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1  Introduction

Biomedical images play a crucial role in educational and 
medical research purposes. In addition, they are valuable in 
establishing clinical decision support system (CDSS) bene-
fitting from content-based image retrieval (CBIR). To make 
an efficient CBIR system, one needs to label regions-of-
interest (ROIs). Since biomedical images comprise of sev-
eral different regions, detecting an annotated arrow could 
help segment ROIs. ROIs can be used in indexing images 
or in analyzing the content  [1, 2]. In Fig. 1, we provide a 
complete scenario of the project where the importance 
of the arrow is highlighted. Biomedical images are often 
annotated with pointers such as arrow and asterisk to high-
light ROIs (see Fig. 2) and this way, pointers minimize the 
distractions from other image regions. In addition, ROIs are 
often referred to article text and figure captions. This paper 
improves on prior work in arrow detection toward meeting 
this goal in image content analysis. Detecting arrows is not 
straightforward. Arrows (in Fig. 2 appear with either high 
or low intensity to enhance their visibility in the image. 
This means that their intensities vary with respect to the 
background. In addition, in many cases arrows are blurred, 
overlapped or surrounded by textured areas. Arrow types 
can be just a triangle (i.e. a regular arrowhead) or with 
straight and curved tail.

1.1 � Related work

Few techniques are reported in literature for detection of 
arrows overlaid in biomedical images. These techniques 
depend upon segmenting text like and symbol like objects, 
sparse pixel vectorization and local or global thresholding.

In  [3], Dori et  al, proposed a technique to detect 
arrows based on previously reported work on sparse pixel 
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vectorization [4]. The concept relies on the cross sectional 
runs (or width runs) of black image regions (assuming 
arrow in black). The technique utilizes an interesting appli-
cation but, is never applied on biomedical images, as it is 
limited to machine printed images such as electrical wir-
ing diagrams, drawings and graphical symbols. Other tech-
niques used features such as eccentricity, convex area and 
solidity [5]. These features can define regular arrows (i.e., 
straight arrows showing left, right, top and bottom). Since 
overlaid arrows in biomedical images can be distorted, 
computing straightforward geometrical features cannot dif-
ferentiate arrows from other regions. Cheng et al used text-
like and arrow-like objects separation, assuming that arrows 
are shown in either black or white color with respect to the 
background  [6]. As mentioned earlier (see last paragraph 
of Sect. 1), arrows are not appeared in just either black or 
white pixels, their work cannot fit into the target. From the 

binary image, arrow-like object separation employs a fixed-
sized mask (after removing the small objects and noise as 
in  [5]), which are then used for feature computation such 
as major and minor axis lengths, axis ratio, area, solid-
ity and Euler number. Removing small candidate is not a 
solution, since overlaid arrows can also be just a triangle 
(that can be small too). Further, arrows can have texture 
similarity with the regions they are connected/pointed to. 
This will produce distorted arrow candidates at the time 
of segmentation. A recent study uses a pointer region and 
boundary detection to handle distorted arrows [7], which is 
followed by edge detection techniques and fixed thresholds 
as reported in [8, 9]. These candidates are used to compute 
overlapping regions, which are then binarized to extract the 
boundary of the expected pointers. Fundamentally, edge-
based arrow detection techniques are limited by the weak-
edge problem [5–7]. Weak-edge happens in case intensities 

Fig. 1   Using US National Library of Medicine’s (NLM’s) Open-iSM image retrieval search engine (https://openi.nlm.nih.gov), the illustration 
highlights the importance of using arrow in biomedical images (i.e., its location pointing ROI and relationship between the texts and ROI)

Fig. 2   Examples showing dif-
ferent types of arrows pointing 
specific image regions. These 
are taken from published bio-
medical articles

https://openi.nlm.nih.gov
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vary a lot on a single arrow candidate, and as a conse-
quence, part of the edges will be missed. In addition, the 
techniques rely on hard thresholding has to be empirically 
designed from one dataset to another. For edge detection 
in binary or grayscale images, most state-of-the-art meth-
ods use classical algorithms like Roberts, Sobel and Canny 
edge detection. Template-based methods are limited, since 
they require new templates to train new images. Also, it 
may be necessary to re-evaluate the threshold values when 
new images are used. Edge-based techniques are still con-
sidered, since sampling points can be remarkably compact 
compared to solid regions, especially when broken bounda-
ries are recoverable (as reported in  [10]). In biomedical 
images, one of the major issues for a broken boundary is 
non-homogeneous intensity distribution, where pointers 
overlap with content.This is one of primary the reasons, 
hard thresholding (at the time of binarization, for instance) 
may not work.

