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moments to further improve the representation. We dem-
onstrate using extensive experiments of face recognition 
and classification that our approach performs very competi-
tively with respect to state-of-the-art classification meth-
ods. For instance, using the AR face dataset, our method 
reaches 100% of accuracy for dimensionality 300.
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1 Introduction

One of the main challenges of current research in pattern 
recognition (PR) is to improve the robustness of exiting 
algorithms with respect to confounding factors including 
noise, rigid transformations, changes in viewpoint, illumi-
nation, etc. Recent advances from statistical learning [1] 
have brought attention to the notion of sparsity to extract 
the salient image features in such a way to obtain more 
accurate and robust classification. Wright et  al. [2], in 
particular, introduced a very influential framework called 
sparse representation based classification (SRC) for face 
recognition (FR) and successfully applied this method to 
identify human faces with varying illumination changes, 
occlusion and real disguise. In their method, a test sample 
image is coded as a sparse linear combination of the train-
ing images and classification is achieved by identifying 
which class yields the least residual. Several other meth-
ods were inspired by SRC including: the FR method based 
on sparse representation of facial image patches by Theo-
dorakopoulos et  al. [3]; kernel sparse representation for 
image classification and FR, which applies a sparse cod-
ing technique in a high dimensional feature space via some 
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implicit feature mapping [4]; the Gabor occlusion diction-
ary for SRC by Yang and Zhang which reduces the compu-
tation cost by using Gabor feature [5]; a robust regularized 
coding model to enhance the robustness of face recogni-
tion to confounding factors [6, 7]; the method based on 
maximum correntropy criterion for robust face recognition 
by He et al. [8]. An alternative point of view was proposed 
by Zhang et  al. [9] who argued that rather than sparsity 
“the collaborative representation mechanism used in SRC 
is much more crucial to its success of face classification”. 
Based on this observation, they introduced a method called 
collaborative representation based classification with reg-
ularized least square (CRC) [9] which was shown to per-
form very competitively against SRC with a lower com-
putational cost. As a further refinement of CRC, some of 
the authors proposed a method called relaxed collabora-
tive representation (RCR) which is designed better capture 
the similarity and distinctiveness of different features for 
the classification [10]. An alternative approach is the two-
phase test sample representation method [11] and relies on 
detecting first the training samples located away from the 
test sample (assuming they have negligible effect on clas-
sification); next the test sample is represented as a linear 
combination of the M nearest neighbors and the repre-
sentation result is used for classification. Another method 
proposed in [12] consists in partitioning face images into 
blocks and then creating an indicator to remove the con-
taminated blocks and choose the nearest subspaces; SRC is 
finally used to classify the occluded test sample in the new 
feature space.

We also recall the Fisher discrimination dictionary 
learning (FDDL) algorithm by Yang et  al. [13] which 
embeds the Fisher criterion in the objective function 
design. The FDDL scheme has two remarkable proper-
ties. First, dictionary atoms are learnt to associate the 
class labels so that the reconstruction residual from each 
class can be used in classification; second, the Fisher cri-
terion is imposed on the coding coefficients so that they 
carry discriminative information for classification. To 
improve this method, Feng et  al. [14] propose to learn 
jointly the projection matrix for dimensionality reduction 
and the discriminative dictionary for face representation 
JDDLDR. The joint learning combines more effectively 
the learned projection and the dictionary with the result 
of improving FR performance. Within the general frame-
work of the discriminative dictionary learning (DDL), the 
projective dictionary pair learning (DPL) algorithm [15] 
learns a synthesis dictionary and an analysis dictionary 
jointly to achieve the goal of signal representation and 
discrimination. The vector guided dictionary learning 
(SVGDL) method is proposed in [16] as a special case 
of the Fisher discrimination dictionary learning (FDDL) 
method; here the weights are determined by the numbers 

of samples of each class and a parameterization method 
is used to adaptively determine the weight of each cod-
ing vector pair. Compared with FDDL, SVGDL can adap-
tively assign different weights to different pairs of coding 
vectors. Yet another DDL approach recently proposed is 
the locality constrained and label embedding dictionary 
learning (LCLE-DL) algorithm [17], where locality infor-
mation is preserved using the graph Laplacian matrix of 
the learned dictionary rather than the conventional one 
derived from the training samples; next, the label embed-
ding term is constructed using the label information of 
atoms instead of the classification error term; the cod-
ing coefficients derived by combining locality-based and 
label-based reconstruction are shown to be very effective 
for image classification. Very recently, it was proposed a 
probabilistic interpretation of the collaborative classifica-
tion mechanism to explain the classification mechanism 
of CRC and following this analysis it was introduced a 
method called probabilistic collaborative representation 
based classifier (ProCRC) which jointly maximizes the 
likelihood that a test sample belongs to each of the multi-
ple classes [18].

On other hand, a class of algorithms described as local 
feature based methods [19–28] also demonstrated very 
promising results in problems of object recognition and 
texture classification. For instance, some of these meth-
ods use Gabor filters to extract local directional features 
on multiple scales and have been successfully applied in 
FR [20, 21]. Compared to more conventional methods 
such as Eigenface [29] and Fisherface [30], Gabor filter-
ing is less sensitive to image variations. Another type of 
local feature widely used in FR is statistical local feature 
(SLF), such as histogram of local binary pattern (LBP) 
[22], whose main principle is to model a face image as 
a composition of micro-patterns [28]. By partitioning 
the face image into several blocks, the statistical feature 
(e.g., histogram of LBP) of these blocks is extracted, and 
finally the description of the image is formed by concat-
enating the extracted features in all blocks. For example, 
Zhang et al. [24, 25] proposed to use Gabor magnitude or 
phase map instead of the intensity map to generate LBP 
features. New coding techniques on Gabor features have 
also been proposed, e.g., Zhang et al. [26] extracted and 
encoded the global and local variations of the real and 
imaginary parts of the data using a multi-scale Gabor 
representation. Borgi et  al. [31–35] proposed two algo-
rithms that apply a sparse multiscale representation based 
on shearlets to extract the essential geometric content of 
facial features, one called regularized shearlet network 
(RSN) and another one sparse multi-regularized shear-
let network (SMRSN). Finally, we recall that Meng et al. 
[36] proposed a kernel based representation model to 
fully exploit the discrimination information embedded 
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in the statistical local features (SLF_RKR) and applied 
a robust regression method handle occlusions in face 
images.

