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Abstract Traditional feature selection methods assume

that the entire input feature set is available from the

beginning. However, streaming features (SF) is an integral

part of many real-world applications. In this scenario, the

number of training examples is fixed while the number of

features grows with time as new features stream in. A

critical challenge for streamwise feature selection (SFS) is

the unavailability of the entire feature set before learning

starts. Several efforts have been made to address the SFS

problem, however they all need some prior knowledge

about the entire feature set. In this paper, the SFS problem

is considered from the rough sets (RS) perspective. The

main motivation for this consideration is that RS-based

data mining does not require any domain knowledge other

than the given dataset. The proposed method uses the

significance analysis concepts in RS theory to control the

unknown feature space in SFS problems. This algorithm is

evaluated extensively on several high-dimensional datasets

in terms of compactness, classification accuracy, and run-

ning time. Experimental results demonstrate that the

algorithm achieves better results than existing SFS

algorithms.

Keywords Feature selection � Streamwise feature

selection � Rough sets theory � Significance

1 Introduction

Given a dataset, the task of feature selection is to select the

smallest subset of the most important and discriminative

input features. The aim of feature selection is to overcome

the curse of dimensionality, which is a severe difficulty that

can arise in datasets of high dimensions [1–3].

All the traditional feature selection methods, assume

that the entire input feature set is available from the

beginning. However, streaming features (SF) is an integral

part of many real-world applications. In SF, the number of

feature vectors (instances) is fixed while feature set (at-

tributes) grows with time. For example, in bio-informatic

and clinical machine learning problems, acquiring the

entire set of features for every training instance is expen-

sive due to the high cost lab experiments [4]. As another

example, in texture-based image segmentation problems,

the number of different texture filters can be infinite and

therefore acquiring the entire feature set is infeasible [5]. In

all these scenarios, we need to incrementally update the

feature set as new features are available over time. There

are also some scenarios where the entire feature space is

accessible, but feature streaming offers many advantages.

This scenario is common in statistical relational learning

[6] and social network analysis [7], where the feature space

is very large and exhaustive store and search over the entire

feature space is infeasible.

Streamwise feature selection (SFS) is the task of

selecting a best feature subset in SF scenarios. Any SFS

method must satisfy three critical conditions; Firstly, it

should not require any domain knowledge about feature

space, because the full feature space is unknown or inac-

cessible. Secondly, it should allow efficient incremental

updates in selected features, specially, when we have a

limited amount of computational time available in between
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each feature arrival. Finally, it should be as accurate as

possible at each time instance to allow reliable classifica-

tion and learning tasks at that time instance.

Motivated by these challenges, several research efforts

have been made to address SFS. Perkins and Theiler pro-

posed an iterative gradient descent algorithm, called

grafting [8, 9]. In this algorithm, a newly seen feature is

added to the selected features if the improvement in the

model accuracy, is greater than a predefined threshold k.

While this algorithm is able to handle streaming features, it

is ineffective in dealing with true OSF scenarios for three

reasons; (1) choosing a suitable value for k requires

information about the global feature space. (2) This algo-

rithm suffers from the so-called nesting effect, if a previ-

ously chosen feature is later found to be redundant, there is

no way for it to be discarded [10].

Ungar et al. [6] proposed a streamwise regression

algorithm, called information-investing. In this algorithm, a

newly generated feature is added to the model if the

entropy reduction is greater than the cost of coding. In spite

of their success in handling feature spaces of unknown or

even infinite sizes, these algorithms suffer from the nesting

effect, such as grafting.

Wu et al. [5] proposed a causality-based SFS algorithm

called fast-OSFS. This algorithm contains two major steps,

(1) online relevance analysis that discards irrelevant fea-

tures, and (2) online redundancy analysis, which eliminates

redundant features. Although this framework is able to

select most informative features in SF, it uses a conditional

independence test which needs a large number of training

instances, especially when the number of features con-

tributed in test grows with time.

Wang et al. [11] proposed a dimension incremental

attribute reduction algorithm called DIA-RED. This algo-

rithm maintains a rough sets-based entropy value of the

current selected subsets and updates this value whenever

new conditional features are added to the dataset. While

DIA-RED is able to handle streaming scenarios without

any knowledge about feature space, it does not implement

an effective redundant attribute elimination mechanism,

and therefore the selected subsets are large during features

streaming. This causes ineffective partitioning steps in

calculating the rough sets approximations, and therefore,

this algorithm is not time efficient for most of the real

world datasets.

