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Abstract The paper is concerned with the problem of

H1 filter design for delayed static neural networks with

Markovian switching and randomly occurred nonlinear-

ity. The random phenomenon is described in terms of a

Bernoulli stochastic variable. Based on the reciprocally

convex approach, a lower bound lemma is proposed to

handle the double- and triple-integral terms in the time

derivative of the Lyapunov function. Finally, the optimal

performance index is obtained via solving linear matrix

inequalities(LMIs). The result is not only less conser-

vative but the time derivative of the time delay can be

greater than one. Numerical examples with simulation

results are provided to illustrate the effectiveness of the

developed results.

Keywords Filter design � Static neural networks �
Markovian switching � Randomly occurred nonlinearity �
Linear matrix inequalities

1 Introduction

As the characteristic of distributed storage, parallel pro-

cessing and self-learning ability, the neural networks have

been successfully applied to signal processing, static image

processing and associative memories etc. But the change of

the actual project, such as time delay [1–3] which is the

main element of many physical processes, may lead to

significantly deteriorated performances of the underlying

neural networks. Therefore, the stability of the neural

network is the core problem that needs to be considered.

When the external states of neurons are taken as basic

variables, the neural networks can be transformed into

static neural networks, because of its extensive application,

such as recursive back propagation neural network and the

optimization of neural network etc., a number of papers

have focus on static neural networks [4–10]. Guaranteed

generalized H2 performance state estimation problems of

delayed static neural networks are studied in [4], and a H2

filter is designed for a class of static neural networks in [5].

Furthermore, guaranteed H1 performance state estimation

problems are added in [6]. The state estimation of static

neural networks with delay-dependent and delay-indepen-

dent criteria is presented in [7]. While in [8], by con-

structing a suitable augmented Lyapunov-Krasovskii

function, the H1 state estimation problem of static neural

network was further researched. On the other hand, the

stability analysis of static recurrent neural networks has

been researched in [9, 10].

On the other hand, the Markovian jumping system is

very suitable for random mutation model, such as the

change of the working point, sudden environmental inter-

ference, and biomedical error [11, 12]. In order to further

study neural networks, many related results on stability

analysis and filter design for neural networks with
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Markovian jumping parameters have been reported in

[13–23]. However, more attention should be paid to these

disturbances such as uncertainty, which is caused by the

randomness. Strictly speaking, any actual system contains

random factors. It is worth to know that the nonlinear

disturbances may occur in a probabilistic way and are

randomly changeable in terms of their types. Both time-

delay and random disturbance have great influence in the

stability of system, so a lot of reserach on them have been

done in [24–30]. For examples, asynchronous l2–l1 filter is

designed for discrete-time stochastic systems where the

sensor nonlinearities is considered in [24]. The randomly

occurring parameter uncertainties with certain mutually

uncorrelated Bernoulli distributed white noise sequences is

introduced in [25]. H1 filtering for a class of discrete-time

stochastic system with randomly occurred sensor nonlin-

earity has been researched in [26]. The effect of both

variation range and distribution probability of the time

delay is taken into account in [27]. Stochastic switched

static neural networks with randomly occurring nonlin-

earities and stochastic delay is introduced and its mean

square exponential stability proved in [28]. The problem of

mean square asymptotic stability of stochastic Markovian

jump neural networks with randomly occurred nonlineari-

ties has been solved in [29]. Moreover, the analysis for the

asymptotic stability of stochastic static neural networks is

proposed in [30], where the time-delays are variable.

In this paper, according to the reciprocally convex

approach [32, 33], which is a special type of function

combination obtained by applying the inequality lemma to

partitioned single integral terms, we will quote the lower

bounder lemma in [5] instead of Wirtinger inequality in

[31] for such a linear combination of the Lyapunov func-

tional with the double- and triple-integral. Based on this

lemma, we will get the lower prescribed level of noise

attenuation compared with [31]. One needs to be noted is

that the time derivative of the time delay can be greater

than one in this paper. Motivated by the above discussion,

the randomly occurred nonlinearity function will be taken

into account with a Bernoulli stochastic variable in the

paper. H1 filter is designed to ensure the resultant error

systems are globally stochastic stable. And the H1 filter

performance indexes are obtained by solving linear matrix

inequalities (LMIs). Finally, numerical examples are given

to demonstrate the validity and effectiveness of the pro-

posed approach.

Throughout this paper, Rn denotes the n-dimensional

Euclidean space. I is the identity matrix. jj � jj denotes

Euclidean norm for vectors. AT stands for the transpose of

the matrix A. For symmetric matrices X and Y, the notation

X[ Y (respectively X� Y ) means that the X � Y is pos-

itive definite (respectively, positive semi-definite). The

symmetric terms in a symmetric matrix are denoted by �
and diagfZ1; Z2; . . .; Zng denotes a blockdiagonal matrix.

Efxg stands for the expectation of the stochastic variable.

L2½0;1Þ is the space of the square integrable vector

functions over ½0;1Þ.

2 Problem description

Firstly, for t� 0, rt, taking values from a finite set

N ¼ f1; 2; . . .; ng, is a right-continuous Markov chain

defined on a complete probability space ðX;F ;PÞ. Its

transition probability between different modes are given by

PrðrtþD ¼ jjrt ¼ iÞ ¼
pijDþ oðDÞ i 6¼ j;

1þ piiDþ oðDÞ i ¼ j

�
:

where D[ 0, limD!0
oðDÞ
D ¼ 0; pij � 0, 8i 6¼ j, and for

i 2 N , pii ¼ �
Pn

j¼1;j 6¼i pij.