In this paper, we adopt the same general philosophy of 
CRC and our main novel contribution is to integrate this 
method with a virtual collaborative projection (VCP) rou-
tine designed to train images of every class against the 
others classes with the goal to improve fidelity before 
projecting the query image. Additionally, inspired by the 
remarkable results obtained from the recent literature in 
local feature based method, our algorithm includes a rou-
tine to compute high-order statistical moments (SM) in 
order to extract highly discriminative local features and 
improve data representation. To validate our algorithm, 
which is called statistical binary pattern with virtual com-
petitive representation (SBP_VCP), we have tested it on 
multiple datasets for problems of face recognition, gender 
classification, handwritten digit recognition, object cat-
egorization and action recognition. Experimental results 
show that our method consistently achieves very competi-
tive results as compared to classical and state-of-the-art 
algorithms.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the main idea of statistical binary pat-
tern and high order moments for feature extraction. 
Section  3 describes the proposed virtual collaborative 
projection applied to trained faces. Section  4 reports 
extensive numerical experiments to validate the proposed 
method and compare it against state-of-the-art methods 
on problems of face recognition under different con-
founding factors as well as image categorization, hand-
written digit and action recognition. Finally, Sect. 5 con-
cludes this paper.

2  Statistical binary pattern and high order 
moments

The statistical binary patterns (SBP) representation is 
an extension of local binary patterns (LBP) and it aims 
at enhancing the expressiveness and discrimination 
power of LBP for image modelling (especially texture) 
and recognition, while reducing sensitivity to small per-
turbations, e.g., noise. The main idea of this method, 
which was introduced by one of the authors and their 
collaborator in [37], consists in applying a rotation 
invariant uniform LBP to a set of images correspond-
ing to the local statistical moments associated to a given 
spatial support. The resulting code forms the SBP and 
an image is then represented by joint or marginal distri-
butions of SBPs.

2.1  Moment images

A real valued 2d discrete image f is modelled as a map-
ping from ℤ2 to ℝ. The spatial support used to calculate 
the local statistics is modelled asB ⊂ ℤ

2, such that O ∈ B, 
where O is the origin of ℤ2. The r-order moment image 
associated to f and B is also a mapping from ℤ2to ℝ, 
defined as:

where z is a pixel from ℤ2, and |B| is the cardinality of the 
structuring element B. Accordingly, the r-order centered 
moment image (r > 1) is defined as:

where m1
(f ,B)

(z) is the average value (1-order moment) cal-
culated around z. Finally the r-order normalized centered 
moment image (r > 2) is defined as:

where �2
(f ,B)

(z) is the variance (2-order centered moment) 
calculated around z.

2.2  Statistical binary patterns

Let R and P denote the radius of the neighborhood circle 
and the number of values sampled on the circle, respec-
tively. For each moment image M, one statistical binary 
pattern is formed as follows:

•	 one (P + 2)-valued pattern corresponding to the rota-
tion invariant uniform LBP coding of M:

•	 one binary value corresponding to the comparison of 
the centre value with the mean value of M:

where s denotes the pre-defined sign function, and M̃ the 
mean value of the moment M on the whole image. Hence 
SBPP,R(M) represents the structure of the moment M with 
respect to a local reference (the center pixel), and SBPC(M) 
complements the information with the relative value of the 
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center pixel with respect to a global reference (M̃). As a 
result of this first step, a 2(P + 2)-valued scalar descriptor 
is then computed for every pixel of each moment image.

2.3  Image descriptors

Let 
{
Mi

}
1≤i≤nM

 be the set of nM computed moment images. 

SBP{Mi} is defined as a vector valued image, with nM com-
ponents such that for every z ∈ ℤ

2, and for every i, 
SBP{Mi}(z)i is a value between 0 and 2 (P + 2). If the image 
f contains texture, the descriptor associated to f is made by 
the histogram of the values of SBP{Mi}. We consider two 
kinds of histograms.

First we consider the joint histogram H defined as 
follows:

Depending on the size of the texture images, the joint 
distribution may become too sparse when the dimension 
(i.e., the number of moments) increases.

Next, we consider the marginal histograms {hi}i≤nM 
defined as:

An image descriptor can then be defined using the 
joint histogram H or the concatenation of the nM marginal 
histograms {hi}. The length of the descriptor vector is 
[2(P + 2)]nM in the first case and 2nM(P + 2) in the second 
case.

2.4  Higher order moments

The SBP model on higher order moments is evaluated 
next. The objective of the SBP framework is to extend the 
LBP texture image descriptors from the local level, repre-
sented by the pixel z, to the regional distribution level of 
z + B by approximating the distribution to a set of statistical 
moments. It is known that the mean and variance describe 
faithfully a statistical distribution only in special cases, 
e.g., when it is a normal distribution. This assumption 
may fail for natural texture images. Therefore, higher order 
moments are needed to obtain an accurate description of a 
general distribution and capture the relevant information.

Regarding the size of the image descriptor, it clearly 
increases as the number of moments increase. When we 
use joint histograms, the descriptor size is (2(P + 2))n 
where P is the number of neighbours used in LBP and n 
is the number of moment images. When we use marginal 

(6)
H:[0, 2(P + 2)[nM → ℕ

H(v) =
||||
{
z;SBP{Mi}(z) = v

}||||

(7)
H:[0, 2(P + 2)[→ ℕ

hi(n) =
||||
{
z;SBP{Mi}(z)i = n

}||||

histograms, the size is only 2n(P + 2) but this comes at 
the price of a significant loss of information. Hence we 
propose a trade-off between descriptor size and informa-
tion loss based on the concatenation of joint histograms 
corresponding to pairs of moment images.

Formally, we can recursively define the higher order 
SBP hybrid image descriptor as follows.

Let M1and M2 be moments or combinations of 
moments by their joint or concatenated histogram. 
We shall denote as SBPM1M2(resp. SBPM1_M2) the image 
descriptor made by the joint (resp. concatenated) histo-
grams constructed from SBPM1 and SBPM2. In our experi-
ments for higher order moments below, we have only 
considered pairs of moments for joint histograms. The 
algorithm below summarizes the high order binary statis-
tical moment SBP:

The SBP Algorithm
Input: f—a 2D image, B ⊂ ℤ

2—the spatial support used to calculate 
the local moments, P—the number of neighbours, R—the radius 
neighbouring circle.