In this paper, the SFS problem is considered from the rough

sets (RS) perspective. The main motivation for this consid-

eration is that RS-based data mining does not require any

domain knowledge other than the given dataset. Several

successful RS-base feature selection algorithms are proposed

in the literatures [12–17]. However, all these algorithms

consider the batch feature selection problem and are not

applicable to SF scenarios. In this paper, a new SFS algorithm,

which adopts the classical RS-based feature significance

concept to eliminate irrelevant features, is proposed. The

efficiency and accuracy of the proposed algorithm is demon-

strated using several experimental results.

The remainder of the paper is organized as follows:

Sect. 2 summarizes the theoretical background of rough

sets along with a look at the rough set-based attribute

reduction methods. Section 3 discusses the new SFS

algorithm. Section 4 reports experimental results and

Sect. 5 concludes the paper.

2 Rough sets

Uncertainty is a natural phenomenon in machine learning,

which can be embedded in the entire process of data pre-

processing, learning and reasoning [18–20]. Rough sets

theory has introduced by Pawlak [21] to express uncer-

tainty by means of boundary region of a set. The main idea

of rough set is the use of a known knowledge in knowledge

base to approximate the inaccurate and uncertain knowl-

edge [22]. Therefore, the main advantage of this theory is

that it requires no human input or domain knowledge other

than the given dataset. This section summarizes the theo-

retical background of rough sets theory along with a look at

the rough set-based attribute reduction methods.

2.1 Information system and indiscernibility

An information system is a pair IS ¼ ðU;FÞ, where U is a

non-empty finite set of objects called the universe and F is

a non-empty finite set of features such that f : U ! Vf , for

every f 2 F. The set Vf is called the value set or domain of

f. A decision system is a pair IS ¼ ðU; F; dÞ, where d is

decision feature.

For any set B � F [fdg, we define the B-indiscernibility

relation as:

INDIS Bð Þ ¼ x; yð Þ 2 U � Uj8f 2 B; f xð Þ ¼ f yð Þf g: ð1Þ

If ðx; yÞ belongs to INDISðBÞ, x and y are said to be

indiscernible according to the feature subset B. Equiva-

lence classes of the relation INDISðBÞ are denoted ½x�B and

referred to as B-elementary sets. The partition of U into B-

elementary subsets is denoted by U=B. The time com-

plexity of generating U=B is ðjBjjPjjUjÞ, where jPj is the

number of generated B-elementary subsets. If none of the

objects in U are indiscernible according to B, the number

of B elementary subsets is jUj and therefore the worst-case

complexity of generating U=B is Oð Bj j Uj j2Þ [23]. For most

of the real world applications, jPj � jUj, and therefore, the

partitioning process is very time efficient from application

view point [23].
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2.2 Lower and upper approximations

Two fundamental concepts of rough sets are the lower and

upper approximations of sets. Let B � F and X � U, the B-

lower and B-upper approximations of X are defined as

follows:

BX ¼ xj x½ �B� X
� �

; ð2Þ
�BX ¼ xj x½ �B\X 6¼ ;

� �
; ð3Þ

The BX and �BX approximations define information

contained in B. If 2 BX, it certainly belongs to X, but if

x 2 �BX, it may or may not belong to X.

By the definition of BX and �BX, the objects in U can be

partitioned into three parts, called the positive, boundary

and negative regions.

POSBðXÞ ¼ BX; ð4Þ

BNDB Xð Þ ¼ �BX � BX; ð5Þ

NEGB Xð Þ ¼ U � �BX: ð6Þ

2.3 Dependency

Discovering dependencies between attributes is an impor-

tant issue in data analysis. Let D and C be subsets of

F [fdg. For 0� k� 1, it is said that D depends on C in the

k th degree (denoted C )k D), if

k ¼ c C;Dð Þ ¼ jPOSB Dð Þj
jUj ; ð7Þ

where,

POSB Dð Þ ¼
[

X2U=D

CX; ð8Þ

is called a positive region of the partition U=D with respect

to C. This region is the set of all elements of U that can be

uniquely classified to blocks of the partition U=D, by

means of C.