Next,we consider the following static neural networkswith

Markovian switching and randomly occurred nonlinearity:

_xðtÞ ¼ � AðrtÞxðtÞ þ f ðWðrtÞxðt � dðtÞÞ þ JðrtÞÞ þ B1ðrtÞwðtÞ;
ð1Þ

yðtÞ ¼ aðtÞwðCðrtÞxðtÞÞ þ ð1� aðtÞÞCðrtÞxðtÞ
þ DðrtÞxðt � dðtÞÞ þ B2ðrtÞwðtÞ;

ð2Þ

zðtÞ ¼ EðrtÞxðtÞ; ð3Þ

xðtÞ ¼ /ðtÞ; t 2 ½�d; 0�; ð4Þ

where xðtÞ ¼ ½x1ðtÞx2ðtÞ � � � xnðtÞ�T 2 Rn is the state vector

of the neural networks with n neurons, AðrtÞ ¼
diagfa1ðrtÞ; a2ðrtÞ; . . .; anðrtÞg is a constant diagonal

matrix with amðrtÞ[ 0, wðtÞ 2 Rp is the disturbance input

in L2½0;1Þ, yðtÞ 2 Rq is the measured output and z(t) is the

signal to be estimated, f ðxðtÞÞ ¼ ½f1ðx1ðtÞÞ; f2ðx2ðtÞÞ;
. . .; fnðxnðtÞÞ� denotes the neuron activation function, for

r(t) 2 N , WðrtÞ;CðrtÞ;DðrtÞ;B1ðrtÞ;B2ðrtÞ;EðrtÞ are the

constant matrices with compatible dimensions, and JðrtÞ is
an external input vector. wðxðtÞÞ ¼ ½w1ðx1ðtÞÞ;w2ðx2ðtÞÞ;
. . .;wnðxnðtÞÞ� is an output nonlinear signal. /ðtÞ is a real

valued initial function. d(t) is a time-varying delay with an

upper bound d[ 0 and scalar l, such that d(t) satisfies

0� dðtÞ� d; _dðtÞ� l: ð5Þ

To simplify the notations, in the sequel, for each

rðtÞ ¼ i 2 N , we denote the matrix AðrtÞ to be Ai and so on.

For the neural network (1)–(4), the state estimator is

constructed as follows:

_̂xðtÞ ¼ �Aix̂ðtÞ þ f ðWix̂ðt � dðtÞÞ þ JiÞ þ Ki½yðtÞ
� ð1� aÞCix̂ðtÞ � Dix̂ðt � dðtÞÞ � awðCix̂ðtÞÞ�;

ð6Þ
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ẑðtÞ ¼ Eix̂ðtÞ; ð7Þ

x̂ð0Þ ¼ 0; t 2 ½�d; 0�; ð8Þ

where x̂ðtÞ 2 Rn and ẑðtÞ 2 Rq, and Ki are to be designed

matrices with compatible dimensions.

Defining the error signals to be ~xðtÞ ¼ xðtÞ � x̂ðtÞ, and
~zðtÞ ¼ zðtÞ � ẑðtÞ. It is easy to follow the above discussion

that the estimation error systems are

_~xðtÞ ¼ ð�Ai � ð1� aÞKiCiÞ~xðtÞ þ gðWi~xðt � dðtÞÞÞ
� KiDi~xðt � dðtÞÞ þ ðB1i � KiB2iÞwðtÞ
� aKiwsðCi~xðtÞÞ þ ðaðtÞ � aÞðKiCixðtÞ
� KiwðCixðtÞÞÞ; ð9Þ

~zðtÞ ¼ Ei~xðtÞ; ð10Þ

where

gðWi~xðt � dðtÞÞÞ ¼ f ðWixðt � dðtÞ þ JiÞ � f ðWix̂ðt � dðtÞ þ JiÞ;
ð11Þ

wsðCi~xðtÞÞ ¼ wðCixðtÞÞ � wðCix̂ðtÞÞ: ð12Þ

The following presentation will give us a detailed under-

standing of the problem.

Remark 1 Markovian switching systems are considered in

this paper, but the state of Markovian switching may be dif-

ferent with the state of systems. For example, many papers

[1, 2, 11, 13, 18] have considered the impulsive neural network

model,which belongs to a newcategory of dynamical systems,

so it is neither purely continuous-time nor purely discrete-time.

Remark 2 According to the givenhypothesis [25, 29],aðtÞ is
a Bernoulli process white sequence taking values of 1 and 0,

and indicating that the output of the plant y(t) is linear or not,

with Pr½aðtÞ ¼ 1� ¼ a, Pr½aðtÞ ¼ 0� ¼ 1� a, where a 2
½0; 1� is a known constant, for further calculation, we get
EðaðtÞÞ ¼ a EðaðtÞ � aÞ ¼ 0; ð13Þ

EððaðtÞ � aÞ2Þ ¼ �a2; �a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
: ð14Þ

Remark 3 Following from Remark 2, aðtÞ is not constant
and time-varying, which means the output nonlinear signal

will randomly appear in the measured output y(t). There-

fore, the advantage of the model is more flexible and adapt

to changes of the working conditions, even in some

unexpected situations.

Assumption 1 The activation function f(t) in (1) and

nonlinear functionwðtÞ in (2) are both continuous and satisfy

l�i � fiðuÞ � fiðvÞ
u� v

� lþi ; ð15Þ

m�
i � wiðuÞ � wiðvÞ

u� v
�mþ

i ; ð16Þ

where f ð0Þ ¼ 0, wð0Þ ¼ 0; i ¼ 1; 2; . . .; n. u 6¼ v, l�i and

lþi , m
�
i and mþ

i are real scalars, and they maybe positive,

negative, or zero.

Remark 4 From Assumption 1, we know that the bound

of activation function f(t) can be positive or negative,

which means it will be more general than usual Lipschitz

condition in [7].

Remark 5 The randomly occurred disturbance of neural

network has been deeply researched in literatures

[24, 26, 28, 29], where the nonlinear function wðtÞ satisfies
the sector bounded condition. In this paper, in order to

compare with [31], we will consider the same assumption

for the activation function in [31]. Here the nonlinear

functions f(t) and wðtÞ satisfy the conditions (15)–(16).

Then with the stochastic variable aðtÞ, the occurrence

probability of the event of wðtÞ is defined.

The following lemmas are given which will be used in

our main results.

Lemma 1 [34] If there exists function vðtÞ : ½0; d� ! Rn,

such that
R d

0
vTðsÞXvðsÞds and

R d

0
vðsÞds are well defined,

the following inequality holds for any pair of symmetric

positive definite matrix X 2 Rn�nand d[ 0.