Output: SBP
m1�2

P,R —texture descriptor of f.
Calculate moment images:
1. Calculate the first order moment image m1 (or m

1
(f ,B)) associated to f 

and B using the formula (1).
2. Calculate the second order centered moment image �2 (or �

2
(f ,B)) 

associated to f and B using the formula (2).
Statistical binary patterns:
1. Calculate statistical binary patterns SBPP,R

(
m1

)
 and SBPC

(
m1

)
 

from the first order moment images m1, using the formulas (5) and 
(6).

2. Calculate statistical binary patterns SBPP,R

(
�2

)
 and SBPC

(
�2

)
 

from the second order moment images �2, using the formulas (5) 
and (6).

3. Calculate SBP
m1�2

P,R  as joint histogram of SBPP,R

(
m1

)
, SBPC

(
m1

)
, 

SBPP,R

(
�2

)
 and SBPC

(
�2

)
.

Figures  1 and 2 compare the recognition rate of the 
algorithms LBP, CLBP [38] and SBP. For this com-
parison, we used the Outex database [39], a large and 

Fig. 1  Classification rate (%) of LBP, CLBP and SBP with the value 
(P,R) = (24,3) using the Outex texture database
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comprehensive texture database which includes 24 
classes of textures collected under three illuminations and 
at nine angles. To measure the dissimilarity between the 
two histograms, we used the nearest neighborhood classi-
fier with the Chi square distance. We considered different 
configurations of SBP: in Fig.  1 we set the (P,R) value 
equal to (24,3); in Fig. 2 we used values (8,1), (16,2) and 
(24,3).

3  Virtual collaborative projection

Zhang et  al. [9] investigated the role of collaboration 
between classes in representing the query sample. In order 
to collaboratively represent the query sample y ∈ ℝ

m using 
X (all the gallery images where each column is a training 
sample) with low computational cost, they introduced a 
method called collaborative representation based classifica-
tion with regularized least square method (CRC_RLS). A 
general model of collaborative representation is:

where � is the coding vector (� = [�1,… , �i,…] and 
y ≈ X�) and � is the regularization parameter.

The algorithm is described below:

The CRC-RLS Algorithm

1. Normalize the columns of X to have unit l2-norm.
2. Code y over X by
�̃� = Py

where P =
(
XTX + �I

)−1
XT

.
3. Compute the regularized residuals
ri =

‖‖y − Xi�̃�i
‖‖∕‖‖�̃�i‖‖2

4. Output the identity of y as
identity(y) = argmini

{
ri
}

where �̃�i is the coding vector associated with class i.

(8)�̃� = argmin𝛼
�‖y − X𝛼‖2

2
+ 𝜆‖𝛼‖2

2

�

The method proposed in this paper improves this algo-
rithm by increasing the fidelity of the training images and 
enhancing the collaboration between classes by representing 
not only the query sample y but also all gallery images xi of 
every class i based on the idea of virtual collaborative projec-
tion (VCP).

Using this idea, we can compute the average images Ci 
from every class i over X, defined as:

where Ntr represents the number of training images of a 
class i.

Next by computing P as:

then the resulting virtual coefficient �̃�virtual is calculated as 
follows:

This virtual coefficient is used as a weight for every class i 
and reconstruct a new gallery images dci:

A new dictionary D (the update of X) is then obtained by 
combining all images dci

(
D =

[
dc1 ,… , dci ,…

])
.

Next, when a query sample y is presented to be classified, 
we follow the same procedure as CRC_RLS by computing 
the regularized residuals ri but we utilize the new dictionary 
D:

where Di represents the images of a class i. The identity of 
a query sample y is computing by:

Below we present our virtual collaborative projection 
(VCP) algorithm when a query imageyis presented to be 
classified:

The VCP Algorithm
1. Normalize the columns of X to have unit l2-norm.
2. Compute the average images Ci of every class i using the formula 

(9).
3. Compute the virtual coefficient �̃�virtual using the formulas (10) and 

(11).
4. Compute dci using the formula (12).
5. Combining all the dci in a dictionary D.
6. Compute the regularized residuals ri using the formula (13).
7. Return the identity of y using the formula (14).

(9)Ci =

tr∑
1

xi∕Ntr

(10)P =
(
XTX + �I

)−1
XT

(11)�̃�virtual = PCi

(12)dci =
‖‖�̃�virtual‖‖2Ci

(13)ri =
‖‖y − Di�̃�virtual

‖‖∕‖‖�̃�virtual‖‖ 2

(14)identity(y) = argmini
{
ri
}

Fig. 2  Classification rate (%) of LBP, CLBP and SBP with the values 
(P,R) = (8,1), (P,R) = (16,2) and (P,R) = (24,3) using the Outex tex-
ture database
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In order to investigate the efficiency of VCP versus 
CRC, we conducted some experiments using the AR face 
dataset [40] with different dimensionality. Note that PCA is 
used to reduce the dimensionality of original face images, 
and the Eigenface features are used for this first experiment 
with three dimensions 54, 120 and 300.

For this comparison, we selected a subset from AR data-
set that contains 50 male subjects and 50 female subjects 
with only illumination and expression changes. For each 
subject, the seven images from Session 1 were used for 
training and the other seven images from Session 2 were 
used for testing. The images were cropped and resized to 
60 × 43. Table  1 shows that VCP performs slightly better 
than CRC_RLS [9]:

Additional experiments are conduct in Sect.  4 with 
object categorization and action recognition where we use 
features provide by state-of-the-art methods and not the 
high order statistical moments.

We conclude this section by presenting our algorithm 
of high order statistical binary pattern with virtual collabo-
rative projection (SBP_VCP) obtained by adding the step 
of high order statistical moments features extraction (cf. 
Sect. 2) to the VCP algorithm. This additional step is per-
formed for the training images X resulting in a new training 
set and for every query sample y.

The SBP_VCP Algorithm

1. Extract the statistical binary patterns SBP
m1�2

P,R  of X using the SBP 
Algorithm.