2.4 Significance

Significance analysis is a tool for measuring the effect of

removing an attribute, or a subset of attributes, from a

decision system on the positive region defined by that

decision system. Let DS ¼ ðA;F; dÞ be a decision system.

The significance of attribute f 2 F, denoted r F;dð Þðf Þ is

defined as [24]

r F;dð Þðf Þ ¼
c F; dð Þ � c F � ffg; dð Þ

c F; dð Þ : ð8Þ

2.5 Reduct

A reduct R is a subset of conditional features that satisfies

both of the following conditions:

INDISðRÞ ¼ INDISðCÞ; ð9Þ

8R0 	 Rs:t:INDISðRÞ 6¼ INDISðR0Þ: ð10Þ

An optimal reduct is a reduct with minimum cardinality.

The intersection of all reducts contains those attributes that

cannot be eliminated and is called the core. Finding a

minimal reduct is NP-hard [24], because all possible sub-

sets of conditional features must be generated to retrieve

such a reduct. Therefore finding a near optimal has gen-

erated much of interest. Figure 1 represents the steps of

QUICKREDUCT algorithm [25], which searches for a

minimal subset without exhaustively generating all possi-

ble subsets.

2.6 Rough set extensions

Efforts have been made to connect the attribute reduction

concept in rough sets theory to feature selection in machine

learning and classification tasks. However, traditional

rough set based attribute reduction (RSAR) only operates

effectively with datasets containing discrete values and

therefore it is necessary to perform a discretization step for

real-valued attributes [23, 26]. Therefore, several exten-

sions to the original theory have been proposed to deal with

real-valued (continuous datasets). Four well known exten-

sions are variable precision rough sets (VPRS) [27], tol-

erance rough set model (TRSM) [28], fuzzy rough sets

(FRS) [29] and neighborhood rough set model (NRSM)

[30–32].

Fig. 1 The QUICREDUCT algorithm [25]
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VPRS [27] attempts to overcome traditional rough sets

shortcomings by generalizing the standard set inclusion

relation (�). In the generalized inclusion relation, a set X is

considered to be a subset of Y if the proportion of elements

in X which are not in Y is less than a predefined threshold.

However, the introduction of a suitable threshold requires

more information than contained within the data itself. This

is contrary to the rough sets theory and OS consideration of

operating with no domain knowledge.

TRSM [28] uses a similarity relation instead of indis-

cernibility relation to relax the crisp manner of classical

rough sets theory. As equivalence classes (elementary sets)

in classical rough sets, tolerance classes are generated

using similarity relation in TRSM, which are used to define

lower and upper approximations. TRSM has two defi-

ciencies which are contrary two our OS considerations;

First, generating tolerance classes needs a tolerance

threshold, which is human defined. Second, the time

complexity of generating all tolerance classes, using attri-

bute subset B, is hð Bj j Uj j2Þ, which is equal to worst-case

time complexity of the partitioning process in the classical

rough sets.

FRS [29] uses fuzzy equivalence classes generated by a

fuzzy similarity relation to represent vagueness in data.

The term fuzziness refers to the unclear boundary between

two linguistic terms and is based on the membership

function of fuzzy sets [20, 33]. Fuzzy lower and upper

approximations are generated based on fuzzy equivalence

classes. These approximations are extended versions of

their crisp notions in classical rough sets, except that in the

fuzzy approximations, elements may have membership

degree in the range (0, 1). FRS needs no extra knowledge

to define operations on a given dataset. However, gener-

ating fuzzy equivalence classes in FRS is an expensive

routine (hð Bj j Uj j2Þ).
NRSM [30–32] is used to replace the equivalent

approximation of traditional rough set model with h-

neighborhood relation, which supports both continuous and

discrete datasets. Although successful in dealing with real-

valued datasets, NRSM suffers from the low computation

efficiency, especially in computing the neighborhood of

each record. Moreover, the introduction of a suitable h
value (the distance threshold parameter) is a challenge in

this extension, which needs extra knowledge about the

whole feature space.