�
Z d

0

vTðsÞXvðsÞds� � 1

d

Z d

0

vðsÞds
� �T

X

Z d

0

vðsÞds:

Lemma 2 [5] For the given scalar d[ 0, real matrix

Sand G satisfy

S G

� S

� �
� 0;

then with eðtÞ ¼ ½xTðtÞ ~xTðtÞ�T , �wðtÞ ¼ ½wTðtÞ wTðtÞ�T ,
one has

� d

Z t

t�d

_eTðsÞS _eðsÞds� � nTðtÞIT
S G

� S

� �
InðtÞ:

where

nðtÞ ¼ ½eTðtÞ eTðt � dÞ eTðt � dðtÞÞ

�
Z t

t�d

eTðsÞds dT1iðtÞ �wTðtÞ dT2iðtÞ�
T

d1iðtÞ ¼ ½f TðWixðt � dðtÞÞÞ gTðWi~xðt � dðtÞÞÞ�T ;
d2iðtÞ ¼ ½wTðCixðtÞÞ wsðCi~xðtÞÞ�T ;

I ¼
0 � I I 0 0 0 0

I 0 � I 0 0 0 0

� �
:

ð17Þ

H1 filter problem can be utilized as: given a prescribed

level of noise attenuation q[ 0, such that the following

conditions hold.
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1. The error systems (9)–(10) with wðtÞ 	 0 are globally

stochastic stable.

2. Under the zero-initial condition

k~zðtÞk2\qkwðtÞk2: ð18Þ

holds for any nonzero wðtÞ 2 L2½0;1Þ.

3 Main results

Theorem 1 For the given scalar d[ 0 and l, the

resulting estimation error systems (9)–(10) are globally

stochastic stable with H1 performance q, if there exist

positive matrices Pi1, Pi2, Q11i, Q13i, Q21i, Q23i, Q11, Q22,

R11, R22, Ri11, Ri22, S11, S22, Si11, Si22, diagonal matrices

Ti ¼ diagfti1; ti2; . . .; ting[ 0, Ui ¼ diagfui1; ui2; . . .; uing

[ 0, and Xi, Q12, Q12i, Q22i, R12, Ri12, S12, Si12, Gi ¼

Gi11 Gi12

Gi21 Gi22

� �
with appropriate dimension, such that the

following LMIs hold for i 2 N :

Pi ¼
Pi1 0

� Pi2

� �
[ 0; Q1i ¼

Q11i Q12i

� Q13i

� �
[ 0; ð19Þ

Q2i ¼
Q21i Q22i

� Q23i

� �
[ 0; Q ¼ Q11 Q12

� Q22

� �
[ 0; ð20Þ

R ¼
R11 R12

� R22

� �
[ 0; Ri ¼

Ri11 Ri12

� Ri22

� �
[ 0; ð21Þ

S ¼
S11 S12

� S22

� �
[ 0; Si ¼

Si11 Si12

� Si22

� �
[ 0; ð22Þ

Si Gi

� Si

� �
� 0; ð23Þ

Xn
j¼1;j 6¼i

pijQ1j þ
Xn
j¼1

pijQ2j\Q; ð24Þ

Xn
j¼1

pijRj �R;
Xn
j¼1

pijSj � S; ð25Þ

R ¼
ci1 ci2 ci3
� ci4 ci5
� � ci6

2
64

3
75\0: ð26Þ

where

ci1 ¼

Xi1 Xi2 Xi3 0

� Xi4 Xi5 0

� � Xi6 0

� � � Xi7

2
6664

3
7775;

ci2 ¼

Pi1 0 Pi1B1i 0 Ki7 0

0 Pi2 0 Ki8 0 Ki9

0 0 0 0 0 0

0 0 0 0 0 0

Ki10 0 0 0 0 0

0 Ki10 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666666666664

3
77777777777775

;

ci3 ¼

�dAT
i Pi1 0 0 �adCT

i X
T
i

0 Ki11 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 � dDiX
T
i 0 0

0 0 0 0

0 0 0 0

2
66666666666664

3
77777777777775

;

ci4 ¼ diagf�Ti;�Ti;�q2I;�q2I;�Ui;�Uig;

ci5 ¼

dPi1 0 0 0

0 dPi2 0 0

dBT
1iPi1 0 0 0

0 dBT
1iPi2 � dBT

2iX
T
i 0 0

0 0 0 � �adXT
i

0 � adXT
i 0 0

2
666666664

3
777777775
;

ci6 ¼

Ki12 Ki13 0 0

� Ki14 0 0

� � Ki12 Ki13

� � � Ki14

2
6664

3
7775;

Xi1 ¼
Ki1 Ki2

� Ki3

� �
; Xi2 ¼

1

d
GT

i11

1

d
GT

i21

1

d
GT

i12

1

d
GT

i22

2
64

3
75;

Xi3 ¼
� 1

d
GT

i11 þ
1

d
Si11 � 1

d
GT

i21 þ
1

d
Si12

� 1

d
GT

i12 þ
1

d
STi12 � 1

d
GT

i22 þ
1

d
Si22 � XiDi

2
64

3
75;

Xi4 ¼
�Q21i �

1

d
Si11 � Q22i �

1

d
Si12

� � Q23i �
1

d
Si22

2
64

3
75;

Xi5 ¼
� 1

d
Gi11 þ

1

d
Si11 � 1

d
Gi12 þ

1

d
Si12

� 1

d
Gi21 þ

1

d
STi12 � 1

d
Gi22 þ

1

d
Si22

2
64

3
75;

Xi6 ¼
Ki4 Ki5

� Ki6

� �
; Xi7 ¼

� 1

d
Ri11 � 1

d
Ri12

� � 1

d
Ri22

2
64

3
75;

Ki1 ¼ �Pi1Ai � AT
i Pi1 þ

Xn
j¼1

pijPj1 þ Q11i þ Q21i

þ dQ11 þ dRi11 þ
1

2
d2R11 �

1

d
Si11 � CT

i UiMi1Ci;
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Ki2 ¼ Q12i þ Q22i þ dQ12 þ dRi12 þ
1