2. Extract the statistical binary patterns SBP
m1�2

P,R  of y using the SBP 
Algorithm.

3. Call VCP algorithm.

In the next section we illustrate the performance of the 
SBP_VCP approach.

4  Experiments

To demonstrate the performance of our SBP_VCP algo-
rithm, we conducted extensive experiments on multiple 
benchmark databases for face recognition, handwritten 
digit recognition, gender classification, image categoriza-
tion and action recognition.

4.1  Parameter settings

We first describe how we set the parameters in the SBP_
VCP algorithm. A part from the choice of moments and 
their combinations, two additional parameters need to be 
set in the calculation of the SBP:

•	 The spatial support B for calculating local moments.
•	 The spatial support {P;R} for calculating the LBP.

Although those two parameters are relatively independ-
ent, it must be noticed that B has to be sufficiently large to 
be statistically relevant. Regarding {P;R}, this quantity is 
supposed to be relatively small in order to represent local 
micro-structures of the (moment) images.

In the following, due to space constraints, we only show 
experiments using structuring element B = {(1;5); (2;8)} 
which provides very satisfactory results on the different 
datasets.

Regarding {P;R}, the spatial support of the LBP, we 
have considered the three settings commonly found in the 
literature: {8;1}, {16;2}, and {24;3}.

Regarding the parameters associated with the virtual 
collaborative projection and the collaborative classification, 
we used a regularization parameter � which is initialized as 
follows, for:

•	 Face recognition (FR) without occlusion: � = 0.001

•	 Face recognition (FR) with occlusion: � = 0.1

•	 Gender classification (GC): � = 0.001

•	 Digit handwritten recognition: � = 0.1

•	 Image categorization: � = 0.001

•	 Action recognition: � = 0.1

Table 1  Comparison of VCP (virtual collaborative projection) versus 
CRC (collaborative representation based classification) using AR data 
set with different dimensionality

Dimension 54 120 300

CRC_RLS [9] 80.5% 90.0% 93.7%
VCP 80.8% 91.1% 94.3%

Fig. 3  Selected samples from 
the Extended Yale B database
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In all tables reported, the value in bold indicates the best 
performance. Namely, in Table 1 through Table 18, the val-
ues in bold indicate the best recognition rates; in Tables 19 
and 20 the values in bold indicate the least computation 
time.

4.2  Face recognition (FR)

4.2.1  Extended Yale B database

The Extended Yale B [41, 42] database contains 2414 fron-
tal face images of 38 individuals; some samples are pre-
sented in Fig. 3. We used the cropped and normalized face 
images of size 54 × 48, which were taken under varying 
illumination conditions. Three tests are considered for this 
dataset.

Test 1. We randomly split the database into two halves. 
One-half, which contains 32 images for each person, was 
used as the dictionary, and the other half was used for test-
ing. Table  2 shows the recognition rates versus feature 
dimension by nearest neighbours NN, nearest feature line 
NFL [43], support vector machine SVM, sparse represen-
tation based classification SRC [2], linear regression based 
classification LRC [44], locality-constrained linear coding 
LLC [45], regularized robust coding RRC [7] methods. 
SBP_VCP achieves the best recognition rate for all dimen-
sions except dimension 300 where it performs slightly 
worse than RRC_l1 [7] but it is still superior to all other 
methods considered.

Test 2. For each subject,  Ntr samples are randomly cho-
sen as training samples and 32 of the remaining images are 
randomly chosen as the testing data. Here the images are 
resized to size 96 × 84 and the experiment for each  Ntr runs 
ten times. For comparison, we used robust kernel represen-
tation with statistical local features SLF-RKR [36] and we 
used the same features extraction; statistical local features 
SLF with NN, LRC, SVM, CRC and SRC based methods.

We list in Table 3 the FR performance results, measured 
as mean recognition accuracy. The proposed algorithm 
SBP_VCP achieves the best performance when  Ntr = 5 or 
20 and it is the second best method slightly behind SLF-
RKR_l2 when  Ntr = 10. It can also be noticed that methods 
based on collaborative representation (e.g., SLF-RKR [36], 
SLF + CRC, SLF + SRC and original SRC) perform bet-
ter than other kinds of linear representation methods (e.g., 
SLF + LRC, SLF + NN).

Test 3. In the third test, we randomly selected between 2 
and 7 images from each person as training set and used the 
remaining images as testing set. Similarly, all the samples 
were projected into a subspace of 550 dimensions (Samples 
in LDA + SRC and LDA + CRC schemes are projected into 
a subspace of 37 dimensions), in addition to SRC and CRC 
we compare our method with JDDLDR [14], FDDL [13] 
and PDL [15] based approach. The FR results are shown in 
Table 4.

Table 4 shows that SBP_VCP gives the best results for 
all values of  Ntr. We remark that the improvement in per-
formance is significant as compared to all others methods 
demonstrating the advantages of combining the statisti-
cal features with this twin competitive (collaborative) 
classification.

4.2.2  AR database

Test 1. As in [2], we selected a subset (with only illumi-
nation and expression changes) containing 50 male and 
50 female subjects from the AR database [40]; some 
samples are shown in Fig.  4. For each subject, the seven 
images from Session 1 were used for training and the other 
seven images from Session 2 were used for testing. The 
images were cropped to 60 × 43. The FR rates with base-
line comparison reported in Table 5 show that the proposed 
approach yields the best performance among all methods 
considered for all dimensions, even when the dimension 
is 30 and competing methods perform rather poorly. As 

Table 2  Face recognition results (test 1) of different methods on the 
Extended Yale B database

Dimension 84 150 300

NN 85.5% 90.0% 91.6%
SVM 94.9% 96.4% 97.0%
LRC [44] 94.5% 95.1% 96.0%
NFL [43] 94.1% 94.5% 94.9%
SRC [2] 95.5% 96.8% 98.3%
LLC [45] 96.4% 97.0% 97.6%
CRC [9] 95.0% 96.3% 97.9%
RRC_l2 [7] 94.4% 97.6% 98.9%
RRC_l1 [7] 98.0% 98.8% 99.8%
SBP_VCP 98.5% 99.1% 99.7%

Table 3  Face recognition results (test 2) of different methods on the 
Extended Yale B database

Ntr 5 10 20

Original SRC [2] 80.0% 91.4% 97.3%
SLF+NN 59.7% 76.8% 89.7%
SLF+LRC 59.0% 78.9% 93.3%
SLF+HISVM 72.0% 91.6% 99.0%
SLF+CRC 83.0% 95.5% 99.2%
SLF+SRC 82.8% 95.5% 99.3%
SLF-RKR_l1 [36] 85.6% 97.4% 99.5%
SLF-RKR_l2 [36] 85.8% 97.5% 99.5%
SBP_VCP 86.3% 97.0% 99.6%
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expected, all methods achieve their maximal recognition 
rates at dimension 300.