In addition to rough sets extensions, there are also some

modifications, which do not change classical rough sets

principles. The notable work in this group is the one pro-

posed in [15]. This modification does not redefine the lower

and upper approximations in classical rough sets, but

introduces a new dependency measure based on the clas-

sical rough sets principals to deal with real-valued data.

This new dependency measure uses a proximity measure

that quantifies the information contained in the boundary

region. This measure needs no human input knowledge to

deal with available data. Moreover generating equivalence

classes in this modification is more efficient than generat-

ing tolerance classes and fuzzy equivalence classes in

TRSM and FRS, respectively.

3 Streamwise feature selection using rough sets

As stated, in the streaming features (SF), new conditional

features flow in one by one over time while the number of

objects in dataset remains fixed. In this section, we propose

a new algorithm to implement the rough sets theory for

feature selection with SF scenarios.

3.1 The proposed algorithm

Because we do not have access to the full feature space in

the streaming features context, the batch versions of RS-

based feature selection algorithms, such as QUICKRE-

DUCT, are not directly applicable. This problem can be

relaxed by allowing a new incoming feature to be included

in the selected subset, if it increases the dependency

measure. However, this relaxation may be dangerous in SF

scenarios, because early incoming features will be selected

with more chance and most of the late coming features may

not be considered. Here, we first define a generalized

definition of significance concept, then, we provide a

general rough set-based feature selection algorithm for SF

scenarios.

Definition 1 Let DS ¼ ðA;F; dÞ be a decision system and

p : 2F [fdg � 2F [fdg ! ½0; 1� be a dependency function

defined on DS. The generalized significance of P 2 F,

denoted rg
F;dð ÞðPÞ, is defined as:

rg
F;dð ÞðPÞ ¼

p F; dð Þ � p F � P; dð Þ
p F; dð Þ ð11Þ

p can be any dependency function such as the classical

rough set-based dependency function (cÞ, or a dependency

function based on rough sets extensions (such as VPRS,

TRSM, and FRS) and modifications (such as the depen-

dency measure defined in [aaa15]).

Definition 2 Let DS ¼ ðA;F; dÞ be a decision system and

P � F. P is non-significant for DS, if and only if

rg
F;dð Þ Pð Þ ¼ 0:

Definition 3 Let DS ¼ ðA;F; dÞ be a decision system and

P � F. DS is p-consistent using P, if and only if

p P; dð Þ ¼ 1.
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Figure 2 represents the proposed streamwise feature

selection algorithm, called SFS-RS, which uses generalized

significance analysis to control the inclusion of any new

incoming feature in SF context. The algorithm starts with

an empty selected subset R. Then it waits for a new

incoming feature (line 3). Once a new feature f is provided,

the algorithm proceeds based on the p-consistency of the

dataset. If the dataset is not p-consistent (pðR; dÞ 6¼ 1Þ, the

algorithm tests the increase of the dependency value, when

f is added to current subset (line 5). If the measure is

increased, the current subset is updated to include f (line

6), otherwise, f is rejected. On the other hand, if the dataset

is p-consistent (p R; dð Þ ¼ 1Þ, the new incoming feature is

not eliminated immediately, but the algorithm checks to

see if there exists any current reduct subset, which becomes

non-significant due to the presence of f (lines 9–19). If

such subset exists, and its size is larger than one, then the

subset can be replaced with f (lines 21–23). This makes our

dataset smaller, while keeping the p-consistency. More-

over, if only one feature (say f
0
) becomes non-significant

due to f , then one of the features f and f
0

is removed based

on the dependency value (lines 23–25). The algorithm

alternates the above two phases till the stopping criteria is

satisfied. If the size of the streaming dataset is known, the

algorithm can keep running until the last feature (no further

features are available). However, if we have no knowledge

about the feature space, then the algorithm can stop once a

predefined accuracy is satisfied or a maximum number of

iterations is reached.