1.2 � Contribution outline

Our method can be summarized as shown in Fig.  3. It 
relies on a grayscale fuzzy binarization process at differ-
ent levels  [11], where candidates are segmented based on 

connected component (CC) principle. Unlike the common 
state-of-the-art methods, we use four different levels of 
fuzzy binarization. This ensures that overlaid arrow can-
didates are not missed (see Fig. 4). Our system comprises 
of two classifiers, analyzing the candidates in sequence to 
determine whether theses arrow candidates are arrows. It 
consists of a neural network based bidirectional long short-
term memory (BLSTM) classifier followed by convexity-
defect based arrowhead detection. Npen++ and the Radon 
features are computed for these candidates and are vali-
dated with BLSTM-trained arrow model. BLSTM classifies 
each candidate as arrow (and non-arrow) candidates with 
some cross-entropy error (CER) score. This CER defines 
how confident BLSTM classification is, which is inversely 
proportional to the the confidence score. If the confidence 
score of the BLSTM classifier crossed the threshold, the 
candidate is classified as an arrow. Otherwise, the candi-
date is passed through convexity defect-based technique. 
The latter step prunes artefacts (i.e., unwanted noisy object 
and/or image regions) and stores arrowhead-like candi-
dates, since it deals with just the arrowhead.

The remainder of the paper is organized as follows. In 
Sect. 2, we explain the binarization technique. We explain 
BLSTM arrow detection in Sect.  3 that includes feature 

Fig. 3   Overall system workflow 
in block format. Block-wise 
explanation can be found in 
Sect. 1.2
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extraction and classification. In Sect. 4, we discuss convex-
ity defect-based techniques for arrowhead detection. Exper-
imental setup and results are reported in Sect. 5. We also 
extend our evaluation by taking a comprehensive and com-
parative study with state-of-the-art techniques in Sect.  6. 
Section 7 concludes the paper.

2 � Multilayer image segmentation

In biomedical images (see Fig.  2), arrows appear with 
either high or low intensity to enhance their visibility in the 
image. In addition, in many cases arrows are blurred, over-
lapped or surrounded by textured areas. In such contexts, 
typical binarization tools that are based on fixed threshold 
values are unable to segment candidate regions. Therefore, 
we focus on an adaptive binarization tool, which is based 

on a fuzzy partition of a 2D histogram of the image, tak-
ing into account the gray level intensities and local varia-
tions [12]. 2D Z-function criteria based on the optimization 
of fuzzy entropy are then computed from this histogram 
to automatically set the threshold. Z-function employs two 
kernels: low-level and high-level cuts. In addition, we take 
their inversions, and altogether, four different binarized lev-
els are processed, as illustrated in Fig. 4. In Fig. 4, arrow 
candidates are encircled in both red and black (with respect 
to the background color). The main idea of using four dif-
ferent levels of binarization is not to miss the overlaid 
arrows. Furthermore, deformed and/or distorted arrows can 
be discarded since the arrows are repeated in other levels of 
binarization. Note that image regions are segmented based 
on the 8 × 8 connected component (CC) principle. In gen-
eral, CCs, in 2D image, are clusters of pixels with the same 
value, which are connected to each other through 8-pixel 

Fig. 4   Fuzzy binarization (of Fig. 2c): four different levels (levels 1–4), where the arrows are encircled both in red and black with respect to the 
background color
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connectivity. CCs are referred to as candidate regions. 
From a pool of several candidates, we are required to select 
arrow-like candidates.