Test 2. For each subject, the seven images with illumina-
tion change and expressions from Session 1 were used for 
training, and the other seven images with only illumination 
change and expression from Session 2 were used for test-
ing. The size of the original face image is 83 × 60. The rec-
ognition rates versus the number of training samples  Ntr are 
reported in Table  6, showing that SBP_VCP achieves the 
highest recognition rates, followed in order by SLF-RKR 
[36] and SLF + SRC.

4.2.3  MPIE database

The CMU Multi-PIE database [46] contains images of 337 
subjects captured in four sessions with simultaneous vari-
ations in pose, expression, and illumination. Among these 
337 subjects, all the 249 subjects in Session 1 were used 
for training. To make the FR more challenging, four subsets 
with both illumination and expression variations in Ses-
sions 1, 2 and 3, were used for testing. We conducted two 
tests with this experimental protocol.

Test 1. In the first test, for the training set, as in [2], we 
used the seven frontal images with extreme illuminations 
{0, 1, 7, 13, 14, 16, and 18} and neutral expression (refer 
to Fig.  5a for examples). For the testing set, four typical 
frontal images with illuminations {0, 2, 7, 13} and different 

Table 4  Face recognition 
results (test 3) of different 
methods on the Extended Yale 
B database

Ntr 2 3 4 5 6 7

JDDLDR [14] 54.9% 65.3% 67.4% 68.2% 69.6% 70.5%
DR-SRC 53.0% 63.6% 65.6% 67.1% 68.9% 69.8%
MFL-SRC 53.4% 63.1% 65.7% 66.8% 69.0% 69.2%
PCA + SRC 53.5% 64.1% 65.2% 67.0% 68.7% 69.0%
LDA + SRC 46.2% 53.2% 60.3% 66.5% 68.1% 68.1%
PCA + CRC 53.2% 64.4% 65.0% 67.1% 68.5% 69.2%
LDA + CRC 46.0% 53.5% 60.9% 66.2% 67.9% 68.2%
FDDL [13] 44.1% 53.8% 63.6% 67.5% 69.3% 70.1%
PDL [15] 49.7% 58.3% 60.2% 62.8% 66.9% 69.4%
SBP_VCP 54.9% 65.8% 74.1% 80.1% 85.4% 90.5%

Fig. 4  Selected samples from the AR database

Table 5  Face recognition results (test 1) of different methods on the 
AR database

Dimension 30 54 120 300

NN 62.5% 68.0% 70.1% 71.3%
SVM 66.1% 69.4% 74.5% 75.4%
LRC [44] 66.1% 70.1% 75.4% 76.0%
NFL [43] 64.5% 69.2% 72.7% 73.4%
SRC [2] 73.5% 83.3% 90.1% 93.3%
LLC [45] 70.5% 80.7% 87.4% 89.0%
CRC [9] 64.2% 80.5% 90.0% 93.7%
RRC_l2 [7] 61.5% 84.3% 94.3% 95.3%
RRC_l1 [7] 70.8% 87.6% 94.7% 96.3%
SBP_VCP 82.4% 93.7% 98.9% 100%

Table 6  Face recognition 
results (test 2) of different 
methods on the AR database

Ntr 2 3 4 5 6 7

SRC [2] 67.0% 70.1% 77.9% 87.4% 93.7% 93.1%
SLF + NN 88.1% 88.7% 92.3% 97.0% 98.0% 98.3%
SLF + LRC 83.3% 82.7% 85.0% 90.0% 93.7% 94.3%
SLF + HISVM 86.7% 87.0% 90.6% 94.1% 96.6% 96.6%
SLF + CRC 87.9% 87.4% 88.0% 93.9% 98.3% 98.3%
SLF + SRC 87.6% 88.0% 89.9% 95.7% 98.7% 98.8%
SLF-RKR_l1 [36] 90.1% 91.0% 92.4% 97.0% 99.4% 99.4%
SLF-RKR_l2 [36] 90.6% 91.1% 92.0% 97.4% 99.4% 99,4%
SBP_VCP 91.1% 91.1% 94.4% 8.4% 100% 100%



1031Int. J. Mach. Learn. & Cyber. (2018) 9:1023–1038 

1 3

expressions (smile in Sessions 1 and 3, squint and surprise 
in Session 2) were used (refer to Fig. 5b for examples with 
surprise in Session 2, Fig.  5c for examples with smile in 
Session 1, and Fig. 5d for examples with smile in Session 
3). Here we used Eigenface with dimensionality 300 as the 
face feature for sparse coding. Table 7 reports the recogni-
tion rates found in four testing sets.

Table 7 shows that SBP_VCP gives the best results using 
the sets smile-S1 and Squint-S2 and the second best results 
with the sets surprise-S2 and smile-S3. Since smile-S1 is 
in the same class (intra-class) as the training set, that’s why 

we have a good result, regarding smile-S3 and surprise-S2 
sets we have the second best accuracy by 72.7 and 62.5% 
respectively.

Test 2. In the second test, we analyzed the impact of sta-
tistical binary pattern (SBP) on different state-of-the-art 
methods with the same experimental protocol as Test 1. We 
considered nearest neighbours NN, linear regression LRC 
[44], sparse representation SRC [2], collaborative repre-
sentation CRC [9] and relaxed collaborative representation 
RCR [10] based classification. Table 8 reports the recogni-
tion rates found on the different methods with and without 
SBP.

Results in Table 8 show that SBP consistently increases 
the performance of different approaches, especially when 
the classes are different from Session 1. The improvement 
in performance is significant for collaborative classification 
based methods CRC and RCR; for example the recognition 
rate of RCR with the set square-S2 increases from 40 to 
74.6%, and with the set surprise-S2 from 38.1 to 64.5%.