3.2 The time complexity of SFS-RS

The time complexity of SFS-RS depends on the number of p
tests. Suppose that the time complexity of calculatingpðB; dÞ
can be attributed by function W B;Uð Þ, where U is the set of

objects. For example if we use the classical rough set-based

dependency function (c), then W B;Uð Þ ¼ Hð Bj j Pj j Uj jÞ and

if, on the other hand, we use fuzzy rough set-based depen-

dency function, thenW B;Uð Þ ¼ Hð Bj j Uj j2Þ. Suppose that at

time t a new feature ft be present to the SFS-RS algorithm and

let Rt be the selected feature subset at this time. If the

available dataset is not p-consistent using Rt, the first phase

of the algorithm will be triggered. This phase includes a

single p test and therefore, the worst-case time complexity of

this phase isW B;Uð Þ. However, if the dataset isp-consistent,

the second phase will be triggered, which needs 2jRtj p tests

(two p tests for each consistency check) to remove non-

significant features. Therefore the worst case time com-

plexity of this phase will be 2jRtjW B;Uð Þ.

4 Experimental results

In this section, we provide several experimental results to

illustrate the performance of the proposed method. To do

this, we compare the performance of the proposed SFS

algorithm (SFS-RS) with four existing SFS algorithms,

grafting [9], information-investing [6], fast-OSFS [5] and

DIA-RED [11]. Table 1 summarizes the datasets used in

our experiments. The dorothea, arcene, dexter, and

madelon datasets are from the NIPS 2003 feature selection

challenge [34]. Arrhythmia, mf (multiple features), iono-

sphere, wine, and credit are selected from the UCI machine

learning repository [35], and the threshold max 1–3 (tm1–

3) are three synthetic datasets from [9]. All the experiments

are carried out on a DELL workstation with Windows 7,

2 GB memory, and 2.4 GHz CPU. The J48 [36] and kernel

SVM with RBF kernel function [37] classifiers are used to

compare the performance of the proposed SFS algorithm.

4.1 Experiments on different settings

of the dependency function

Here we consider the effect of different dependency

functions (different settings for p) on the performance of

SFS-RS (d): Streamwise Feature Selection Using Rough 

Sets
d: The decision feature

1: 
2: ddoo
3:           
4:           iiff ( ) 
5:                     iiff ( ) 
6:                             
7:                     eenndd  iiff

8:           eellssee

9:         /* FIND NON-SIGNIFICANT FEATURES */
10:                  
11:                   
12:                  wwhhiillee (| | ≠ 0) ddoo
13:                           
14:                          iiff ( ( )( ) = 0) 
15:                                   
16:                              eenndd  iiff
17:                              
18:                     eenndd  wwhhiillee

19         /*REMOVE NON-SIGNIFICANT FEATURES */ 

20:                     iiff (| | > 1) 
21:                              
22:                              
23:                     eenndd  iiff

24:                     iiff (| | = 1) 
25:                              ( )

26:                             ( { })

27:                     eenndd  iiff

28:           end if
29: until (stopping criterion is met) 

Fig. 2 The proposed streamwise feature selection
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the SFS-RS algorithm. six dependency measures are con-

sidered here; (1) The classical rough sets-based depen-

dency function, (2) VPRS-based dependency function, (3)

TRSM-based dependency function, (4) FRS-based depen-

dency function, NRSM-based dependency measure, and 6)

The dependency measure introduced in [15]. Two different

threshold values b = 0.1 and b = 0.2 are employed to

define the generalized inclusion relation in VPRS-based

dependency. Moreover, two different values of tolerance

thresholds a = 0.9 and a = 0.95 are used for TRSM-based

function. As experimental results in [32] show that (0.1,

0.3) is an optimal candidate interval for the h in NRSM, we

used the value 0.2 for this parameter. Table 2, summarizes

the six dependency measures and their representations used

in our reports.

The selected subset sizes, running times, and classifi-

cation accuracies of the five measures are reported in

Tables 3, 4 and 5, respectively. Based on These tables, we

can conclude the following results:

• There is only marginal increase in running times of the

dependency measure proposed in [15] (q in the tables),

comparing with the classical rough set-based method.

This is because of the fact that the two methods use the

same partitioning process to generate elementary

classes.

• Although the VPRS-based algorithm is comparable

with the classical rough sets-based algorithm, in terms

of running times, the results show a strong dependence

of the VPRS on the b-value. Although the ideal

threshold value can be obtained by repeated experi-

mentation for a given data set, this value will be biased

to the used data set. Moreover, finding such a value will

impose a large computational time to the overall feature

selection process.