3 � Arrow detection using BLSTM classifier

To train and test a neural network based BLSTM classifier, 
we compute features: (1) Npen++ and the Radon trans-
form. Using both features, we classify arrow head candi-
dates based on the confidence score of the BLSTM.

3.1 � Features

The performance of any neural network classifier depends 
on the features that are used to represent the candidates. In 
our study, we have tested the performance with two differ-
ent feature descriptors: Npen++  [13] and the Radon fea-
ture [14]. Npen++ features are expected to be worked for 
well defined geometric patterns (such as arrows), including 
curvature, curliness and orientation. Similarly, the Radon 
feature is well suited for the patterns since projection in 
the Radon space changes 2D arrow image into 1D signal 
that can be considered as strokes. BLSTM classifier can be 
considered as a well-known for strokes and gesture recog-
nition [15, 16].

3.1.1 � Npen++ feature descriptor

Npen++ features were originally introduced for handwrit-
ing recognition. It actually comprises a number of features 
computed along the handwriting trajectory. The normal-
ized sequence of the captured coordinates (x(i), y(i)) forms 
the input to the system. It computes a sequence of features 
along this trajectory. But, not all of these features are rele-
vant for our arrow detection approach. Most of the features 
of Npen++ depend on the baseline. In original Npen++ 
recognizer, the baseline b(x(i)) corresponds to the original 
writing line on which a word or text was written. In our 
study, we consider the lowest line parallel to x-axis passing 
through the contour of arrow as baseline.

Vertical position  The vertical distance between y(i) and 
b(x(i)) of a point (x(i), y(i)) is the vertical position of the 
point, where b(x(i)) is the y-value of the baseline for ith 
point on the contour.

Orientation  At point (x(i), y(i)), the local writing direc-
tion is described as

where Δs,Δx, and Δy are defined, respectively, as follows:

Curvature    The computation of curvature at a point 
(x(i),  y(i)) can be considered as any consecutive points 
along the trajectory (or writing direction), and is described 
as follows:

Note that this sequence does not represent curvature but, 
angular difference.

Aspect  The aspect A(i) of the contour in the vicinity of 
a point characterizes the height-to-width ratio of the bound-
ing box containing the preceding and succeeding points of 
(x(i), y(i)). It is computed as:

Curliness    Curliness C(t) feature describe the deviation 
from a straight line in the vicinity of (x(i), y(i)). It is com-
puted as the ratio of the length of the contour and maxi-
mum side of the bounding box,

where L(i) denotes the length of the contour in the vicin-
ity of the point computed as the sum of all line segments, 
and Δx and Δy are width and height of the bounding box, 
respectively.

We have applied Npen++ feature for selection of arrow-
like candidates. Figure  5 shows how do the Npen++ 
features look like for both arrow and non-arrow candi-
dates, and therefore, it allows to realize its discriminative 
property.

3.1.2 � The Radon transform

The radon transform computes projections of an image 
matrix along specified directions  [14]. A projection of a 
two-dimensional function f(x, y) is a set of line integrals. It 
is computed by calculating the length of line integrals from 
multiple sources along parallel paths, or beams, in a certain 

(1)cos�(i) =
Δx(i)

Δs(i)
, and sin�(i) =

Δy(i)

Δs(i)

Δs(i) =
√
Δx2 + Δy2,

Δx(i) =x(i − 1) − x(i + 1), and

Δy(i) =y(i − 1) − y(i + 1).

(2)
cos �(i) = cos �(i − 1) ∗ cos �(i + 1) + sin �(i − 1) ∗ sin �(i + 1) and

sin �(i) = cos �(i − 1) ∗ sin �(i + 1) + sin �(i − 1) ∗ cos �(i + 1).

(3)A(i) =
Δy(i) − Δx(i)

Δy(i) + Δx(i)

(4)C(i) =
L(i)

max(Δx,Δy)
− 2,
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direction. In general, the Radon transform of f(x, y) is the 
line integral of f parallel to the y-axis is

where x� = xcos� + ysin� and y� = ycos� − xsin�. The 
beams are spaced 1 pixel unit apart. To represent an image, 
the Radon function takes multiple, parallel-beam projec-
tions of the image from different angles by rotating the 
source around the center of the image. Since arrow is a reg-
ular geometric shape, the radon transform of arrow tend to 
have regularities.

