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Abstract Electroencephalographic (EEG)-based emotion

recognition has received increasing attention in the field of

human–computer interaction (HCI) recently, there however

remain a number of challenges in building a generalized

emotion recognition model, one of which includes the

difficulty of an EEG-based emotion classifier trained on a

specific stimulus to handle other stimuli. Little attention

has been paid to this issue. The current paper is to study

this issue and determine the feasibility of coping with this

challenge using feature selection. 12 healthy volunteers

were emotionally elicited when watching the video clip.

Power spectral density (PSD) and brain asymmetry (BAY)

were extracted as EEG features. Support vector machine

(SVM) classifier was then examined under within-stimulus

conditions (samples extracted from one video were sent to

both training set and testing set) and cross-stimulus con-

ditions (samples extracted from one video were merely sent

to one set, training set or testing set alternatively). The

within-stimulus 5-class classification performed fairly well

(accuracy: 93.31 % for PSD and 85.39 % for BAY). Cross-

stimulus classification, however, deteriorated to low levels

(46.22 % and 46.2 % accordingly). Trained and tested with

the most robust feature subset selected by SVM-recursive

feature elimination (RFE), the mean 5-class performance of

cross-stimulus classifier was significantly improved to

68.89 and 64.44 % for PSD and BAY respectively. These

results suggest that cross-stimulus emotion recognition is

reasonable and feasible with proper methods and brings

EEG-based emotion recognition models closer to being

able to discriminate emotion states in practical application.

Keywords Emotion recognition � Electroencephalographic
(EEG) � A generalized classifier � Support vector machine

(SVM)

1 Introduction

Emotion is a psycho-physiological process triggered by the

conscious and/or unconscious perception of an object or a

situation, which is often associated with mood, tempera-

ment, personality disposition and motivation [12]. Recently

emotion recognition has received increasing attention in

the field of human–computer interaction (HCI), there is

evidence that if machines could understand a person’s

emotional state when interacting with people, HCI may

become more intuitive, smoother, and more efficient.

Additionally, negative emotions, such as depression, anx-

iety, and chronic anger, have been shown to impede the

work of the immune system, making people more vulner-

able to viral infections, and slowing healing from surgery

or disease [16], even affecting the people’s performance

and efficiency severely.

To date, various physiological measures have been used

to estimate emotional states, including electroencephalo-

gram (EEG), electromyogram signal (EMG), respiratory

volume, skin temperature, skin conductance and heart rate

and so forth [10–12]. Among them, EEG-based emotion

recognition has caught the most attention since EEGs could

directly reflect emotional states with high temporal reso-

lution, and EEGs tend to be less mediated by cognitive and
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social influences. More importantly, the signals are from

the central nervous system which is where emotions orig-

inate. Recently, numerous studies were conducted to

measure the brain emotional states by analyzing EEGs

under the emotional stimuli that have occurred. Moreover,

many different materials have been used to elicit emotions

in the laboratory such as facial expressions [5], pictures

[15], texts [1], music [11], and movies [19]. Specially,

affective pictures, music and videos are the three most

popular evoked stimuli, and got some acceptable recogni-

tion rates. Yohanes et al. [20] proposed discrete wavelet

transform coefficients from EEGs in response to emotional

pictures for emotion recognition, achieving a maximum

accuracy of above 84.6 % for two emotional states. Koel-

stra et al. [13]. presented some results in classification of

emotions induced by watching music videos, an average

(maximum) classification rate of 55.7 % (67.0 %) for

arousal and 58.8 % (76.0 %) for valence was obtained for

EEG. For the emotional features, a number of these studies

have focused on the question of asymmetrical activation of

the cerebral hemisphere in the past few decades. And

asymmetrical activation was repeatedly reported to be a

good indicator in distinguish some specific emotions

[3, 7, 17]. Hidalgo-Mũnoz et al. showed that the left tem-

poral region has revealed to play an important role in the

affective valence processing [8], and Baumgartner et al. [3]

detected a pattern of greater EEG activity over the left

hemisphere in the happy condition compared to negative

emotional conditions. Additionally, spectral power in var-

ious frequency bands was also proven to be a distin-

guishable emotion indicator [2, 18].