• The TRSM, FRS and NRSM based algorithms are very

slow and these algorithms are not able to finish for the

seven datasets, dorothea, arcene, dexter, madelon, mf,

tm1, and tm2.

• Similar to VPRS, the optimal threshold value in TRSM

is data driven and needs a pre-processing step for each

data set. This is contrary to the rough sets theory

consideration of operating with no domain knowledge.

• Although the classical rough sets-based dependency

measure is able to find accurate results for discrete-

valued datasets, it lost the tests for most of the

continues-valued datasets. Moreover, the dependency

proposed in [15] shows increases in classification

accuracies for most of the tests, specially, for contin-

ues-valued datasets.

4.2 Comparison of SFS-RS with other SFS

Algorithms

Here, we compare the performance of the proposed SFS

algorithm with four existing SFS algorithms, grafting [9],

information-investing [6], fast-OSFS [5] and DIA-RED

[11]. In the grafting algorithm, the multi-layer perceptron

(MLP) is adopted as learning model and the k parameters

are chosen using fivefold cross-validation on each of the

training datasets. In the information-investing algorithm,

the parameters are set as their default settings, W0 ¼ 0:5

and WD ¼ 0:5. For the fast-OSFS algorithm, the indepen-

dence tests are G2 tests for all fully categorical or integer

datasets and Fishers z-tests for all datasets containing real-

valued features. For both tests, the statistical significance

level (a) is set to be 0.05. DIA-RED is implemented using

the combination entropy [38] and the size of incremental

attribute set (SIA) is set to be 1. In the proposed SFS-RS

algorithm, the measure proposed in [15] is used as

dependency function.

Results are presented in terms of the selected subset size

(compactness), the time to locate the subset (running time),

the classification accuracy at the end of the streaming, and

the classification accuracy of selected subsets during fea-

tures streaming.