3.2 � BLSTM classifier

Again, we are motivated by the use of recently introduced 
bidirectional long short-term memory (BLSTM) [17]. 

(5)R�(x
�) = ∫

−∞

∞

f (x�cos� − y�sin�, x�sin� − y�cos�)dy�
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Fig. 5   Npen++ features, representing a arrow and b non-arrow candidates. We provide them side-by-side so that one can compare features find 
how discriminate they are

In simple words, the BLSTM is a recurrent neural net-
work having connections between the nodes so as to form 
a directed cycle, thus, providing a ‘memory’ of network’s 
previous internal state.

3.2.1 � Long short‑term memory (LSTM) layer

A specific architecture known as memory block forms 
the LSTM network nodes. Each memory block contains a 
memory cell and it interact with rest of the network with 
the help of three gates, viz., an input gate, an output gate 
and a forgot gate [17]. The forget gate determines when 
the input is important enough to keep in memory and 
when the block can forget the values. This helps memory 
cells retain their state for a long time and to model the 
context at feature level. The input signal is processed in 
both directions: forward and backward by two different 
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layers, thus improving ID sequence recognition. Next 
layer combines the output of both the layer to form the 
feature map. Like convolutional neural network, mul-
tiple forward and backward layer in each LSTM layer, 
and multiple feature maps at the output layer are possi-
ble. Further, it is possible to stack multiple LSTM layers 
using method like max-pooling subsampling.

3.2.2 � Candidate selection

To train the BLSTM model, the aforementioned features 
(see Sects. 3.1.1 and 3.1.2) can be either separately applied 
or combined.

Individual feature performance in BLSTM
The features: Npen++ and the Radon, are separately 

used to train BLSTM models for the arrows (and not 
arrows). For testing, a test candidate is passed tested 
through the trained BLSTM models. As a reminder, LSTM 
layer has been discussed in Sect. 3.2.1.

Integrating features in BLSTM
This could be another option to realize how good will 

be the BLSTM after feature integration. To handle this, we 
propose two different setups: (1) weighted average score, 
and (2) confidence scores (in parallel).

Setup 1: Weighted average score  Since we do not know 
which feature is performed well, in this setup, we start with 
providing two different weights: � and 1 − �. This can be 
formalized as follows:

where the values of � ranges from 0 to 1, and xF represents 
confidence score from BLSTM for that particular feature, 
F. In general, we have

Therefore, we do not allow biasing any particular fea-
ture. The average score, xavg is then used to classifying 
arrow-candidates

Setup 2: Confidence score in parallel fashion    As 
in setup 1, the candidate image is passed through both 
Npen++ trained classifier and the Radon trained classifier 

(6)xavg = � × x Npen++ + (1 − �) × x Radon ,

xavg =

⎧
⎪⎨⎪⎩

x Radon , if � = 0

x Npen++ , if � = 1

� × x Npen++ + (1 − �) × x Radon , otherwise.

in parallel. At the result, we made the BLSTM classifica-
tion decision, from which we received high confidence 
score. It can be generalized as,

where xF represents confidence score from BLSTM for that 
particular feature, F.

Like the state-of-the-art works, the candidate classified 
by BLSTM with high confidence score is accepted. If not, 
remaining candidates are passed though second phase of 
screening (i.e., convexity defect-based arrowhead detection, 
and also refer to Fig. 3). The latter phase (Sect. 4) aims to 
eliminate the false positives that are coming from BLSTM.

4 � Arrowhead detection using convexity 
defect‑based algorithm

Unlike earlier section and previously reported works  [11, 
18], in this paper, we do not take arrow tail into account 
because arrow tail structures vary a lot. As a consequence, 
the geometric signature computed from extreme points of 
a triangle (i.e., triplet). Such a change can affect the over-
all appearance of the arrow (see Fig.  6). This limits the 
performance of the previous technique, both in computa-
tional complexity and in detection rate. In this section, we 
limit our work and detect an arrowhead that includes fol-
lowing steps: (1) convexity defect-based arrowhead candi-
date cropping; and (2)  arrowhead candidate matching via 
dynamic time warping (DTW).