2
d2R12 �

1

d
Si12;

Ki3 ¼ �Pi2Ai � AT
i Pi2 � ð1� aÞXiCi

� ð1� aÞCT
i X

T
i þ

Xn
j¼1

pijPj2 þ Q13i þ Q23i þ dQ22

þ dRi22 þ
1

2
d2R22 �

1

d
Si22 � CT

i UiMi1Ci þ ET
i Ei;

Ki4 ¼ � 2

d
Si11 þ

1

d
Gi11 þ

1

d
GT

i11 � ð1� lÞQ11i �WT
i TiNi1Wi;

Ki5 ¼ � 2

d
Si12 þ

1

d
Gi12 þ

1

d
GT

i21 � ð1� lÞQ12i;

Ki6 ¼ � 2

d
Si22 þ

1

d
Gi22 þ

1

d
GT

i22 � ð1� lÞQ13i �WT
i TiNi1Wi:

Ki7 ¼ �CT
i UiMi2; Ki8 ¼ Pi2B1i � XiB2i;

Ki9 ¼ �CT
i UiMi2 � aXi; Ki10 ¼ �WT

i TiNi2;

Ki11 ¼ �dAT
i Pi2 � dð1� aÞCT

i X
T
i ;

Ki12 ¼ �2Pi1 þ
1

d
Si11 þ

1

2
S11;

Ki13 ¼
1

d
Si12 þ

1

2
S12; Ki14 ¼ �2Pi2 þ

1

d
Si22 þ

1

2
S22;

Ni1 ¼ l�i l
þ
i ; Ni2 ¼ � l�i þ lþi

2
;

Mi1 ¼ m�
i m

þ
i ; Mi2 ¼ �m�

i þ mþ
i

2
:

The gain matrices Ki can be designed as

Ki ¼ P�1
i2 Xi: ð27Þ

Proof Combing (1)–(4) and (9)–(10), one has

eðtÞ ¼ ½xTðtÞ ~xTðtÞ�T , �zðtÞ ¼ ½zTðtÞ ~zTðtÞ�T , we get the

following augmented system governing the estimation

error dynamics:

_eðtÞ ¼ n1iðtÞ þ ðaðtÞ � aÞn2iðtÞ; ð28Þ

�zðtÞ ¼ �EieðtÞ; ð29Þ

where

n1iðtÞ ¼ �AieðtÞ þ �Dieðt � dðtÞÞ þ �Bi �wðtÞ þ d1iðtÞ þ �Gid2iðtÞ;
n2iðtÞ ¼ �CieðtÞ þ �Kid2iðtÞ;

�Ai ¼
�Ai 0

0 � Ai � ð1� aÞKiCi

� �
; �Bi ¼

B1i 0

0 B1i � KiB2i

� �
;

ð30Þ

�Ci ¼
0 0

KiCi 0

� �
; �Di ¼

0 0

0 � KiDi

� �
; �Ei ¼ 0 Ei½ �;

ð31Þ

�Gi ¼
0 0

0 � aKi

� �
; �Ki ¼

0 0

�Ki 0

� �
: ð32Þ

Now we need to show the augmented error systems (28)–

(29) are globally stochastic stable, we choose the following

Lyapunov functions to begin this proof

VðtÞ ¼V1ðtÞ þ V2ðtÞ þ V3ðtÞ þ V4ðtÞ; ð33Þ

where

V1ðtÞ ¼ eTðtÞPieðtÞ; ð34Þ

V2ðtÞ ¼
Z t

t�dðtÞ
eTðsÞQ1ieðsÞdsþ

Z t

t�d

eTðsÞQ2ieðsÞds

þ
Z 0

�d

Z t

tþh
eTðsÞQeðsÞdsdh; ð35Þ

V3ðtÞ ¼
Z 0

�d

Z t

tþh
eTðsÞRieðsÞdsdh

þ
Z 0

�d

Z 0

h

Z t

tþa
eTðsÞReðsÞdsdadh; ð36Þ

V4ðtÞ ¼
Z 0

�d

Z t

tþh
_eTðsÞSi _eðsÞdsdh

þ
Z 0

�d

Z 0

h

Z t

tþa
_eTðsÞS _eðsÞdsdadh: ð37Þ

Firstly, we define the weak infinitesimal operator L as

LVðt; et; iÞ ¼ lim
D!0

1

D
½EðVðt þ D; etþD; rtþDjet; rt ¼ iÞ � Vðt; et; iÞ�:

where E is defined as

EfVðt; et; rtÞg ¼ Vð0; e0; rtÞ þ E

Z t

0

Vðs; es; rsÞds
� �

:

Then for each i 2 N , according to the weak infinitesimal

operator L, we have the stochastic differential

LVðtÞ ¼ LV1ðtÞ þ LV2ðtÞ þ LV3ðtÞ þ LV4ðtÞ; ð38Þ

where

LV1ðtÞ ¼ 2eTðtÞPi _eðtÞ þ
Xn
j¼1

pije
TðtÞPjeðtÞ;

LV2ðtÞ ¼ eTðtÞQ1ieðtÞ � ð1� _dðtÞÞeTðt � dðtÞÞ

� Q1ieðt � dðtÞÞ þ
Xn
j¼1

pij

Z t

t�dðtÞ
eTðsÞQ1jeðsÞds

þ eTðtÞQ2ieðtÞ � eTðt � dÞQ2ieðt � dÞ

þ
Xn
j¼1

pij

Z t

t�d

eTðsÞQ2jeðsÞds

þ deTðtÞQeðtÞ �
Z t

t�d

eTðsÞQeðsÞds;
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LV3ðtÞ ¼ deTðtÞRieðtÞ�
Z t

t�d

eTðsÞRieðsÞds

þ
Xn
j¼1

pij

Z 0

�d

Z t

tþh
eTðsÞRjeðsÞdsdh

þ 1

2
d2eTðtÞReðtÞ�

Z 0

�d

Z t

tþh
eTðsÞReðsÞdsdh;