Nearly all existing studies tend to provide evidence for

the feasibility of using EEG measures in the monitoring of

emotional states. However, recorded EEGs induced by the

evoked stimulus contain not only the emotion-relative

information, but also emotion-irrelative information, such

as those related to the information processing delivered by

the evoked stimulus. In the pattern recognition theory, parts

of samples are sent to build the classifier, and the rest are

used to test the classifier, called training set and testing set.

If the samples extracted from one evoked stimulus (such as

a video) are sent to both training set and testing set, this

may bring about a potential problem, that is, shared emo-

tion-irrelative information in the samples from one video

would help the classifier recognize the samples more

easily, resulting in an inflated classification accuracy. This

was ignored in the previous studies. This paper was to cope

with the problematic effects of stimulus-to-stimulus vari-

ations, and then tried to find out whether the performance

of cross-stimulus emotion recognition can be improved

with proper feature selection.

This paper is organized as follows. Section 2 addresses

the methodology, including the experimental setup and

data analysis. Section 3 details the results analysis. The

conclusion is stated in Sect. 4.

2 Materials and methods

2.1 Experimental setup

2.1.1 Subjects

A group of 12 healthy participants (6 female, 6 male,

20–26 years) were enrolled in this study. They are under-

graduate students and postgraduate students in Tianjin

University. All participants had normal or corrected-to-

normal vision and normal hearing, and none of them had a

history of severe medical treatment, psychological or

neurological disorders. A signed consent was obtained

from each subject before the experiment was carried out.

2.1.2 Emotional elicitation

In this study, we used the video induction method, that is, to

record EEG signals while the subjects were watching dif-

ferent pieces of video clips to experience five emotional

states of happy (H), neutral (N), tense (T), sad (S) and

disgust (D) states. Eliciting emotional reactions from sub-

jects is a difficult task and selecting the most effective

stimulus materials is crucial. Before the experiment, 58

subjects who did not take part in the experiment participated

in a questionnaire survey to verify the effectiveness of these

elicitors. Finally, 15 of 72 movie clips were selected with 3

clips for each emotional state, respectively. The experi-

mental procedure was depicted in Fig. 1. The experiment

consisted of 15 sessions, and in each session, a movie clip

was displayed for about 5 min, preceded by a 5 s red circle

as the hint of start. At the end of each clip, the subjects were

required to rate valence, arousal and the specific emotion

they had experience during movie viewing. Each session

was followed by a short break, and the recordings took place

whenever the subject was ready to watch the next video.

For the experiment, a quiet listening room was prepared

in order to ensure that the subjects would not be disturbed

to experience the emotions evoked by the videos. Prior to

the experiment, each participant was informed of the

experiment protocol and the meaning of the different scales

Session1 Sessionl2 Session3 …. Session15 

Hint of start Movie clip Self-assessment 

break break break break 

Fig. 1 The experimental procedure
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used for self-assessment. They were allowed to be familiar

with the task by an unrecorded preliminary experiment in

which a short video was shown which would not appear in

the real experiment. The subject was seated approximately

1 m from the screen. During the task, the StereoPhilips

speakers were used and the video volume was set at a loud

but comfortable level.

2.1.3 Data acquisition

During the experiment, 30-channels EEG signals were

recorded continuously using a Neuroscan 4.5 amplifier

system. The electrodes were placed on the scalp according

to the extension of the international 10–20 electrode posi-

tioning system [14]. And Fig. 2 shows 30-channels EEG

cap layout used in this study. All channels were referenced

to right mastoid and grounded central region. The signals

were digitized at 1000 Hz and stored in a PC for offline

analysis.

2.2 Data processing

2.2.1 Preprocessing

Prior to calculating features, a preprocessing stage of the

EEG signals is required. All channels were re-referenced to

bilateral mastoid, and down-sampled to 128 Hz. EOG

artifacts were removed using independent component

analysis (ICA). Valid data were picked out according to the

subjects’ self-report about which period of time they felt

the emotion strongly. EEG data were then split into 5-s,

non-overlapping epochs in the following step of feature

extraction.

2.2.2 Feature extraction

Power spectral density (PSD) was estimated using Burg’s

method (the order of an autoregressive model was 8). The

sums of PSD in 6 frequency bands (h: 4–8 Hz, a: 8–13 Hz,

b1: 13–18 Hz, b2:1 8–30 Hz, c1: 30–36 Hz, c2:
36–44 Hz) were extracted, which contributed to 6 features

of each channel for all 30 channels, that is, 180 (6 per

channel 9 30 channels) features were included in each

feature set.