The convexity defect-based technique is based on the 
characteristics of the arrowhead that can be represented by 
a triangle [19, 20]. Once candidate arrowheads are selected, 
we confirm them by matching with the templates via DTW.

4.1 � Convexity defect‑based arrowhead candidate crop‑
ping

We apply hull convexity defect concept to select arrow-
like candidates (see Fig.  7). If a set of points along the 
contour of the binary CC contains the line segments con-
necting each pair of its points, it is said to be convex. In 
a convex combination, each point xi ∈ S is assigned a 

(7)xdecision =

{
x Radon , if x Radon ≥ x Npen++

x Npen++ , otherwise,

Fig. 6   Examples showing 
the changes in tail structure. 
Further, an absence of the tail is 
also possible
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weight or coefficient wi in such a way that the coefficients 
sum to one. These weights are, at the same time, used to 
compute a weighted average of the points. In general, 
the convex hull, expressed in a single formula, is the set: 
{
∑�S�

i=1
wixi�(∀i:wi ≥ 0) ∧

∑�S�
i=1

wi = 1}. Thus, the convex 
hull of a finite point set S ∈ ℝ

2. An example is shown in 
fig.  7b. A convex shaped silhouettes on both sides of the 
arrow can be computed by subtracting an original candidate 
from the convex hull (see Fig. 7c). This removes tail, and 
the convexity defect region is shown in Fig.  7d, which is 
just a convex hull of both convex shaped silhouettes. At the 
end, arrowhead candidate(s) is(are) selected by subtracting 
an original image with the convexity defect region shown 
in Fig. 7e. All connected components (after subtraction) are 
taken as the potential arrowhead candidates.

4.2 � Arrowhead candidate selection

We apply a template matching technique to confirm arrow-
head candidates (see Fig.  7). We extract a feature along 
the contour and match with the predefined templates using 
dynamic time warping (DTW) technique. The arrowhead 
candidate is confirmed when the similarity score crosses 
the empirically designed threshold.

We have a set of coordinate points along the contour, 
P = {pi}i=1,…,n. We compute change in angle with respect 
to x-axis from any consecutive pair: pi and pi+1,

�i = arctan
(

yi+1−yi

xi+1−xi

)
, and therefore, we can represent a 

whole sequence as a feature vector, f = {�i}i=1,…,n. We 
then represent a digital curve using fewer points through 
polygonal approximation [21–23], such that the properties 
of the curvature of the digital curve are retained. Continu-
ous redundancy of �i can be possible in our feature vector, 
�i = �i+j, j = 1,… ,m, where m ≤ n. In our implementation, 
we compute the difference between the angles and check 
whether it crosses the threshold: �i if |�i − �i+1| ≤ �, where 
� is user-defined. Figure 8 shows three examples, where the 
changes in angles are shown at all dominant points.

For matching, we use DTW algorithm, since it allows 
to find the dissimilarity between two non-linear sequences 
potentially having different lengths [24, 25]. In Fig. 8, one 
can notice the variations in feature vector size from one 
arrowhead to another. Consider two feature sequences: 
f1 = {�i}1=1,…,n and f2 = {�j}j=1,…,m of size n and m, 
respectively. The aim of the algorithm is to provide the 
optimal alignment between both sequences. At first, a 
matrix of size n × m is constructed. Then for each element, 
local distance metric �(i, j) between the events ei and ej is 
computed i.e., �(i, j) = (ei − ej)

2. Let D(i,  j) be the global 
distance up to (i, j),

with an initial condition D(1, 1) = �(1, 1) such that it allows 
warping path going diagonally from starting node (1,  1) 
to end (n, m). The main aim is to find the path for which 
the least cost is associated. The warping path therefore 
provides the difference cost between the compared sig-
natures. Formally, the warping path is, W =

{
wk

}
k=1…l

, 
where max (i, j) ≤ l < i + j − 1 and kth element of W is 
w(i, j)k ∈ [1:n] × [1:m] for k ∈ [1:l]. The optimised warping 
path W satisfies the following three conditions: boundary 
condition, monotonocity condition and continuity condi-
tion. We then define the global distance between f1 and f2 
as,

The last element of the n × m matrix gives the DTW-
distance between f1 and f2, which is normalised by l i.e., 
the number of discrete warping steps along the diagonal 
DTW-matrix.