4.2.4  AR database, disguise

In this experiment, we considered a subset from the AR 
database consisting of 2599 images from 100 subjects (26 
samples per class except for a corrupted image w-027-14.
bmp), 50 males and 50 females. We performed three tests: 
the first one follows the experimental settings in [2]; the 
other two, described below, are more challenging. The 
images were resized to 83 × 60 in the first and third test and 
to 42 × 30 in the second test; four representative samples of 
two persons are shown in Fig. 6.

Fig. 5  A subject in the Multi-
PIE database. a Training 
samples with only illumination 
variations. b Testing samples 
with surprise expression and 
illumination variations. Panels c 
and d shows the testing samples 
with smile expression and illu-
mination variations in Session 1 
and Session 3, respectively

Table 7  Face recognition results of different methods on the MPIE 
database

Algorithms Smi-S1 Smi-S3 Sur-S2 Squ-S2

NN 88.7% 47.3% 40.1% 49.6%
SVM 88.9% 46.3% 25.6% 47.7%
LRC [44] 89.6% 48.8% 39.6% 51.2%
NFL [10] 90.3% 50.0% 39.8% 52.9%
SRC [2] 93.7% 60.3% 51.4% 58.1%
LLC [45] 95.6% 62.5% 52.3% 64.0%
CRC [9] 90.3% 54.6% 41.1% 47.9%
RRC_l2 [7] 96.1% 70.2% 59.2% 58.1%
RRC_l1 [7] 97.8% 76.0% 68.8% 65.8%
SBP_VCP 98.2% 72.7% 62.5% 69.7%

Table 8  Face recognition results of different methods with SBP on 
the MPIE database

Algorithms Smi-S1 Smi-S3 Sur-S2 Squ-S2

NN 88.7% 47.3% 40.1% 49.6%
SBP-NN 94.5% 58.1% 51.0% 63.4%
LRC [44] 89.6% 48.8% 39.6% 51.2%
SBP-LRC 96.5% 69.9% 57.9% 64.1%
SRC [2] 93.7% 60.3% 51.4% 58.1%
SBP-SRC 98.0% 72.1% 62.2% 67.2%
CRC [9] 90.3% 54.6% 41.1% 47.9%
SBP-CRC 97.4% 61.7% 59.2% 64.2%
RCR [10] 89.6% 48.5% 38.1% 40.0%
SBP-RCR 96.2% 69.1% 64.5% 74.6%

Fig. 6  Testing samples with sunglasses and scarves from the AR 
database
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Test 1. In the first test, 799 images (about 8 samples per 
subject) of non-occluded frontal views with various facial 
expressions in Sessions 1 and 2 were used for training, 
while two separate subsets (with sunglasses and scarf) of 
200 images (1 sample per subject per Session, with neutral 
expression) were used for testing. The FR results are listed 
in Table  9 and show that the SBP_VCP method achieves 
a much higher recognition rates than CRC_RLS [9], RRC 
[7] (with scarf), SRC [2], Gabor feature based sparse rep-
resentation with Gabor occlusion dictionary GSRC [5] and 
maximum correntropy criterion CESR [8].

Test 2. In the second test, we considered FR with a more 
complex disguise including variations of illumination and 
longer data acquisition interval. 400 images (4 neutral 
images with different illuminations per subject) of non-
occluded frontal views in Session 1 were used for training, 
while the disguised images (3 images with various illumi-
nations and sunglasses or scarves per subject per session) 
in Sessions 1 and 2 for testing. The results, reported in 
Table 10, show that the SBP_VCP methods achieves better 
performance than CRC_RLS [9], SRC [2], GSRC [5] and 
CESR [8], except for sunglass-S1, where it achieve the sec-
ond best result after RRC [9].

Test 3. In this test, a subset of 50 males and 50 females 
were selected from the AR database. For each subject, 
7 samples without occlusion from session 1 are used for 
training, with all the remaining samples with disguises used 
for testing. These testing samples (including 3 samples with 
sunglass in Session1, 3 samples with sunglass in Session 2, 
3 samples with scarf in Session 1 and 3 samples with scarf 
in Session 2 per subject) not only have disguises, but also 
variations of time and illumination. Table 11 reports the FR 
results on the four test sets with disguise.

Table 11 shows that the proposed method achieves the 
best recognition rate with sunglasses in Session 2 and 
achieves 100% accuracy with Session 1 (as some others 
methods) and the second best accuracy in the sessions 
with scarf (SLF_RKR is ranked first). We remark that all 
methods perform better for session 1 (sunglass and scarf) 

than session 2, as session 2 is more challenging due to 
variations in illumination.

4.2.5  Georgia Tech data base with block occlusion

The Georgia Tech (GT) [47] Face Database contains 750 
color images of 50 subjects (15 images per subject), as 
shown in Fig. 7a. These images have large variations in 
pose and expression and some illumination changes. 
Images were converted to gray scale, cropped and resized 
to 90 × 68. The first eight images of all subjects were 
used in the training (400 images), the remaining seven 
images for testing (350 images). For block occlusion, 
were placed a randomly located rectangle of all the test-
ing images using an unrelated image, as illustrated in 
Fig. 7c.

Performance results reported in Table 12 compare the 
algorithms SBP_VCP, SBP-CRC, SBP-SRC, SBP-LRC, 
and SBP-NN in the presence of block occlusion rang-
ing from 0 to 50% of the image. Table  12 shows that 

Table 9  Test 1: Face recognition results using images with real dis-
guise from the AR database

Algorithms Sunglass Scarf

SRC [2] 87.0% 59.5%
GSRC [5] 93.0% 79.0%
CESR [8] 99.0% 42.0%
CRC_RLS [9] 68.5% 90.5%
RRC_l2 [7] 99.5% 96.5%
RRC_l1 [7] 100% 97.5%
SBP_VCP 100% 99.5%

Table 10  Test 2: Face recognition results using images with real dis-
guise from the AR database

Algorithms Session 1 Session 2

Sunglass Scarf Sunglass Scarf

SRC [2] 89.3% 32.3% 57.3% 12.7%
GSRC [5] 87.3% 85.0% 45.0% 66.0%
CESR [8] 95.3% 38.0% 79.0% 20,7%
CRC_RLS [9] 66.3% 62.0% 29.0% 42.0%
RRC_l2 [7] 99.0% 94.7% 84.0% 77.3%
RRC_l1 [7] 99.0% 93.3% 89.0% 76.3%
SBP_VCP 98.7% 98.7% 89.7% 84.7%

