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Abstract This paper proposes an approach to interval-

valued intuitionistic stochastic multi-criteria decision-

making (MCDM) problems using set pair analysis. This

approach is applicable to MCDM problems in which the

criterion weights are incomplete or the weights are certain,

and evaluation values of alternatives take the form of

interval-valued intuitionistic stochastic variables. To begin

with, we briefly introduce the concepts of interval-valued

intuitionistic fuzzy set, interval-valued intuitionistic

stochastic variable, and set pair analysis. Then, we define a

new similarity measure between interval-valued intuition-

istic fuzzy numbers, after which we establish a mathe-

matical programming model based on the technique for

order preference by similarity to an ideal solution method

and the maximizing deviation method in order to determine

criterion weights. We then use connection degree to rep-

resent interval-valued intuitionistic fuzzy information and

transform the interval-valued intuitionistic stochastic

decision-making matrixes into corresponding connection

degree matrixes. Finally, we rank the alternatives accord-

ing to the value of set pair potential after calculating the

connection degree of each alternative. After defining the

method, we apply it to a practical decision-making problem

and provide a comparison analysis with existing methods

to illustrate the feasibility and validity of the proposed

approach.

Keywords Interval-valued intuitionistic stochastic

multi-criteria decision-making � Interval-valued
intuitionistic fuzzy set � Interval-valued intuitionistic

stochastic variable � Similarity measure � Set pair analysis

1 Introduction

Multi-criteria decision-making (MCDM) refers to evalu-

ating, ranking, or selecting alternatives on the basis of

several conflicting criteria or preferences. Due to the

complexity of life, the real world contains many MCDM

problems in which the preference information and criterion

weights are inaccurate, uncertain, or incomplete. To

address these circumstances, Zadeh introduced the concept

of fuzzy set (FS) [1], wherein an element’s membership

degree with regard to a set is represented by a real number

between zero and one. FS was identified as an excellent

theory with which to describe inexact, uncertain, and

imprecise information, and has been extended to many

application domains such as e-commerce, link prediction,

machine learning, fuzzy classification, intrusion detection

[2–8]. Considering that the single membership function is

insufficient to express the information completely, building

upon FS, Atanassov introduced intuitionistic fuzzy set

(IFS) [9], which takes the membership degree and non-

membership degree into consideration simultaneously. IFS

is more useful than FS in dealing with the presence of

hesitancy and vagueness originating from imprecise

information, and it has attracted great interest from schol-

ars [10–14]. However, considering the complexity and

uncertainty inherent in practical problems, interval num-

bers are more suitable than exact numbers for expressing

membership and non-membership degrees. Therefore,

Atanssov and Gargov [15] introduced interval-valued
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intuitionistic fuzzy set (IVIFS) as an important extension of

IFS that can better characterize membership and non-

membership degrees. Compared with FS and IFS, IVIFS

may be more flexible in describing abundant information

when uncertain information is involved [16, 17]. Interval-

valued intuitionistic fuzzy number (IVIFN) [18] is a special

case of IVIFS, and using IVIFN to model human judgment

may be a more appropriate way to handle real-life prob-

lems. For example, when a paper is sent to a reviewer, he

may use IVIFN ([0.3, 0.6], [0.1, 0.3], [0.1, 0.6]) to express

his attitude toward the paper. The notation [0.3, 0.6] rep-

resents that the paper is 30–60 percent acceptable,

[0.1, 0.3]means that the paper is 10–30 percent unaccept-

able, and [0.1, 0.6] expresses his hesitation. In this exam-

ple, IVIFNs describe the real-life problem better than crisp

numbers. Both IVIFSs and IVIFNs have been widely

applied in MCDM problems, and research on the subject

can be roughly classified into four main topics: aggregation

operators [19–21], similarity (or distance) measures

[22–25], extension of classic decision-making methods

[26–28] and preference relation [29, 30]. Xu [19], Liu [20],

and He et al. [21] proposed some operators for IVIFNs and

applied them to MCDM problems. Chen [26] extended the

Technique for Order Preference by Similarity to an Ideal

Solution (TOPSIS) method to multi-criteria group deci-

sion-making problems with interval-valued intuitionistic

fuzzy information.