D(i, j) = min

⎡⎢⎢⎣

D(i − 1, j − 1),

D(i − 1, j),

D(i, j − 1)

⎤⎥⎥⎦
+ �(i, j)

(8)Δ
(
f1, f2

)
=

D(n,m)

l
.

Fig. 7   Arrowhead candidate 
cropping: a an arrow, b convex 
hull, c convexity defect, d a 
complete convexity defect 
region, and e arrowhead can-
didates
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5 � Experiments

5.1 � Datasets, ground‑truth and evaluation protocol

The well-known imageCLEF dataset [26] is used for test-
ing. It is composed of 298 chest CT images. Each image 
is expected to have at least one arrow, and there are 1049 
arrows, in total. For all images in the dataset, groundtruths 
of the arrows were created and each ground-truth includes 
information like arrow type, color, location, and direction. 

For validation, for any given image in the dataset, our perfor-
mance evaluation criteria are precision, recall and F1 score,

where m1 is the number of correct matches from the 
detected set M and N is the total number of arrows (in the 
ground-truth) that are expected to be detected.

(9)
precision =

m1

M
, recall =

m1

N
and

F1 score = 2

(
(m1∕M) × (m1∕N)

(m1∕M) + (m1∕N)

)
,

Fig. 8   Examples showing a 
complete process (from left to 
right) starting from an original 
candidate (resulting from fuzzy 
binarization—see Fig. 4), 
arrowhead cropping (see Fig. 7) 
to feature extraction after 
polygonal approximation

(a)

23.20

147.14

289.65

267.27

239.04

23.20

(b)

313.26

340.91

99.21

227.73
199.98

165.07

313.26

(c)

318.95

92.86

204.15

318.95

Table 1   Performance of the 
proposed system (in %)

Bold-face numbers indicate the best score

Classifier Precision Recall F
1
 score

BLSTM classifier (1) Npen++ 13.96 98.43 24.45
the Radon 06.14 97.31 11.55

Convexity defect-based algorithm (2) 88.50 93.80 90.09
Sequential classifier: (1) + (2) Npen++ 95.39 99.21 97.26

the Radon 92.69 99.10 95.79
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5.2 � Our results and analysis

5.2.1 � Results

In Table  1, the performance evaluation in terms of preci-
sion, recall and F1 score, can be taken as follows.

1.	 BLSTM classifier with two different features that are 
separately applied;

2.	 Convexity defect-based algorithm (without BLSTM 
classifier); and

3.	 Sequential classifier, by integrating both: BLSTM and 
convexity defect-based technique (see Fig. 3).

Based on the aforementioned schema of the results, we 
provide results in Table  1. In Table  1, we observe the 
following:

•	 BLSTM alone has a very good recall value but, with 
large large false positives. It holds true (i.e., high recall) 
for both features: Npen++ (98.43%) and the Radon 
(97.31%) that are applied separately.

•	 Convexity defect-based algorithm performs better than 
BLSTM in terms of precision.

•	 Integrating both (sequential classifier)    BLSTM and 
convexity defect-based technique provides interesting 
results. The candidates having low confidence scores (at 
the BLSTM end) are now correctly be detected/classi-
fied at the latter phase, thanks to convexity defect-based 
arrowhead cropping (see Sect.  4). On the whole, the 
sequential classifier that combines BLSTM and con-
vexity defect-based arrowhead cropping provides bet-
ter results. In our results (Table 1), we provide results 
for separate features. For example, from the sequential 
classifier, we received F1 score of 97.26% when BLSTM 
(with Npen++) is combined with convexity defect-
based algorithm, which is better than when the Radon 
features are used in BLSTM (refer to the last two rows 
of Table 1).