Table 11  Test 3: Face recognition results using images with real dis-
guise from the AR database

Algorithms Sunglass-S1 Scarf-S1 Sunglass-S2 Scarf-S2

Robust SRC [2] 83.3% 48.7% 49.0% 29.0%
RSC [6] 94.7% 91.0% 80.3% 72.7%
SLF + NN 98.7% 98.0% 82.3% 88.7%
SLF + LRC 96.7% 92.0% 68.7% 68.7%
SLF + HISVM 97.0% 95.7% 70.3% 78.7%
SLF + CRC 99.7% 98.7% 80.3% 86.7%
SLF + KCRC 100% 98.3% 82.7% 88.0%
SLF + SRC 100% 99.0% 85.0% 90.7%
SLF + KSRC 100% 98,3% 84.0% 86.7%
SLF_RKR_l1 [36] 100% 100% 93.0% 97.6%
SLF_RKR_l2 [36] 100% 100% 91.3% 96.0%
SBP_VCP 100% 99.3% 97.0% 97.0%
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SBP_VCP achieves the best accuracy. Our interpretation 
is that this remarkable performance is due mostly to the 
VCP approach which efficiently takes advantage of the 
twin collaborative representation in the training and test-
ing steps.

4.2.6  FRGC data base with block occlusion and single 
sample per person (SSPP)

The FRGC database [48] contains faces acquired under 
uncontrolled conditions as shown in Fig. 8a. Using single 
sample per person (SSPP) protocol as another challeng-
ing problem in FR, we randomly selected 152 images for 

training, 152 images for testing and replaced a randomly 
located block of the test image with an unrelated image, as 
illustrated in Fig. 8c. The images were cropped and resized 
to 90 × 68 pixels. The recognition accuracy on this dataset 
is reported in Table 13.

The Table  13 shows that also in this test with block 
occlusion ranging from 10 to 50% of the image our algo-
rithm SBP_VCP achieves the best performance, as it 
exhibits as lightly better accuracy than all the other meth-
ods considered. Note that all methods, except SBP-NN 
and SBP-LRC, achieve the same recognition rates with-
out occlusion, while their performance is different in the 

Fig. 7  a Original images of 
the same subject from Georgia 
Tech. b Original test image. c 
Test image with random block 
occlusion (30%)

Table 12  Face recognition 
results using the GT database 
with block occlusion

Occlusions (%) 0 10 20 30 40 50

SBP-NN 48.0% 28.9% 18.8% 10.6% 7.1% 5.1%
SBP-LRC 64.0% 62.8% 58.5% 48.6% 39.1% 26.9%
SBP-SRC 66.8% 64.3% 60.6% 55.1% 46.0% 32.2%
SBP-CRC 66.5% 63.1% 60.6% 57.3% 49.4% 34.3%
SBP_VCP 67.1% 66.3% 61.4% 58.6% 51.1% 37.1%

Fig. 8  a Original images of 
four different subjects from 
FRGC. b Original test image. c 
Test image with random block 
occlusion (30%)

Table 13  Face recognition 
results of different methods with 
block occlusion and SSPP using 
the FRGC database

Occlusions (%) 0 10 20 30 40 50

SBP-NN 74.3% 69.1% 56.8% 42.4% 25.7% 11.2%
SBP-LRC 82.2% 80.9% 75.6% 71.1% 62.5% 45.4%
SBP-SRC 83.5% 80.3% 77.6% 68.4% 53.9% 38.2%
SBP-CRC 83.5% 80.3% 76.9% 68.4% 61.2% 45.1%
SBP_VCP 83.5% 83.5% 78.2% 71.7% 63.8% 46.1%
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presence of occlusion. This shows that SBP_VCP performs 
remarkably well in the challenging SSPP problem.

4.3  Gender classification (GC)

4.3.1  AR database

We selected a non-occluded subset (14 images per sub-
ject) of AR [22] consisting of 50 male and 50 female sub-
jects. Images of the first 25 males and 25 females were 
used for training and the remaining images were used 
for testing. The images were cropped to 60 × 43. PCA 
was used to reduce the dimension of each image to 300. 
Table 14 reports the comparison of SBP_VCP versus the 
methods: regularized nearest subspace (RNS) [49], multi-
regularized features learning (MRL) [50], CRC_RLS [9], 

SRC [2], SVM, LRC [44] and NN. The Table 14 shows 
that SBP_VCP outperforms the others methods con-
sidered and illustrates that the proposed method based 
on statistical local features is very effective for gender 
classification.

4.3.2  FEI database

There are 14 images for each of 200 individuals with a 
total of 2800 images [51]. The number of male and female 
subjects is exactly the same and equal to 100. The first 
nine images of all subjects are used in the training (1800 
images, 900 per gender) and the remaining five images 
serve as testing images (1000 images, 500 per gender). Fig-
ure 9 shows all samples from one person. The images were 
cropped to 60 × 43.

Here we compare SBP_VCP to the MRL [50] and CRC_
RLS [9] algorithms on different dimensionality. Table  15 
shows that SM_VCP outperforms MRL and CRC_RLS 
with all dimensionality except for dimension 30.

4.4  Handwritten digit recognition

We next considered the problem of handwritten digit recog-
nition on the widely used USPS database (Hull, J.J. 1994), 
which has 7291 training and 2007 test images. We used two 
different values of  Ntr: 100 and 300 images. Results in the 
Table 16 below show that SM_VCP outperforms all com-
peting methods considered when  Ntr is 300 images. When 
 Ntr = 100, Fisher discrimination dictionary learning FDDL 
[13] is the best performing algorithm but our approach has 
the second best performance.