In daily life, it is common for decision-makers to

encounter MCDM problem in which the consequences of

each alternative are presented in the form of stochastic

variables with probability distributions. These problems are

called stochastic MCDM problems, and they have exten-

sive applications [31–35]. Zhou et al. [31] considered the

bounded rationality of decision-makers while integrating

regret theory and TOPSIS in order to handle grey

stochastic MCDM problems with extended grey numbers.

Wang et al. [32] extended the Elimination Et Choice

Translating Reality (ELECTRE) to rough stochastic

MCDM problems. Tan et al. [33] integrated prospect

stochastic dominance degrees and Preference Ranking

Organization Methods for Enrichment Evaluations II

(PROMETHEE II) to handle stochastic MCDM problems.

Okul et al. [34] combined stochastic multi-criteria accept-

ability analysis (SMAA) with TOPSIS, applying the new

method to drug risk–benefit analysis and machine gun

selection. Hu et al. [35] combined prospect theory with

conjoint analysis in addressing dynamic stochastic MCDM

problems with unknown weight information.

As decision-making environments and problems have

become increasingly complex and uncertain, stochastic

MCDM problems with intuitionistic fuzzy information

have gradually received more attention. For example, Gao

and Liu [36] developed a new approach to interval-valued

intuitionistic stochastic MCDM problems by utilizing

prospect theory and P-score function. Li et al. [37–39]

introduced methods for solving stochastic MCDM prob-

lems with IFS and incomplete information, while Hu et al.

[40] defined a new score function and distance measure for

IFS and proposed an approach to intuitionistic stochastic

MCDM problems based on prospect theory. Wang and Li

[41] defined a new score function and applied it to intu-

itionistic stochastic MCDM problems.

Despite the volume of research, almost all of the

methods for dealing with intuitionistic stochastic MCDM

problems are based on prospect theory. In prospect theory,

the complexity of the decision-making problems makes it

difficult for decision-makers to provide an accurate refer-

ence point in the real decision-making process. Further-

more, the five parameters in the calculation functions of

prospect theory, a, b, h, c and d, are hard to determine

because they depend on the psychological behavior of the

decision-makers. In contrast, set pair analysis [42], intro-

duced by Zhao, has no requirement to determine a refer-

ence point or parameters. Set pair analysis is a modified

uncertainty theory that considers both certainties and

uncertainties as an integrated certain-uncertain system. Set

pair analysis is considered to be an excellent theory for

analyzing and dealing with imprecise, inconsistent, and

incomplete information, and it has been applied in such

fields as risk assessment, agriculture, and decision-making

[43–45]. In set pair analysis, connection degree functions

as a useful tool to systematically describe certainty and

uncertainty from the three aspects of identity degree, dis-

crepancy degree, and contrary degree. Because set pair

analysis uses a simple mathematic depiction to express

ambiguous and imprecise information with clarity, it is

utilized in research into MCDM problems [46–48]. Zhang

[46] analyzed the compatibility between set pair analysis

and IFS, providing a method for transforming intuitionistic

fuzzy numbers into connection numbers. Yue et al. [47]

developed a multi-criteria group decision-making approach

based on set pair analysis, and Hu and Liu [48] combined

cumulative prospect theory with set pair analysis for use in

dynamic stochastic MCDM problems.