LV4ðtÞ ¼ d _eTðtÞSi _eðtÞþ
1

2
d2 _eTðtÞS _eðtÞ�

Z t

t�d

_eTðsÞSi _eðsÞds

þ
Xn
j¼1

pij

Z 0

�d

Z t

tþh
_eTðsÞSj _eðsÞdsdh

�
Z 0

�d

Z t

tþh
_eTðsÞS _eðsÞdsdh:

Noting that pij�0, when j 6¼ i, and pii�0, one has

Xn
j¼1

pij

Z t

t�dðtÞ
eTðsÞQ1jeðsÞds�

Xn
j¼1;j6¼i

pij

Z t

t�dðtÞ
eTðsÞQ1jeðsÞds

�
Xn

j¼1;j 6¼i

pij

Z t

t�d

eTðsÞQ1jeðsÞds:

In the view of (24), we obtain

Xn
j¼1

pij

Z t

t�dðtÞ
eTðsÞQ1jeðsÞdsþ

Xn
j¼1

pij

Z t

t�d

eTðsÞQ2jeðsÞds

�
Z t

t�d

eTðsÞQeðsÞds� 0: ð39Þ

From (25), we also have the following calculation:

Xn
j¼1

pij

Z 0

�d

Z t

tþh
eTðsÞRjeðsÞdsdh�

Z 0

�d

Z t

tþh
eTðsÞReðsÞdsdh� 0;

ð40Þ
Xn
j¼1

pij

Z 0

�d

Z t

tþh
_eTðsÞSj _eðsÞdsdh�

Z 0

�d

Z t

tþh
_eTðsÞS _eðsÞdsdh� 0:

ð41Þ

By Lemma 1 and 2, it is known that

�
Z t

t�d

eTðsÞRieðsÞds � � 1

d

Z t

t�d

eðsÞds
� �T

Ri

Z t

t�d

eðsÞds;

ð42Þ

�
Z t

t�d

_eTðsÞSi _eðsÞds� � 1

d
nTðtÞIT

Si Gi

� Si

� �
InðtÞ:

ð43Þ

For any Ti ¼ diagfti1; ti2; . . .; ting[ 0, Ui ¼ diagfui1; ui2;
. . .; uing[ 0, considering the conditions in (15)–(16),

similar to [27], we obtain

�Wieðt � dðtÞÞ
d1iðtÞ

� �T T iN i1 T iN i2

T iN i2 T i

� � �Wieðt � dðtÞÞ
d1iðtÞ

� �
� 0; ð44Þ

~CieðtÞ
d2iðtÞ

" #T
U iMi1 U iMi2

U iMi2 U i

� �
~CieðtÞ
d2iðtÞ

" #
� 0; ð45Þ

where

T i ¼ diagfTi; Tig; U i ¼ diagfUi;Uig;
N i1 ¼ diagfNi1;Ni1g; Mi1 ¼ diagfMi1;Mi1g;
N i2 ¼ diagfNi2;Ni2g; Mi2 ¼ diagfMi2;Mi2g;
�Wi ¼ diagfWi;Wig; ~Ci ¼ diagfCi;Cig:

Considering the (39)–(45) and noting (5), then we take the

mathematical expectation of LVðtÞ with the conditions

(13)–(14), and we finally get

EfLVðtÞg�E

(
2eTðtÞPið�AieðtÞ þ �Dieðt � dðtÞÞ

þ �Bi �wðtÞ þ d1iðtÞ þ �Gid2iðtÞÞ

þ
Xn
j¼1

pije
TðtÞPjeðtÞ þ eTðtÞQ1ieðtÞ

� ð1� lÞeTðt � dðtÞÞQ1ieðt � dðtÞÞ
þ eTðtÞQ2ieðtÞ � eTðt � dÞQ2ieðt � dÞ
þ deTðtÞQeðtÞ þ deTðtÞRieðtÞ

� 1

d

Z t

t�d

eðsÞds
� �T

Ri

Z t

t�d

eðsÞds

þ 1

2
d2eTðtÞReðtÞ � 1

d
nTðtÞIT

Si Gi

� Si

� �
InðtÞ

þ nT1iðtÞ dSi þ
1

2
d2S

� �
n1iðtÞ þ �a2nT2iðtÞ

� dSi þ
1

2
d2S

� �
n2iðtÞ �

�Wieðt � dðtÞÞ
d1iðtÞ

� �T

�
T iN i1 T iN i2

T iN i2 T i

� � �Wieðt � dðtÞÞ
d1iðtÞ

� �

�
~CieðtÞ
d2iðtÞ

" #T
U iMi1 U iMi2

U iMi2 U i

� �
~CieðtÞ
d2iðtÞ

" #)

Now, we define a function:

J ¼ LVðtÞ þ ~zTðtÞ~zðtÞ � q2 �wTðtÞ �wðtÞ:
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Taking (17) into consideration, it is not difficult to

obtain

EfJ g�E nTðtÞ R1i þ d2NT
1i

1

d
Si þ

1

2
S

� �
N1i

��

þd2�a2NT
2i

1

d
Si þ

1

2
S

� �
N2i

��
nðtÞ:

ð46Þ

Letting �Si ¼ 1
d
Si þ 1

2
S, and we obtain

EfJ g�EfnTðtÞ½R1i þ d2NT
1i
�SiN1i þ d2�a2NT

2i
�SiN2i�nðtÞg

¼ EfnTðtÞ ~R1inðtÞg ð47Þ

where

N1i ¼ �Ai 0 �Di 0 I �Bi
�Gi

	 

;

N2i ¼ �Ci 0 0 0 0 0 �Ki

	 

;

~R1i ¼R1i þ d2NT
1i
�SiN1i þ d2�a2NT

2i
�SiN2i;

R1i ¼

�Xi1
�Xi2

�Xi3 0 Pi Pi
�Bi Pi

�Gi � ~CT
i U iMi2

� �Xi4
�Xi5 0 0 0 0

� � �Xi6 0 � �WT
i T iN i2 0 0

� � � �Xi7 0 0 0

� � � � � T i 0 0

� � � � � � q2I 0

� � � � � � � U i

2
666666666664

3
777777777775

;