An asymmetry index (AI) representing relative right

versus left sided activation was also used. The relative

difference between the hemispheres may play an important

role in the emotion recognition. AI was defined as follows:

AIðiÞ ¼ Pi
L

Pi
L þ Pi

R

Pi
L and Pi

R here represent the power in the left and right

hemispheres for the ith pair of channels respectively. The

value, larger than 0.5, indicates greater activities in the left

than in the right hemisphere and vice versa. 12 pairs of

channels (FP1–FP2, F7–F8, F3–F4, FT7–FT8, FC3–FC4,

T3–T4, C3–C4, TP7–TP8, CP3–CP4, P3–P4, T5–T6, O1–

O2) were used in the section of pattern recognition.

2.2.3 Pattern classification

SVM is a supervised learning algorithm which uses a

discriminant hyperplane to identify classes. The goal of

SVM is to find an optimal hyperplane with the maximal

margin between two classes of data [14]. In the emotion

recognition process, the features were mapped using

Gaussian radial basis function into high-dimensional kernel

space.

k x; yð Þ ¼ exp x � y2=2r2
� �

The penalty parameter C was set to 1 as the default

value in the LibSVM toolkit developed by Chin-Jen Lin

[4].

In this paper, we used two strategies to train and test

SVMs for each participant. ‘‘WS’’ labelled the within-

stimulus condition, in which the samples from one video

were sent to both training and testing sets, while ‘‘CS’’

labelled the cross-stimulus condition, in which the samples

from one video were merely sent to a set, training set or

testing set alternatively.

2.2.4 Feature optimization

Since not all the features carry significant information,

features selection is necessary for decreasing and dis-

carding redundant features that can potentially deteri-

orate classification performance. SVM-RFE wasFig. 2 EEG cap layout of 30 channels

Int. J. Mach. Learn. & Cyber. (2018) 9:721–726 723

123



proposed by Guyon et al. [6]. and was based on the

concept of margin maximization. In this case, however,

the ranking criterion was modified as follows: In an

N-dimension feature set, each feature was removed

once and then got N performances with the remaining

N-1 features. The feature, without which the feature set

obtained the best accuracy, was considered as the one

with the minimum contribution. At each iteration step

we remove the feature with the minimum contribution

from the feature set until only one feature remained.

The features were removed one at a time, and there

was a corresponding feature ranking. But it should be

noted that the features that are top ranked are not

necessarily the ones that are individually most relevant.

Only taken together the features of a subset are optimal

in some sense.

3 Results

3.1 Classification rates using different strategies

Figure 3 presented the 5-class classification rates for two

strategies (WS, CS) based on different feature sets (PSD,

BAY). The individual accuracy and the mean accuracy

were shown. Obviously, mean within-stimulus (WS)

performances were 93.31 and 85.39 % when using PSD

and BAY features. But mean cross-stimulus (CS) per-

formances were just 46.22 and 46.2 % accordingly, that

is, the decrease of classification performance occurred

when training sets and testing sets come from different

emotional videos for emotion recognition. The results

suggested within-stimulus emotion recognition may

inflate the classification accuracies, this may because of

shared emotion-irrelevant EEG features in samples from

one video, such as content information processing

delivered by the video.

3.2 Cross-stimulus classification results using SVM-

RFE

Cross-stimulus classification performances may suffer from

some effects, such as EEG patterns induced by specific

stimulus, mismatched emotional intensity between training

and testing stimulus and temporal effects. It was expected

that SVM-RFE did at least pick out the most emotion-rel-

evant features and improve the classification accuracies.

Figure 4 shows the mean cross-stimulus classification rates

using SVM-RFE. It can clearly be seen that SVM-RFE can

significantly improve the mean accuracies and recognition

rates jumped to average accuracy of 68.89 and 64.44 %

based on the feature set of PSD and BAY, respectively.

Confusion matrices in Table 1 afforded a closer look at

the sensitivity of five emotional states (happy, neutral,

disgust, sad, tense). In these confusion matrices, the row

represents the classified label and each column represents

the true label. The tense state was better recognized, 82.6

and 75.9 % for PSD and BAY feature sets respectively. But

disgust state was wrongly recognized with a relative higher

proportion. The relatively lower accuracy of disgust state

may be related to effect of cognitive avoidance: highly

disgust-sensitive individuals avoided the formation of a

mental representation of an aversive scene [9].