Randomness and intuitionistic logic commonly exist

simultaneously in decision-making problems, but little

systematic research has explored these problems. Previ-

ously published works recognize the advantages of set pair

analysis theory, but most existing methods of handling

intuitionistic stochastic MCDM problems are based on

prospect theory, no relevant research has applied set pair

analysis to deal with intuitionistic or interval-valued

stochastic MCDM problems. This gap in the research

motivates us to apply set pair analysis to interval-valued

intuitionistic stochastic MCDM problems. The main con-

tributions of this work are summarized below.
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1. In order to derive criterion weights, this paper defines a

new similarity measure of IVIFNs that considers

hesitation information. This paper also constructs a

mathematical programming model based on TOPSIS

and the maximizing deviation method in order to

determine optimal weight values when a decision-

maker may provide incomplete or inconsistent opin-

ions about weight information.

2. The proposed method introduces a new representation

using connection degrees to express interval-valued

intuitionistic fuzzy information on the basis of set pair

analysis. The proposed method deals directly with

interval-valued intuitionistic fuzzy information, avoid-

ing any loss of fuzzy information. Furthermore, the set

pair potential is employed to rank alternatives.

3. In contrast to existing interval-valued intuitionistic

stochastic MCDM methods based on prospect theory,

the proposed method based on set pair analysis does

not need to consider parameter values or set a

reference point. Besides, the calculations of the

proposed method are relatively simple.

The rest of this paper is organized as follows. Section 2

briefly reviews some basic concepts of IVIFS, interval-

valued intuitionistic stochastic variable, and set pair anal-

ysis. Section 3 introduces a new similarity measure

between IVIFNs and gives some examples to illustrate its

validity. Section 4 presents an approach to interval-valued

intuitionistic stochastic MCDM problems using set pair

analysis. Section 5 uses an example to illustrate the effi-

ciency and feasibility of the proposed approach and

describe a comparison analysis with existing methods.

Section 6 presents conclusions.

2 Preliminaries

This section provides a brief review of some concepts of

IVIFS, interval-valued intuitionistic stochastic variable and

set pair analysis.

2.1 IVIFS

Definition 1 [15, 18]: Let X be a universal set, and let

int([0, 1]) be a set of all the closed subintervals of [0, 1].

Then an IVIFS ~A in X is described by the form

~A ¼ x; ~l ~A xð Þ; ~m ~A xð Þ; ~p ~A xð Þ
� �

x 2 Xj
� �

;

where the functions ~l ~A : X ! int 0; 1½ �ð Þ and ~m ~A : X !
int 0; 1½ �ð Þ denote the interval membership and interval non-

membership degrees, respectively, of element x to IVIFS ~A.

For any x 2 X to IVIFS ~A, sup ~l ~A xð Þ
� �

þ sup ~m ~A xð Þ
� �

þ

inf ~p ~A xð Þ
� �

¼ 1; and inf ~l ~A xð Þ
� �

þ inf ~m ~A xð Þ
� �

+ sup ~p ~A

�

leftðxÞÞ¼1:: Call ~p ~A xð Þ ¼ 1� ~l ~A xð Þ � ~m ~A xð Þ the interval

hesitation degree of element x to IVIFS ~A, for any x 2 X to

the IVIFS ~A, ~p ~A : X ! int 0; 1½ �ð Þ. For convenience, the

IVIFS can be denoted as follows:

~A ¼ x; ~lL~A xð Þ; ~lU~A xð Þ
h i

; ~mL~A xð Þ; ~mU~A xð Þ
h i

; ~pL~A xð Þ; ~pU~A xð Þ
h iD En

x 2 Xj g:

In practice, IVIFN ea can be denoted as follows:

ea ¼ ð½aL; aU �; ½bL; bU �; ½cL; cU �Þ; where

½aL; aU � � ½0; 1�; ½bL; bU � � ½0; 1� and aU þ bU\1:

Definition 2 [15]: Let ea1 ¼ aL1 ; a
U
1

� 	
; bL1 ; b

U
1

� 	
; cL1 ; c

U
1

� 	� �

and ea2 ¼ aL2 ; a
U
2

� 	
; bL2 ; b

U
2

� 	
; cL2 ; c

U
2

� 	� �
be two IVIFNs,

then

1. ea1 � ea2 if and only if a1
L B a2

L, a1
U B a2

U, b1
L C b2

L, and

b1
U C b2

U.