Table 14  Performance results on GC using the AR database

SBP_VCP RNS_l1 [49] RNS_l2 [49] MRL [50] CRC_RLS [9] SRC [2] SVM LRC [44] NN

97.81% 94.90% 94.90% 92.83% 93.70% 92.30% 92.40% 27.30% 90.70%

Fig. 9  All samples from the 
same person from FEI database

Table 15  Performance results on GC using the FEI database

Dimension 30 54 120 300

CRC_RLS [9] 88.2% 90.3% 91.4% 93.1%
MRL [50] 93.7% 93.4% 94.1% 94.0%
SBP_VCP 92.6% 93.8% 95.0% 96.9%

Table 16  Handwritten digit recognition results of different methods 
on the USPS database

Ntr 100 300

FDDL [13] 94.1% 94.1%
Simplified FDDL [52] 94.2% 95.0%
CRC_RLS [9] 89.8% 90.6%
SBP-CRC 90.3% 92.2%
SBP_VCP 93.4% 95.1%
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4.5  Image categorization

We tested the proposed method on the problem of multi-
class object categorization. We used one of the two Oxford 
flower datasets, 17 category data set, [53], some samples 
of which are show in Fig. 10. We adopt the default experi-
mental settings provided at the website http://www.robots.
ox.ac.uk/~vgg/data/flowers, including the training, valida-
tion, test splits and the multiple features. It should be noted 
that, in this setting, features are only extracted from those 
flower regions which are well cropped by segmentation. 

This set contains 17 species of flowers with 80 images per 
class. As in [54], we directly use the χ2 distance matrices of 
seven features (i.e., HSV, HOG, SIFTint, SIFTbdy, color, 
shape and texture vocabularies) as inputs, and perform the 
experiments based on the three predefined training, valida-
tion, and test splits. Performance results (in terms of accu-
racy) comparing VCP versus other state-of-the-arts are pre-
sented in Table 17 and show that VCP slightly outperforms 
all other methods. Note that, as we follow [54], we did not 
use the SBP for the representation in this test.

4.6  Action recognition

Finally, we conducted an experiment of action recognition 
on the UCF sport action dataset (Rodriguez et al. [57]) and 
the large scale UCF50 dataset. The video clips in the UCF 
sport action dataset were collected from various broad-
cast sports channels (e.g., BBC and ESPN). There are 140 
videos in total and their action bank features can be found 
in Sadanand et al. [58]. The videos cover ten sport action 
classes: driving, golfing, kicking, lifting, horse riding, run-
ning, skateboarding, swinging-(pommel horse and floor), 
swinging-(high bar) and walking. The UCF50 dataset has 
50 action categories such as baseball pitch, biking, driving, 
skiing (Fig.  11), and there are 6680 realistic videos col-
lected from YouTube.

On the UCF sport action dataset, we followed the exper-
imental settings in Rodriguez et al. [57] and evaluated VCP 
via five-fold cross validation, where one fold is used for 
testing and the remaining four folds for training. Since we 

Fig. 10  Samples from Oxford flower data sets with 17 categories

Table 17  Categorization accuracy on the 17 category Oxford flowers 
data set

Methods Accuracy (%)

SRC combination 85.9 ± 2.2
MKL [55] 85.2 ± 1.5
CG-Boost [56] 84.8 ± 2.2
LPBoost [56] 85.4 ± 2.4
MTJSRC-RKHS [54] 88.1 ± 2.3
MTJSRC-CG [54] 88.9 ± 2.9
RCR-DK [10] 87.6 ± 1.8
RCR-CG [10] 88.0 ± 1.6
VCP 89.1 ± 0.9

Fig. 11  UCF sports dataset: 
sample frames of 10 action 
classes along with their bound-
ing box annotations of the 
humans shown in yellow

Table 18  Recognition accuracy on the UCF Sports data set

Methods Accuracy

Hough forest (data A) [59] 86.6%
Hough forest (data B) [59] 81.6%
Hough forest (data C) [59] 79.0%
Rodriguez et al. [57] 69.2%
Yeffet & Wolf [60] 79.2%
Wang et al. [61] 85.6%
VCP 88.8%

http://www.robots.ox.ac.uk/~vgg/data/flowers
http://www.robots.ox.ac.uk/~vgg/data/flowers
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use the action bank features of [58], we do not use SBP as a 
local feature in this test.

We compared VCP against state-of-the-art methods and 
reported the recognition rate in Table  18. Again, results 
show that VCP performs very competitively, illustrating the 
impact of the collaborative method.

4.7  Running time

In practical applications, training is usually an offline 
stage while recognition (classification) is usually an online 
step. Since we adopted the same classification procedure 
of collaborative representation based classification CRC, 
the speed-up we achieve is remarkable when compared 
to many other methods due to the significant reduction in 
computational complexity. In fact, after projecting a query 
sample y via P =

(
XTX + �I

)−1
XT, y is classified to the 

class which gives the minimal ri(�) = ��y − Xi�
��22 + �‖�‖n 

where n = 1 or 2 and �i is the coding vector associated with 
class i (� = [�1,… , �i,…] and y ≈ X�).

All experiments were carried out using MATLAB on 
a 2.20  GHz with dual-core CPU machine with 3.00  GB 
RAM. Table  19 lists the average computational cost of 
training step on Test 1 and Test 2 from the AR dataset with 
real face disguise. The comparison of the LBP [22] to SBP 
algorithms shows that LBP has the least computation time, 
but SBP is close.

Table  20 lists the average computational cost classifi-
cation of different methods on Test 1 and Test 2 from the 
AR dataset with real face disguise. SBP_VCP has the least 
computation time followed by RRC while GSRC has the 
highest computation time.

5  Conclusion

In this paper, we have introduced a novel approach for pat-
tern recognition combining high order statistical binary 
pattern and collaborative projection for robust local rep-
resentation and classification. We have demonstrated that 
the extraction of statistical features based on the high-order 
moments of the images is particularly effective against 
images outliers. When this is property is combined with 
our strategy for competitive or collaborative representation 
based on a trained virtual projection, we obtain a method 
we call SBP_VCP which is a powerful refinement of the 
collaborative representation based classification recently 
proposed in the literature. We have validated SBP_VCP 
on a wide range of problems from pattern recognition and 
classification which include face recognition, gender clas-
sification, object categorisation and action recognition. 
Extensive numerical tests and detailed comparison with 
standard and state-of-the-art methods demonstrate that the 
proposed SBP_VCP approach performs very competitively 
even on challenging classification tests. Additionally, our 
method can be implemented at a relatively small computa-
tional cost as it relies on the same efficient framework used 
in CRC for the classification step.
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