Table 1 Summary of the Benchmark dimensional datasets

Dataset #Features #Instances Data type

dexter 100000 800 Categorical

arcane 10000 100 Integer

dexter 20000 300 Integer

madelon 500 2000 Categorical

arrhythmia 279 452 Categorical, integer, real

mf 649 2000 Integer, real

tm1 100 1000 Real

tm2 100 1000 Real

tm3 1000 100 Real

ionosphere 34 351 Integer, real

wine 13 178 Integer, real

credit 15 690 Categorical, integer, real

Table 2 The five dependency measures and their representations in

our experiments

Dependency measure defined by: Notion

Classical rough sets c

Variable precision rough sets m

Tolerance rough set model s

Fuzzy rough set /

Neighborhood rough set model N
[aaa15] q

672 Int. J. Mach. Learn. & Cyber. (2018) 9:667–676

123



Table 3 The selected subsets

sizes using SFS-RS with

Different dependency settings

Dataset c q m s N /

b ¼ 0:1 b ¼ 0:2 a ¼ 0:85 a ¼ 0:9

dorothea 6 6 5 – – – – –

arcane 4 4 6 7 – – – –

dexter 9 9 – 9 – – – –

madelon 4 5 5 5 – – – –

arrhythmia 10 12 12 17 12 15 12 12

mf 11 11 12 12 – – – –

tm1 6 7 8 10 – – – –

tm2 7 7 12 8 – – – –

tm3 7 8 7 9 8 9 9 9

ionosphere 5 6 5 7 6 7 7 6

wine 3 3 3 4 3 4 4 4

credit 4 3 5 6 6 6 4 3

Table 4 Running times of SFS-

RS with different dependency

settings

Dataset c q m s N /

b ¼ 0:1 b ¼ 0:2 a ¼ 0:85 a ¼ 0:9

dorothea 694.7 727.3 721.0 – – – – –

arcane 86.4 91.9 117.6 141.3 – – – –

dexter 593.7 602.6 – 852.9 – – – –

madelon 62.8 69.2 64.3 61.9 – – – –

arrhythmia 21.0 25.5 39.5 63.1 766.1 1125.3 955.0 1002.9

mf 301.6 297.4 289.2 300.8 – – – –

tm1 20.0 24.4 37.7 43.6 – – – –

tm2 23.1 22.8 51.0 30.7 – – – –

tm3 16.5 18.3 18.1 18.9 1281.8 1322.1 1183.9 2719.4

ionosphere 1.5 2.4 1.8 2.0 233.2 238.1 204.8 409.5

wine 0.3 0.3 0.3 0.5 47.1 44.8 42.5 76.1

credit 3.7 3.9 3.4 4.8 987.2 937.2 763.1 1622.0

Table 5 Classification

accuracies of SFS-RS with

different dependency settings

Dataset c q m s N /

b ¼ 0:1 b ¼ 0:2 a ¼ 0:85 a ¼ 0:9

dorothea 93.6 92.6 71.2 – – – – –

arcane 87.1 83.3 69.6 82.4 – – – –

dexter 90.8 92.0 – 92.0 – – – –

madelon 72.8 74.2 74.2 74.2 – – – –

arrhythmia 96.1 98.3 82.5 96.8 93.2 62.8 98.3 98.3

mf 82.7 91.0 42.1 90.6 – – – –

tm 1 98.3 99.4 93.2 93.2 – – – –

tm 2 92.9 97.5 88.0 91.5 – – – –

tm3 58.0 85.0 54.0 66.0 87.0 88.0 87.0 88.0

ionosphere 49.3 88.1 53.2 91.0 86.9 74.6 87.8 87.8

wine 82.1 89.2 89.2 80.7 89.2 80.7 80.7 80.7

credit 55.3 72.1 64.7 47.0 76.3 68.1 55.3 80.2
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Table 6 reports the compactness of the selected subsets

using the four algorithms. As it can be seen, the proposed

algorithm selects fewer features than the other four algo-

rithms. For datasets with larger feature sets (dorothea,

arcane, and dexter), grafting and information-investing

found subsets which are considerably large. This can be

attributed to the nesting effect of the two algorithms.

Moreover, the fast-OSFS algorithm failed to select a fea-

ture subset for five datasets, arcene, tm3, ionosphere, wine,

and credit. This is related to the failure of the conditional

independence tests to be applied to limited number of

training instances. DIA-RED lost the comparison for all the

tests. This algorithm failed to finish in a reasonable time for

dorothea, arcane, dexter, mf, and tm3. This can be related

to the fact that DIA-RED does not implement an effective

redundant attribute elimination mechanism, and therefore

the selected subsets are large during features streaming,

which causes ineffective partitioning steps in calculating

the rough sets approximations, and therefore, this algo-

rithm is not time efficient.

The running time results are reported in Table 7. We see

that the SFS-RS is superior for six datasets, dorothea,

arcene, dexter, madelon, tm2, and tm3. The running times

of fast-OSFS are comparable with the proposed method.

Another important result is that the grafting, information-

investing and DIA-RED algorithms are not time-efficient

for datasets with large feature space.

The classification results, reported in Table 8, show that

the proposed algorithm performs very well and shows

increase in classification accuracies for most of the tests.

Although grafting won the test for the tm1, SFS-RS shows

an increase of up to 60 % for dorothea dataset. Compared

with information-investing, our proposed algorithm is

superior in all tests, except the credit dataset. Comparing

with fast-OSFS and DIA-RED, the proposed algorithm is

superior in all tests.

Figure 3 represents the classification accuracy of

selected subsets during features streaming, for the three

higher dimensional datasets dorothea, arcane, and dexer. A

general conclusion from this figure is that the proposed

Table 6 Selected subsets size

comparison of the five SFS

algorithms

Dataset SFS-RS Grafting Information-investing Fast-OSFS DIA-RED

dorothea 6 113 97 9 –

arcane 4 13 15 – –

dexter 9 14 18 11 –

madelon 5 9 6 4 61

arrhythmia 12 12 10 7 46

mf 11 18 12 12 –

tm 1 7 7 7 7 29

tm 2 7 7 8 7 37

tm3 8 7 8 – –

ionosphere 6 6 6 – 15

wine 3 3 3 – 6

credit 3 5 6 – 6

Table 7 Running times

comparison of the five SFS

algorithms

Dataset SFS-RS Grafting Information-investing Fast-OSFS DIA-RED

dorothea 727.3 14576.02 13829.72 940.18 –

arcane 91.9 398.73 281.88 – –

dexter 602.6 1091.77 1886.63 620.19 –

madelon 69.2 119.76 98.01 80.11 11283

arrhythmia 25.5 43.12 29.23 17.16 6392

mf 297.4 432.23 296.23 289.33 –

tm 1 24.4 21.72 23.32 17.87 7783

tm 2 22.8 35.68 38.76 30.88 8035

tm3 18.3 56.82 118.66 – –

ionosphere 2.4 4.1 4.3 – 8.9

wine 0.3 0.3 0.3 – 1.9

credit 3.9 4.0 3.9 – 4.9
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algorithm is more accurate at each time instance and