Note that our BLSTM classifier uses a threshold on 
the cross entropy error value to decide whether we should 
further test the candidate with convexity defect-based 
algorithm. If not, we accept as it is classified by BLSTM 
classifier. In Fig.  9, we detail an idea of how BLSTM 
performances have been changed in accordance with the 
change in this threshold values. We note that best results 
(and almost equal) are provided when the normalized 
threshold values are in the range: [0.01–0.03], in both 
features. With this validation, we use the threshold value 
of 0.025 for all tests (see Table 1). Besides, in Fig. 9, we 
observe the following:

•	 for small threshold values, all arrow candidates will be 
above the threshold and will be passed through convex-
ity defect-based algorithm (i.e., only BLSTM is active); 
and

•	 for large threshold values, all arrow candidates will be 
below the threshold and will not be passed through con-
vexity defect-based algorithm (only convexity defect-
based algorithm is active).

Fig. 9   Graph showing the change in accuracies with change in the 
threshold value of cross entropy error for a Npen++ feature and b 
Radon feature

Table 2   Performance (in %): integrating features in BLSTM (setup 
2) and with convexity defect-based algorithm

Classifier Precision Recall F
1
 score

BLSTM classifier (1) (setup 2: inte-
grating features)

26.52 99.88 41.86

Convexity defect-based algorithm (2) 88.50 93.80 90.09
Sequential classifier: (1) + (2) 96.75 99.88 98.29
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5.2.2 � Integrating features in BLSTM

As mentioned in Sect. 3.2.2, we used two different setups: 
1) weighted average score, and 2) confidence scores (in 
parallel).

Using the Eq.  6, Fig  10 shows the changes in perfor-
mance with change in the value of threshold, � ∈ [0, 1]. 
In Fig  10, we also provide the performance of sequential 
classifier (i.e., integrating features in BLSTM plus con-
vexity defect-based algorithm). In our test, performance 
is found to be maximum for Npen++ feature alone, and 
tends to linearly decrease first, which is followed by slight 
advancement with increase in the weight of the Radon’s 
score. On the whole, we observe that integrating the Radon 
feature trained classifier with Npen++ feature trained clas-
sifier does not add to the accuracies (i.e., no change in 
performance).

In the latter setup, the candidate image is passed 
through both Npen++ trained classifier and the Radon 
trained classifier in parallel. At the result (as described 
in Eq.  7), we made the BLSTM classification decision, 
from which we received high confidence score. This 
setup boosted our results by more than 1%. In Table 2, 
precision, recall and F1 score are shown. We remind 

that we take feature integration account in BLSTM first, 
and then combine with convexity defect-based algo-
rithm. Compared to Table  1, the performance has been 
increased by more than 1%, thanks to feature integra-
tion. For a comparison, we will take these best scores in 
Sect. 6 (Table 2).

5.3 � Processing times

Processing times, on average, for both Npen++ and 
the Radon features are almost identical. For each can-
didate image, Npen++ feature took approximatively 
12.7  and 14.4  ms, respectively, without and with con-
vexity defect-based approach. On the other hand, with 
the Radon feature, each candidate image took 15.5  and 
16.2  ms, respectively, without and with convexity 
defect-based approach. We have used Unix Environment 
(Ubuntu 16.04) with 8 GB RAM and Intel Core i7 pro-
cessing power PC with Matlab R2015a.

5.4 � Example outputs

In Fig.  11, we provide some example outputs illustrating 
arrow detection. In these outputs, our aim is to show the 
importance of using multilayer image segmentation con-
cept (see Sect. 2). In both examples of Fig. 11, arrows are 
detected from using two different layers, since they are 
appeared in both black and white pixels. This means that 
straight forward image binarization does not work (for 
example, the works reported in  [6–8]). For a comparison, 
we refer to Sect.  6. For better understanding, we provide 
more outputs in Fig. 12.