3.3 Finding the best emotion-relevant EEG features

Another point that should be addressed is finding the best

emotion-relevant EEG frequency ranges. The features that

were repeatedly selected by classifiers yielding good clas-

sification rates could be considered more robust than those

that were rarely selected. The feature subset obtaining the

best accuracy was regarded as the most salient feature set.

The results of the automatic feature selection using RFE

are presented in Fig. 5, which shows the contribution rate

(CR) of each EEG frequency band to the most relevant
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Fig. 3 5-class classification rates for two strategies (WS, CS) based on different feature sets of a PSD and b BAY respectively
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features selected by RFE for both feature subsets in cross-

stimulus classification. It could be found that the higher

frequency band roughly occupied the larger contribution

part. Notably, the contribution rate of c2 is as high as

approximately 65 % when BAY was employed.

4 Discussion

It is encouraging to use the neurophysiological measurement

in the emotion recognition system. The emotion recognition

system should be able to accurately recognize the emotional

state independent of the type of inducing material the

operator would encounter. This is because in a real-world

application, stimuli are most likely to be different between

the classifier construction and the emotion recognition.

Most previous studies used within-stimulus classifica-

tion during emotion recognition. However, neglecting the

shared non-emotional information of the induced material

would falsely inflate the classification rates. This paper has

tested the overinflated effect of within-stimulus recogni-

tion. To our knowledge, the recorded EEG responses

contain not only the information related to the emotional

state, but also others related to the basic sensory informa-

tion processing and information processing delivered by

the stimulus material which may play a significant role in

the classification. Shared non-emotional information in the

samples from the same inducing material would make the

classifier easier to recognize the testing sample accurately.

So the accuracy was significantly decreased once the cross-

stimulus method employed.

For within-stimulus, the PSD features look better than

BAY features for emotion recognition, while the two fea-

tures corresponded to similar recognition accuracies for

cross-stimulus, that is, more serious overinflated effect

would be obtained when PSD features were employed.

This may be partly related to the number of features in each

feature set. 180 and 72 features were got for PSD and BAY

feature sets respectively. Some channels were contained in
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Fig. 4 Cross- stimulus classification using SVM-RFE based on the feature sets of a PSD and b BAY respectively

Table 1 Classification results

achieved by using SVM-RFE
Acc (%) PSD feature set BAY feature set

Happy Neutral Disgust Sad Tense Happy Neutral Disgust Sad Tense

Happy 0.617 0.078 0.064 0.086 0.153 0.555 0.136 0.107 0.079 0.122

Neutral 0.097 0.650 0.036 0.050 0.167 0.035 0.682 0.096 0.095 0.091

Disgust 0.178 0.148 0.488 0.111 0.075 0.191 0.141 0.413 0.193 0.061

Sad 0.036 0.065 0.020 0.745 0.134 0.012 0.118 0.048 0.640 0.181

Tense 0.065 0.019 0.068 0.022 0.826 0.051 0.05 0.039 0.101 0.759

Fig. 5 Contribution rate (CR) of each frequency band to the features

selected by RFE in cross-stimulus classification
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PSD feature set but not in BAY feature set, such as Cz, Oz

and so on. The shared non-emotional information in these

channels may contribute to more serious overinflated

accuracies.

In addition to the importance in the emotion field,

studies on overinflated accuracies may also be necessary in

other fields related to the extremely complex cognitive

processes such as mental workload, mental fatigue and

vigilance. Though it is still a tremendous problem in EEG-

based emotion recognition, these results provide a

promising solution and take EEG-based model one step

closer to being able to discriminate emotions in practical

application.

5 Conclusion

The results of the current study indicate that within-stim-

ulus emotion recognition would inflate the classification

accuracies, and cross-stimulus performances can be

improved by the optimized feature subset chosen by the

feature selection method. Instead of a stimulus-specific

classifier, the cross-stimulus classifier model was built to

handle other stimulus. The current study demonstrated the

feasibility of a model trained on one stimulus to handle

another and took the first step towards a generalized model

that can handle a new stimulus.
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Spectral turbulence measuring as feature extraction method from

EEG on affective computing. Biomed Signal Process Control

8:945–950
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