�Xi1 ¼ Pi
�Ai þ �AT

i Pi þ
Xn
j¼1

pijPj þ Q1i þ Q2i þ dQþ dRi

þ 1

2
d2R� ~CT

i U iMi1
~Ci þ �Ei

T �Ei �
1

d
Si;

�Xi2 ¼
1

d
GT

i ;
�Xi3 ¼ � 1

d
GT

i þ 1

d
Si þ Pi

�Di;

�Xi4 ¼� Q2i �
1

d
Si; �Xi5 ¼ � 1

d
Gi þ

1

d
Si;

�Xi6 ¼� 2

d
Si þ

1

d
Gi þ

1

d
GT

i � ð1� lÞQ1i � �WT
i T iN i1

�Wi;

�Xi7 ¼� 1

d
Ri:

If ~R1i\0, by Schur complement, it follows from (47) that

Then pre- and post-multiplying (48) by diagfI; I; I;
I; I; I; I;Pi

�Si
�1;Pi

�Si
�1g and its transpose, we get

�Xi1
�Xi2

�Xi3 0 Pi Pi
�Bi Pi

�Gi � ~CT
i U iMi2 d �Ai

T �Si d�a �Ci
T �Si

� �Xi4
�Xi5 0 0 0 0 0 0

� � �Xi6 0 � �WT
i T iN i2 0 0 d �Di

T �Si 0

� � � �Xi7 0 0 0 0 0

� � � � � T i 0 0 d �Si 0

� � � � � � q2I 0 d �Bi
T �Si 0

� � � � � � � U i d �Gi
T �Si d�a �Ki

T �Si

� � � � � � � � �Si 0

� � � � � � � � � �Si

2
66666666666666664

3
77777777777777775

\0; ð48Þ

�Xi1
�Xi2

�Xi3 0 Pi Pi
�Bi Pi

�Gi � ~CT
i U iMi2 d �Ai

TPi d�a �Ci
TPi

� �Xi4
�Xi5 0 0 0 0 0 0

� � �Xi6 0 � �WT
i T iN i2 0 0 d �Di

TPi 0

� � � �Xi7 0 0 0 0 0

� � � � � T i 0 0 dPi 0

� � � � � � q2I 0 d �Bi
TPi 0

� � � � � � � U i d �Gi
TPi d�a �Ki

TPi

� � � � � � � � Pi
�Si
�1Pi 0

� � � � � � � � � Pi
�Si
�1Pi

2
66666666666666664

3
77777777777777775

\0; ð49Þ
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Thus, J\0, in the view of the fact that �Pi
�Si
�1

Pi � � 2Pi þ �Si, by noting (27), (19)–(23) and (30)–(32), it
is noting that R\0 implies (26) holds, since wðtÞ 6¼ 0, we

have J\0, that is k~zðtÞk2\qkwðtÞk2.
When �wðtÞ ¼ 0, the augmented system will be:

_eðtÞ ¼ �n1iðtÞ þ ðaðtÞ � aÞn2iðtÞ;

where

�n1iðtÞ ¼ �AieðtÞ þ �Dieðt � dðtÞÞ þ d1iðtÞ þ �Gid2iðtÞ;
n2iðtÞ ¼ �CieðtÞ þ �Kid2iðtÞ;

We choose the same Lyapunov functions (33) and calculate

the weak infinitesimal operator LVðtÞ. In this case, by the

similar line of the derivative of (46), we get:

EfJ g�Ef�nTðtÞ½ �R1i þ d2 �NT
1i
�Si �N1i þ d2�a2 �NT

2i
�Si �N2i��nðtÞg

where

�nðtÞ ¼ ½eTðtÞ eTðt� dÞ eTðt� dðtÞÞ
Z t

t�d

eTðsÞds dT1iðtÞ dT2iðtÞ�
T ;

�N1i ¼ �Ai 0 �Di 0 I �Gi

	 

;

�N2i ¼ �Ci 0 0 0 0 �Ki

	 

;

�R1i ¼

�Xi1
�Xi2

�Xi3 0 Pi Pi
�Gi� ~CT

i U iMi2

� �Xi4
�Xi5 0 0 0

� � �Xi6 0 � �WT
i T iN i2 0

� � � �Xi7 0 0

� � � � �T i 0

� � � � � �U i

2
666666666664

3
777777777775

:

With similar step (48)–(49), we get the following matrix

inequality:

In the view of the fact that �Pi
�Si
�1Pi � � 2Pi þ �Si, by

noting (27), (19)–(23) and (30)–(32), it is noting that (26)

implies (50) holds. Therefore, the estimation error sys-

tems with �wðtÞ ¼ 0 are stochastically stable, this ends the

proof. h

Remark 6 The measurement model is proposed in (2),

which provides a novel unified framework for the phe-

nomenon of randomly occurred nonlinearities. The stochastic

variable aðtÞ characterizes the random nature of nonlineari-

ties, when aðtÞ 6¼ 0, it works normally. When aðtÞ ¼ 0, the

static neural networks (1)–(4) have the following form in [31]:

_xðtÞ ¼ �AðrtÞxðtÞ þ f ðWðrtÞxðt � dðtÞÞ þ JðrtÞÞ þ B1ðrtÞwðtÞ;
ð51Þ

yðtÞ ¼ CðrtÞxðtÞ þ DðrtÞxðt � dðtÞÞ þ B2ðrtÞwðtÞ; ð52Þ

zðtÞ ¼ EðrtÞxðtÞ; ð53Þ

xðtÞ ¼ /ðtÞ; t 2 ½�d; 0�: ð54Þ

the state estimator is constructed as follows:

_̂xðtÞ ¼ �Aix̂ðtÞ þ f ðWix̂ðt � dðtÞÞ þ JiÞ
þ Ki½yðtÞ � Cix̂ðtÞ � Dix̂ðt � dðtÞÞ�;

ẑðtÞ ¼ Eix̂ðtÞ;
x̂ð0Þ ¼ 0; t 2 ½�d; 0�:

and we finally get the error systems:

_~xðtÞ ¼ �ðAi þ KiCiÞ~xðtÞ þ gðWi~xðt � dðtÞÞ
� KiDi~xðt � dðtÞÞ þ ðB1i � KiB2iÞwðtÞ;