2. ea1 ¼ ea2 if and only if a1
L = a2

L, a1
U = a2

U, b1
L = b2

L, and

b1
U = b2

U.

Definition 3 [52]: Let ea1 ¼ aL1 ; a
U
1

� 	
; bL1 ; b

U
1

� 	
; cL1 ; c

U
1

� 	� �

and ea2 ¼ aL2 ; a
U
2

� 	
; bL2 ; b

U
2

� 	
; cL2 ; c

U
2

� 	� �
be two IVIFNs,

then the normalized Hamming distance between two

IVIFNs is defined as follows:

D ea1; ea2ð Þ ¼ 1

4
aL1 � aL2


 

þ aU1 � aU2



 

þ bL1 � bL2


 

�

þ bU1 � bU2


 

þ cL1 � cL2



 

þ cU1 � cU2


 

�: ð1Þ

Definition 4 [18, 49]: Let ea ¼ aL; aU½ �; bL; bU½ �; cL; cU½ �ð Þ
be an IVIFN, then, the score function of ea can be denoted

as follows:

S eað Þ ¼ aL þ aU � bL � bU
� ��

2: ð2Þ

2.2 Interval-valued intuitionistic stochastic variable

An interval-valued intuitionistic stochastic variable [41] is

a group of countable stochastic variables made up of a

finite set of IVIFNs. The interval-valued intuitionistic

stochastic variable is denoted as n(x). Table 1 shows the

probability distribution of n(x).
In Table 1, n(x) is an interval-valued intuitionistic

stochastic variable, xi is the i-th possible value that would be

taken by n(x), m is the number of values that an interval-

Table 1 Probability distribution of n(x)

n(x) x1 x2 … xi … xm

P P1 P2 … Pi … Pm
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valued intuitionistic stochastic variable can have. Pi is the

probability with respect to xi, and the probability density

function f(n(x)) can be denoted as f(n(x) = xi) = Pi.

Exampel 1 Assume that the evaluation information about

a company’s profitability can be expressed as ([0.6, 0.7],

[0.2, 0.3], [0, 0.2]) with a probability of 0.4 when the

company is well-run, or ([0.4, 0.5], [0.2, 0.4], [0.1, 0.4])

with a probability of 0.6 when the company is not well-run.

This information can be presented by the interval-valued

intuitionistic stochastic variable n(x) described in Table 2.

Meanwhile, the probability density function can be denoted

as follows:

f n xð Þ ¼ 0:6; 0:7½ �; 0:2; 0:3½ �; 0; 0:2½ �ð Þð Þ
¼ 0:4; f n xð Þ ¼ 0:4; 0:5½ �; 0:2; 0:4½ �; 0:1; 0:4½ �ð Þð Þ ¼ 0:6:

2.3 Set pair analysis

Set pair analysis, proposed by Zhao [42], is a modified

uncertainty theory that considers both certainties and

uncertainties as an integrated certain-uncertain system. Set

pair analysis involves a useful tool called connection

degree that describes the certainty and uncertainty sys-

tematically from three aspects: identity degree, discrepancy

degree, and contrary degree. This subsection introduces

some basic concepts of set pair analysis.

Definition 5 [42, 48]: If E and F are two interrelated sets,

the set pair can be denoted as H(E, F). With respect to the

set pair H(E, F), the connection degree between sets E and

F can be denoted as g Hð Þ ¼ I
N
þ D

N
iþ C

N
j, where N is the

total number of characteristics of the set pair H(E, F),

while I, C, and D = N - I - C represent, respectively, the

numbers of identity characteristics, contrary characteris-

tics, and discrepancy characteristics. The identity degree,

discrepancy degree and contrary degree of the discussed set

pair are represented by I/N, D/N and C/N, respectively.