6 � State‑of‑the‑art comparison

Further, the comparative study with state-of-the-art meth-
ods has been made. In this comparison, our benchmarking 
methods are categorized into two groups:

1.	 State-of-the-art methods that are specially designed for 
arrow detection; and

2.	 Common template-based method by using well-known 
state-of-the-art shape descriptors.

6.1 � Arrow detection methods

Four well-known methods from the state-of-the-art that are 
specially designed for arrow detection are used:

Fig. 10   Graph showing the changes in performance with different 
values of threshold, �: a without and b with convexity defect-based 
algorithm
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1.	 Global thresholding-based method (M1) [6];
2.	 Two edge-based methods (M2:M3) [7, 8]; and
3.	 A template-free geometric signature-based method 

(M4) [11].

The results are provided in Table 3, where method 4 (M4) 
performs the best with precision, recall and F1 score of 
93.14, 86.92 and 89.94%, respectively.

6.2 � Template‑based methods

In case of template-based method, we created 11 templates 
(arrows) having different shapes (including sizes). The tem-
plate size can further be extended in accordance with the 
dataset. To extract shape features, we took the most fre-
quently used shape descriptors (in computer vision) from 
the state-of-the-art. They are

1.	 Generic Fourier descriptor (GFD) [27],
2.	 Shape context (SC) [28],

3.	 Zernike moment (ZM) [29],
4.	 Generic Radon transform (G-RT) [30] and
5.	 DTW-Radon [31].

As before, results (precision, recall and F1 score) are pro-
vided in Table 4. Among all shape descriptors, GFD pro-
vides the best performance.

6.3 � Comparison summary

From all reported methods (see Tables  2,  3 and  4), we 
take best results for a comparison with the proposed 
method. A complete comparison study is provided in 
Table  5. Considering the dataset, the proposed method 
outperforms the best state-of-the-start arrow detection 
method by more than 8%F1 score, and the template-based 
(shape descriptor) method by more than 20% F1 score. 

Fig. 11   Examples showing different binarization levels are used to detect arrows. This demonstrates the idea of image inversion used in binari-
zation since arrows are not just black-filled
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This attests the usefulness of our method for further 
image region labelling problem, in biomemdical images.

7 � Conclusion and future work

We have presented a sequential classifier to detect over-
laid arrows in biomedical images, comprising of bidi-
rectional long short-term memory (BLSTM) classifier 

Fig. 12   Examples illustrating arrow detection, on the right of the input image

Table 3   Performance comparison (in %) of previously reported 
methods

Bold-face numbers indicate the best score

Methods Precision Recall F
1
 score

M1: Cheng et al. [6] 81.10 74.10 77.00
M2: You et al. [8] 22.80 77.80 35.00
M3: You et al. [7] 84.20 81.60 83.00
M4: Santosh et al. [11, 18] 93.14 86.92 89.94

Table 4   Performance comparison (in %) of template based method

Bold-face numbers indicate the best score

Methods Precision Recall F
1
 score

Generic Fourier descriptor (GFD) [27] 75.10 78.33 76.68
Shape context (SC) [28] 68.30 71.40 69.82
Zernike moments (ZM) [29] 55.20 57.70 56.40
Generic Radon Transform (G-RT) [30] 59.50 63.60 61.48
DTW-Radon [31] 62.10 65.30 63.65

Table 5   Performance comparison (in %) of our method with the best 
previously reported works

Bold-face numbers indicate the best score

Methods Precision Recall F
1
 score

Generic Fourier descriptor 
(GFD) [27]

75.10 78.33 76.68

Santosh et al. [11, 18] 93.14 86.92 89.94
Our method 96.75 99.88 98.29
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followed by convexity defect-based arrowhead detection. 
Our test results on biomedical images from imageCLEF 
2010 collection outperforms the existing state-of-the-art 
arrow detection techniques, by approximately more than 
3% in precision, 12% in recall and therefore 8% in F1 
score.

To the best of our knowledge, this is the first time a 
sequential classifier combining both neural network and 
geometrical shape of the arrow has been used. Our immedi-
ate step would be labeling image regions with the use of the 
arrows detected by the current work.
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