ð55Þ

~zðtÞ ¼ Ei~xðtÞ: ð56Þ

Corollary 1 For the given scalars d[ 0 and l in (5),

considering (51)–(54), the resulting error systems (55)–

(56) are globally stochastic stable with H1 performance

q, if there exist real matrices Pi [ 0, Q1i [ 0, Q2i [ 0,

Q[ 0, R[ 0, Ri [ 0, S[ 0, Si [ 0, diagonal matrix

Ti ¼ diagfti1; ti2; . . .; ting[ 0, Gi and Xi. Such that the

following LMIs hold for i 2 N :

Xn
j¼1;j 6¼i

pijQ1j þ
Xn
j¼1

pijQ2j\Q; ð57Þ

�Xi1
�Xi2

�Xi3 0 Pi Pi
�Gi � ~CT

i U iMi2 d �Ai
TPi d�a �Ci

TPi

� �Xi4
�Xi5 0 0 0 0 0

� � �Xi6 0 � �WT
i T iN i2 0 d �Di

TPi 0

� � � �Xi7 0 0 0 0

� � � � � T i 0 dPi 0

� � � � � � U i d �Gi
TPi d�a �Ki

TPi

� � � � � � � Pi
�Si
�1Pi 0

� � � � � � � � Pi
�Si
�1Pi

2
66666666666664

3
77777777777775

\0; ð50Þ
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Xn
j¼1

pijRj �R;
Xn
j¼1

pijSj � S; ð58Þ

Si Gi

� Si

� �
� 0; ð59Þ

~Xi1

1

d
GT

i
~Xi2 0 Pi

~Xi3
~Xi4

� ~Xi5 � 1

d
Giþ

1

d
Si 0 0 0 0

� � ~Xi6 0 ~Xi7 0 � dDT
i X

T
i

� � � � 1

d
Ri 0 0 0

� � � � �Ti 0 dPi

� � � � � �q2I ~Xi8

� � � � � � ~Xi9

2
66666666666666664

3
77777777777777775

\0;

ð60Þ

where

~Xi1 ¼ �PiAi � AT
i Pi � XiCi � CT

i X
T
i þ

Xn
j¼1

pijPj

þ Q1i þ Q2i þ dQþ dRi

þ 1

2
d2Rþ ET

i Ei �
1

d
Si;

~Xi2 ¼ � 1

d
GT

i þ 1

d
Si � XiDi; ~Xi3 ¼ PiB1i � XiB2i;

~Xi4 ¼ �dAT
i Pi � dCT

i X
T
i ;

~Xi5 ¼ �Q2i �
1

d
Si;

~Xi6 ¼ � 2

d
Si þ

1

d
Gi þ

1

d
GT

i � ð1� lÞQ1i �WT
i TiNi1Wi;

~Xi7 ¼ �WT
i Ni2Ti; ~Xi8 ¼ dðBT

1iPi � BT
2iX

T
i Þ;

~Xi9 ¼ �2Pi þ
1

d
Si þ

1

2
S:

Then the gain matrices Ki is designed as Ki ¼ P�1
i Xi.

Remark 7 Compared with [31], in order to handle the

integral terms in the time derivative of the Lyapunov

function, the number of time variable is reduced by the

Wirtinger inequality at the expense of conservatism in [31].

The number of decision variables for time complexity is
i
2
ð5n2 þ 9nÞ þ 3

2
nðnþ 1Þ. While in Corollary 1, by

employing Jensens inequality and the reciprocally convex

combination technique [32, 33], a lower bounder inequality

in Lemma 2 is qutoed to reduce conservativeness with the

number i
2
ð7n2 þ 9nÞ þ 3

2
nðnþ 1Þ. The difference of the

number of decision variables are DN ¼ in2, which caused

by the freely matrices Gi. Here, Gi in (59) is introduced in

the reciprocally convex approach. However, the less con-

servativeness are achieved at the expense of introducing

more number of variables with DN ¼ in2, which will bring

computational burdens.

Remark 8 It is noticed that the filter design problem

studied in [31] is a special case of this paper, and we can

easily obtain the much less conservative result in Corollary

1. It should be noted that the derivative of delay l in [31]

will be invalid if l� 1. But in this paper, the finally con-

dition holds for any l (see Table 3).

4 Numerical examples

Example 1 Considering the neural networks (51)–(54)

with parameters in [31]:

Mode 1:

A1¼
0:74 0

0 0:98

� �
; W1¼

0:32 �0:17

0:29 0:43

� �
;

B11¼
�0:05 0:21

0:13 �0:32

� �
B21¼ 0:08 0:25½ �; C1¼ 0:20 �0:11½ �;

D1¼ �0:10 0:14½ �E1¼
0:78 �0:53

�1:02 0:46

� �
; l�1 ¼ 0:3I; lþ1 ¼ 0:8I:

Mode 2:

A2 ¼
0:82 0

0 0:67

� �
; W2 ¼

�0:13 0:74

�0:48 � 0:17

� �
;

B12 ¼
0:12 � 0:30

�0:54 0:06

� �

B22 ¼ 0:18 �0:20½ �; C2 ¼ 0:26 0:09½ �;
D2 ¼ 0:37 �0:51½ �

E2 ¼
0:63 0:35

0:99 � 0:41

� �
;�2 ¼ 0:2I; lþ2 ¼ 0:6I:

Suppose the transition probability matrix is given by

P1 ¼
�3 3

5 � 5

� �

Firstly, we let l ¼ 0:3, and change the upper bounder d of

time delay with P1, the results are listed in Table 1. Then

according to [31], we have l ¼ 0:8, d ¼ 0:9, for different

p22 with p11 ¼ �p12 ¼ �0:5, the results are shown in

Table 2. Finally, we let d ¼ 0:7, l ¼ 1:2 with

p11 ¼ �p12 ¼ �0:5, for different p22, the results are

summarized in Table 3. And ‘‘–’’ means that the result is

not applicable to the corresponding case. In this Corollary 1,

utilizing the inequality in Lemma 2 of this paper which is

different from Lemma 2 of [31], the conservatism of the

results is reduced when compared with the method in [31].