i denotes the coefficient of discrepancy degree and

i 2 [0, 1], j denotes the coefficient of contrary degree and

j = -1. For convenience, let a = I/N, b = D/N and

c = C/N, and then g ¼ I
N
þ D

N
iþ C

N
j can be denoted as

follows:

g ¼ aþ biþ cj: ð3Þ

Definition 6 [42, 48]: If the connection degree

g = a ? bi ? cj satisfies c = 0, the set pair potential,

which characterizes the approximate degree between the

two interrelated sets, can be denoted as follows:

Shi gð Þ ¼ a=c: ð4Þ

Zhang et al. [46] point out the compatibility between set

pair analysis and IFS. A given intuitionistic fuzzy value

(lij, mij, pij) can be represented in the form of a connection

degree as

gij ¼ aij þ bijk
^

þ cij l
^

; ð5Þ

where aij = lij, bij = pij, and cij = mij. The coefficient of

discrepancy degree is represented by k
^

, while l
^

is the

coefficient of contrary degree and l
^

¼ �1.

3 A new similarity measure between IVIFNs

Scholars have studied the topic of similarity measures

between IFSs and IVIFSs from various points of view.

Some of similarity measures are extensions of well-known

distance measures, such as similarity measures between

IFSs or IVISs based on Hamming Distance [22, 50],

Euclidian Distance [22] and Hausdorff distance [23, 51].

However, some similarity measures for IFSs and IVIFSs

are entirely new, instead of extending well-known distance

measures, these includes similarity measures based on

entropy measure [25], preference relations [52], and cosine

similarity measure [53, 54].

Definition 7 [22]: Let ea1¼ aL1 ; a
U
1

� 	
; bL1 ; b

U
1

� 	
; cL1 ; c

U
1

� 	� �

and ea2¼ aL2 ; a
U
2

� 	
; bL2 ; b

U
2

� 	
; cL2 ; c

U
2

� 	� �
be two IVIFNs, Xu

[22] defined the similarity measures between ea1 and ea2 as
listed below.

SX1 ea1; ea2ð Þ ¼ 1� 1

4
aL1 � aL2


 

þ bL1 � bL2



 

þ aU1 � aU2


 

�

þ bU1 � bU2


 

�; ð6Þ

SX2 ea1; ea2ð Þ ¼ 1�max aL1 � aL2


 

; bL1 � bL2



 

; aU1 � aU2


 

;

�

bU1 � bU2


 

�; ð7Þ

SX3 ea1; ea2ð Þ

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
aL1 � aL2
� �2þ bL1 � bL2

� �2þ aU1 � aU2
� �2þ bU1 � bU2

� �2h ir

;

ð8Þ
SX4 ea1; ea2ð Þ

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max aL1 � aL2

� �2
; bL1 � bL2
� �2

; aU1 � aU2
� �2

; bU1 � bU2
� �2n or

:

ð9Þ

Table 2 Probability distribution of n(x)

n(x) ([0.6, 0.7], [0.2, 0.3],

[0, 0.2])

([0.4, 0.5], [0.2, 0.4],

[0.1, 0.4])

P 0.4 0.6
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The similarity measures between IVIFNs listed above have a

common drawback in which they only compared the differ-

ences inmembership and non-membership degrees.Wei et al.

[25] and Singh [53] also defined the similarity measures

between IVIFNs based on entropy measure and cosine simi-

larity measure respectively. Similarly, these two similarity

measures also ignored the differences in hesitation degrees.

The similarity measure without considering hesitation infor-

mation is inaccurate and produces some counterintuitive

results in some special cases. To address this, we define a new

similarity measure between IVIFNs incorporating the hesi-

tation degree and the score function in the following.