therefore, allows reliable classification and learning tasks at

that time instance during the streaming phase. Moreover,

the grafting and information-investing algorithms show

lowest changes in classification accuracies as more features

are seen. This can be attributed to the lower dynamism of

the two algorithms, which is due to the nesting effect.

5 Conclusions

Feature selection, as a pre-processing step, is to select a

small subset of most important and discriminative input

features. This paper considered the SFS problem from the

rough sets (RS) perspective. The main motivation was that

RS-based data mining do not require any domain knowl-

edge other than the given dataset. A new SFS algorithm,

called SFS-RS, is proposed. This algorithm adopts the

feature significance concept to eliminate features which

have no influence in deciding output feature.

To show the efficiency and accuracy of the proposed

algorithm, it was compared with grafting, information-in-

vesting, fast-OSFS, and DIA-RED algorithms. Twelve high

dimensional datasets were used for comparisons, and their

features were considered one by one to simulate the true SF

scenarios. The experiments demonstrated that the proposed

algorithm achieves better results than existing SFS algo-

rithms, for all evaluation terms.
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together. In: Słowinskí R (ed) Intelligent decision support. The-

ory and decision library, vol 11. Springer, Netherlands,

pp 203–232

30. Yong L, Wenliang H, Yunliang J, Zhiyong Z (2014) Quick

attribute reduct algorithm for neighborhood rough set model. Inf

Sci 271:65–81

31. Kumar SU, Inbarani HH (2015) A novel neighborhood rough set

based classification approach for medical diagnosis. Proc Comput

Sci 47:351–359

32. Hu Q, Yu D, Liu J, Wu C (2008) Neighborhood rough set based

heterogeneous feature subset selection. Inf Sci

178(18):3577–3594

33. Ashfaq RAR, Wang XZ, Huang JZX, Abbas H, He YL (2016)

Fuzziness based semi-supervised learning approach for intrusion

detection system. Inf Sci. doi:10.1016/j.ins.2016.04.019 (in
press)

34. Clopinet, Feature Selection Challenge, NIPS (2003). http://clopi

net.com/isabelle/Projects/NIPS2003/. Accessed 06 March 2015

35. Blake C, Merz CJ (1998) UCI repository of machine learning

databases. http://www.ics.uci.edu/mlearn/MLRepository.html.

Accessed 06 March 2015

36. Quinlan JR (1993) C4.5: programs for machine learning. Morgan

Kaufmann Publishers Inc., San Francisco

37. Chang CC, Lin CJ (2011) Libsvm: a library for support vector

machines. ACM Trans Intell Sys Technol 2(3):1–27

38. Qian Y, Liang J (2008) Combination entropy and combination

granulation in rough set theory. Int J Uncertain Fuzziness Knowl

Based Sys 16(2):179–193

676 Int. J. Mach. Learn. & Cyber. (2018) 9:667–676

123

http://dx.doi.org/10.1007/11589990_87
http://dx.doi.org/10.1016/j.ins.2016.04.019
http://clopinet.com/isabelle/Projects/NIPS2003/
http://clopinet.com/isabelle/Projects/NIPS2003/
http://www.ics.uci.edu/mlearn/MLRepository.html

	Streamwise feature selection: a rough set method
	Abstract
	Introduction
	rough sets
	Information system and indiscernibility
	Lower and upper approximations
	Dependency
	Significance
	Reduct
	Rough set extensions

	Streamwise feature selection using rough sets
	The proposed algorithm
	The time complexity of SFS-RS

	Experimental results
	Experiments on different settings of the dependency function
	Comparison of SFS-RS with other SFS Algorithms

	Conclusions
	References