From these tables, we can see the prescribed level of noise

attenuation q is much lower and the time derivative of the

time-varying delay is no longer required to be smaller than

one. The number of decision variables for time complexity

in [31] are 47, while in Cor ollary 1 are 55 for the reason of

the introduced matrices G1 and G2.
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The activation functions are chosen as f ðW1x

ðt � dðtÞÞ ¼ 0:25sinðW1tÞ þ 0:55, and f ðW2xðt � dðtÞÞ ¼
0:2sinðW2tÞ þ 0:4, the noise disturbance is chosen as

wðtÞ ¼ e�2tsinð0:6tÞ, when l ¼ 0:3, d ¼ 1:2, q ¼ 0:72,

and P1 are taken with the initial condition xð0Þ ¼ ½�12�T ,
x̂ð0Þ ¼ ½0:51�T , the simulation results are plotted in Figs.

1, 2. One needs to pay attention is that the value of K1 and

K2 in Tables 1, 2 are calculated from Corollary 1.

Example 2 Considering the delay static neural networks

(1)–(4) with the following parameters:

Mode 1:

A1 ¼
0:84 0

0 0:98

� �
; W1 ¼

0:12 �0:37

0:22 0:13

� �
;

B11 ¼
�0:15 0:22

�0:33 �0:62

� �
B21 ¼

0:01 �0:21

0:01 0:2

� �
;

C1 ¼
0:40 �0:11

�0:11 0:21

� �
; D1 ¼

�0:23 0:14

0:1 0:1

� �

E1 ¼
0:14 �0:22

0:02 �2:46

� �
; l�1 ¼ 0:3I; lþ1 ¼ 0:8I;

m�
1 ¼ 0:3I; mþ

1 ¼ 0:5I:

Table 1 The optimal H1
performance indices qmin for

different d

d 0.4 0.6 0.8 1.0 1.2

Theorem 1 [31] 1.6684 2.3948 3.3094 5.4958 53.6441

Corollary 1 0.3301 0.3527 0.3990 0.5221 0.7168

K1 0:7611
�0:9354

� �
0:7608
�0:9302

� �
0:7578
�0:9233

� �
0:7667
�0:9793

� �
0:8182
�0:9207

� �

K2 1:5821
�1:5236

� �
1:5365
�1:2565

� �
1:1131
�0:9489

� �
0:4555
�0:7938

� �
0:0902
�0:5314

� �

Table 2 The optimal H1
performance indices qmin for

different p22

p22 -0.1 -0.3 -0.5 -0.7 -0.9

Theorem 1 [31] 2.9829 4.8477 8.1468 14.5513 30.1896

Corollary 1 0.4374 0.4491 0.4599 0.4704 0.4789

K1 0:9669
�0:7389

� �
0:9210
�0:7804

� �
0:9471
�0:7298

� �
0:9065
�0:7638

� �
0:8842
�0:7861

� �

K2 0:6458
�0:9134

� �
0:7185
�0:9736

� �
0:7434
�0:8938

� �
0:7914
�0:8601

� �
0:8416
�0:8309

� �

Table 3 The optimal H1 performance indices qmin for l ¼ 1:2

p22 -0.1 -0.3 -0.5 -0.7 -0.9

Theorem 1 [31] – – – – –

Corollary 1 0.4269 0.4317 0.4377 0.4434 0.4486
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Mode 2:

A2 ¼
0:62 0

0 0:87

� �
; W2 ¼

0:22 0:14

�0:28 �0:47

� �
;

B12 ¼
�0:12 �0:20

�0:14 0:26

� �
B22 ¼

0:28 �0:45

0:02 0:31

� �
;

C2 ¼
1:36 1:09

�0:3 0:04

� �
; D2 ¼

0:17 �0:51

0:13 0:21

� �

E2 ¼
0:23 �0:55

0:19 �0:21

� �
; l�2 ¼ 0:2I; lþ2 ¼ 0:6I;

m�
2 ¼ 0:1I; mþ

2 ¼ 0:3I:

Suppose the transition probability matrix is given by

P2 ¼
�5 5

�3 3

� �
:

Let a ¼ 0:82, for l ¼ 0:4 and l ¼ 1:1, we change the

values of time delay d with P2 respectively. The results are

presented in Table 4. From Table 4, when the time-delay

d increase, the optimal H1 performance indices qmin is

increasing for different l.
We choose the same activation functions f ðW1xðt �

dðtÞÞ and f ðW2xðt � dðtÞÞ, noise disturbance w(t) in Exam-

ple 1, initial conditions xð0Þ ¼ ½�12�T , x̂ð0Þ ¼ ½0:51�T .
When wðC1xðtÞÞ ¼ 0:1sinðC1tÞ þ 0:4, wðC2xðtÞÞ ¼ 0:1

sinðC2tÞ þ 0:2, l ¼ 1:1, d ¼ 2:5, q ¼ 1:7266 with P2,

then the simulation results are plotted in Figs. 3, 4.

5 Conclusions

This paper has addressed the problem of H1 filter design

for delayed static neural networks with Markovian

switching and randomly occurred nonlinearity. Bernoulli

stochastic variable and the double- and triple-integral

terms of the Lyapunov functions are taken into account.

In the process of the derivation without the Bernoulli

stochastic variable, the double integral terms will be

easy to handled and we end up with a smaller prescribed

level of noise attenuation. Two numerical examples have

demonstrated the effectiveness of the proposed approach.

Based on the analysis in this paper, the other further

results can be extended to more complex systems. For

example, it is possible to generalize reciprocally convex

approach subject to the asymmetric static neural

Table 4 The optimal H1 performance indices qmin for different

d and l

d 0.5 0.1 1.5 2.0 2.5

l ¼ 0:4 0.2752 0.3256 0.4137 0.7909 1.5932

l ¼ 1:1 0.2752 0.3262 0.4208 0.8032 1.7266
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Fig. 2 Estimation error

(Corollary 1)
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networks with Markovian jumping or fuzzy neural net-

works with Markovian jumping. It will be interesting to

be investigated in future.
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