Definition 8: Let ea1 ¼ aL1 ; a
U
1

� 	
; bL1 ; b

U
1

� 	
; cL1 ; c

U
1

� 	� �
and

ea2 ¼ aL2 ; a
U
2

� 	
; bL2 ; b

U
2

� 	
; cL2 ; c

U
2

� 	� �
be two IVIFNs, the

similarity measure between ea1 and ea2 can be denoted as

follows:

M ea1; ea2ð Þ ¼ 1� S ea1ð Þ � S ea2ð Þj j
4

� D ea1; ea2ð Þ
2

; ð10Þ

where S ea1ð Þ ¼ aL1 þ aU1 � bL1 � bU1
� ��

2; S ea2ð Þ ¼
aL2 þ aU2 � bL2 � bU2
� ��

2; and D ea1;ea2ð Þ¼ 1
4

aL1 �aL2


 

þ
�

aU1 �aU2


 

þ bL1 �bL2



 

þ bU1 �bU2


 

þ cL1 � cL2 þj jcU1 � cU2



 

Þ:

Theorem 1 Let ea1 and ea2 be two IVIFNs, the similarity

measure Mðea1; ea2Þ satisfies the following properties:

1. 0�Mðea1; ea2Þ� 1.

2. Mðea1; ea2Þ ¼ Mðea2; ea1Þ.
3. Mðea1; ea2Þ ¼ 1 if and only if ea1 ¼ ea2.
4. If ea1 � ea2 � ea3, then Mðea1; ea2Þ�Mðea1; ea3Þ and

Mðea2; ea3Þ�Mðea1; ea3Þ.

Proof

1. Solve the nonlinear programming problem:

max D ea1; ea2ð Þð Þ ¼ max 1
4

aL1 � aL2


 

þ
�

aU1 � aU2


 

þ

�

bL1 � bL2


 

þ bU1 � bU2



 

þ cL1�


 cL2



þ cU1 � cU2


 

�Þ, sub-

ject to 0 B a1
L B a1

U B 1, 0 B b1
L B b1

U B 1, 0 B c1
L

B c1
U B 1, 0 B a2

L B a2
U B 1, 0 B b2

L B b2
U B 1, 0 B

c2
L B c2

U B 1, a1
L ? b1

L B 1, a1
U ? b1

U B 1, a2
L ?

b2
L B 1, a2

U ? b2
U B 1, a1

U ? b1
U ? c1

L = 1, a1
L ? b1

L ?

c1
U = 1, a2

U ? b2
U ? c2

L = 1 and a2
L ? b2

L ? c2
U = 1.

By using WinQSB, we can get max D ea1; ea2ð Þð Þ¼1 if

ea1 ¼ 0:0001; 0:0005½ �; 0:5426; 0:9995½ �; 0; 0:4573½ �ð Þ
and ea2 ¼ 0:9997; 0:9998½ �;ð 0:0001; 0:0002½ �;
0; 0:0002½ �Þ. In other words, D ea1; ea2ð Þ� 1. Clearly,

D ea1; ea2ð Þ� 0, and thus 0�D ea1; ea2ð Þ� 1 can be

obtained.

Xu [18] proved that �1� S ea1ð Þ� 1 and �1�

S ea2ð Þ� 1. Since 0� S ea1ð Þ�S ea2ð Þj j
4

� 1
2

and 0�
D ea1;ea2ð Þ

2
� 1

2
, we can get 0�M ea1; ea2ð Þ� 1.

2. It is apparent that D ea1; ea2ð Þ¼D ea2; ea1ð Þ, so M ea1; ea2ð Þ

¼ 1� S ea1ð Þ�S ea2ð Þj j
4

� D ea1;ea2ð Þ
2

¼ M ea2; ea1ð Þ ¼ 1

� S ea2ð Þ�S ea1ð Þj j
4

� D ea2;ea1ð Þ
2

; or in simpler terms,

Mðea1; ea2Þ ¼ Mðea2; ea1Þ.
3. The definition of Mðea1; ea2Þ provides that we have

Mðea1; ea2Þ¼1 , S ea1ð Þ¼S ea2ð Þ; D ea1; ea2ð Þ ¼ 0 ,
aL1 � aL2


 

 ¼ aU1 � aU2



 

