,j=1

{
𝜀−1
2

ė2
i
(t)p2

i
+ 𝜀

2

[
bij(yj(t))fj(yj(t − 𝜏(t)))

− bij(xj(t))fj(xj(t − 𝜏(t)))
]
2

}

(39)

≤
n∑

i,j=1

{
𝜀−1
2
ė2
i
(t)p2

i
+ 𝜀2b̂

2
ij
𝜎2
j

[
yj(t − 𝜏(t)) − xj(t − 𝜏(t))

]2}

= n𝜀−1
2
ė(t)TP2ė(t) + 𝜀2e(t − 𝜏(t))TΣB̂Σe(t − 𝜏(t)),

(40)− �j ≤ gj(�) − gj(�)

� − �
≤ 0, ∀ �, � ∈ ℝ, � ≠ � , j ∈ ℕ;

(41)− �j ≤ gj(�)

�
≤ 0, ∀ � ∈ ℝ, � ≠ 0, j ∈ ℕ.

(42)

[
g
j
(�) − g

j
(�) + �

j
(� − �)

]
⋅
[
g
j
(�) − g

j
(�)

] ≤ 0,

∀ �, � ∈ ℝ, � ≠ � , j ∈ ℕ;

(43)
[
gj(�) + �j�

]
gj(�) ≤ 0, ∀ � ∈ ℝ, � ≠ 0, j ∈ ℕ.

(44)0 ≤ − [g(et) + Σet]
TW1g(et),
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Substituting (26)–(36) and (44)–(49) into (25) yields that

It is easy to see that inequality (50) holds for �(t) = 0 or 
𝜏(t) = 𝜏 from the Jensen integral inequality [11]. Therefore, 
inequality (50) holds for any t > 0 with 0 ≤ 𝜏(t) ≤ 𝜏.

According to the Schur Complement, 
Ξ + Ξ + �Ξ + Ξ1 + n

(
𝜀−1
1

+ 𝜀−1
2

)
𝜂T
7
P2𝜂7 < 0 is equivalent to 

inequality (17) with p = 1. Therefore when condition (17) is 
satisfied for p = 1, from (50) we get that V̇(et, t) < 0. That is, 
error system (3) is asymptotically stable.

Case II:

It is obvious that the conditions (51) and (52) are equiva-
lent to the following inequalities respectively:

From (53) and (54), the following matrix inequalities hold 
for any positive diagonal matrices Li(i = 1,… , 6) with 
compatible dimensions:

(45)0 ≤ − [g(e�) + Σe�]
TW2g(e�),

(46)0 ≤ − [g(e𝜏) + Σe𝜏]
TW3g(e𝜏),

(47)0 ≤ −
{
g(et) − g(e�) + Σ(et − e�)

}T
W4[g(et) − g(e�)],

(48)
0 ≤ −

{
g(e𝜏) − g(e𝜏) + Σ(e𝜏 − e𝜏)

}T
W5[g(e𝜏) − g(e𝜏)],

(49)0 ≤ −
{
g(et) − g(e𝜏) + Σ(et − e𝜏)

}T
W6[g(et) − g(e𝜏)].

(50)
V̇(e

t
, t) ≤ ð(t)T{Ξ + Ξ + �Ξ + Ξ

1

+ n
(
𝜀−1
1

+ 𝜀−1
2

)
𝜂T
7

P
2𝜂

7

}ð(t).

(51)0 ≤ gj(�) − gj(�)

� − �
≤ �j, ∀ �, � ∈ ℝ, � ≠ � , j ∈ ℕ;

(52)0 ≤ gj(�)

�
≤ �j, ∀ � ∈ ℝ, � ≠ 0, j ∈ ℕ.

(53)

[
g
j
(�) − g

j
(�)

]
⋅
[
g
j
(�) − g

j
(�) − �

j
(� − �)

] ≤ 0,

∀ �, � ∈ ℝ, � ≠ � , j ∈ ℕ;

(54)gj(�)
[
gj(�) − �j�

] ≤ 0, ∀ � ∈ ℝ, � ≠ 0, j ∈ ℕ.

(55)0 ≤ − g(et)
TL1[g(et) − Σet],

(56)0 ≤ − g(e�)
TL2[g(e�) − Σe�],

(57)0 ≤ − g(e𝜏)
TL3[g(e𝜏) − Σe𝜏],

(58)0 ≤ − [g(et) − g(e�)]
TL4

{
g(et) − g(e�) − Σ(et − e�)

}
,

(59)
0 ≤ − [g(e𝜏) − g(e𝜏)]

TL5
{
g(e𝜏) − g(e𝜏) − Σ(e𝜏 − e𝜏)

}
,

Substituting (26)–(36) and (55)–(60) into (25) yields that

It is easy to see that inequality (61) holds for �(t) = 0 or 
𝜏(t) = 𝜏 from the Jensen integral inequality [11]. Therefore, 
inequality (61) holds for any t > 0 with 0 ≤ 𝜏(t) ≤ 𝜏.

Again according to the Schur Complement, 
Ξ + Ξ + �Ξ + Ξ2 + n

(
𝜀−1
1

+ 𝜀−1
2

)
𝜂T
7
P2𝜂7 < 0 is equivalent 

to inequality (17) with p = 2. Therefore when condition 
(17) is satisfied for p = 2, we conclude that the drive sys-
tem (1) and response system (2) are synchronous. This 
completes the proof of Theorem 1.
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