 ¼ bL1 � bL2


 

 ¼ bU1 � bU2



 

 ¼
cL1 � cL2 ¼j


 jcU1 � cU2 j ¼ 0 , ea1 ¼ ea2:

4. If ea1 � ea2 � ea3, then a1
L ? a1

U B a2
L ? a2

U and

b1
L ? b2

U C b2
L ? b2

U; therefore, S ea1ð Þ� S ea2ð Þ. Simi-

larly, S ea2ð Þ� S ea3ð Þ, such that S ea1ð Þ� S ea2ð Þ� S ea3ð Þ.
It is apparent that S ea1ð Þ � S ea2ð Þj j � S ea1ð Þ � S ea3ð Þj j
and S ea3ð Þ � S ea2ð Þj j � S ea3ð Þ � S ea1ð Þj j.

If ea1 � ea2 � ea3, then |a1
L - a2

L| B |a1
L - a3

L|, |a1
U -

a2
U| B |a1

U - a3
U|, |b1

L - b2
L| B |b1

L - b3
L|, |b1

U - b2
U| B |b1

U -

b3
U|, |c1

L - c2
L| B |c1

L - c3
L| and |c1

U - c2
U| B |c1

U - c3
U|;

therefore, D ea1; ea2ð Þ�D ea1; ea3ð Þ. A similar process yields

D ea2; ea3ð Þ�D ea1; ea3ð Þ. Since S ea1ð Þ � S ea2ð Þj j � S ea1ð Þ�j
S ea3ð Þj, S ea3ð Þ � S ea2ð Þj j � S ea3ð Þ � S ea1ð Þj j, D ea1; ea2ð Þ�
D ea1; ea3ð Þ, and D ea2; ea3ð Þ�D ea1; ea3ð Þ, we can obtain

M ea1; ea2ð Þ�M ea1; ea3ð Þ and M ea2; ea3ð Þ�M ea1; ea3ð Þ.
The following examples compare the proposed simi-

larity measure between IVIFNs with the existing similarity

measures, and validate the applicability and flexibility of

the proposed similarity measure.

Example 2 Let ea3 ¼ 0:3; 0:4½ �; 0; 0:5½ �; 0:1; 0:7½ �ð Þ; ea4 ¼
0:1; 0:5½ �; 0; 0:3½ �; 0:2; 0:9½ �ð Þ; and ea5 ¼ 0:3;½ð 0:6�; 0:1;½

0:4�; 0; 0:6½ � be three IVIFNs, by applying Eqs. (7) and (9)

we obtain SX2 ea3; ea4ð Þ ¼ SX2 ea3; ea5ð Þ ¼ 0:8 and

SX4 ea3; ea4ð Þ ¼ SX4 ea3; ea5ð Þ ¼ 0:8.

By applying Eqs. (6), (8) and (10), we obtain

SX1 ea3; ea4ð Þ ¼ 0:875 and SX1 ea3; ea5ð Þ
¼ 0:9; so SX1 ea3; ea4ð Þ\SX1 ea3; ea5ð Þ;

SX3 ea3; ea4ð Þ ¼ 0:85 and SX3 ea3; ea5ð Þ
¼ 0:8775; so SX3 ea3; ea4ð Þ\SX3 ea3; ea5ð Þ;

M ea3; ea4ð Þ ¼ 0:8875 and M ea3; ea5ð Þ
¼ 0:9; so M ea3; ea4ð Þ\M ea3; ea5ð Þ:

Example 3 Let ea6 ¼ 0; 0:5½ �; 0:1; 0:4½ �; 0:1; 0:9½ �ð Þ; ea7 ¼
0:3; 0:4½ �;ð 0:2; 0:5½ �; 0:1; 0:5½ �Þ and ea8 ¼ 0:1;½ð 0:4�;
0:4; 0:5½ �; 0:1; 0:5½ �Þ be three IVIFNs, by applying Eqs. (6),

(7), (8) and (9) we obtain SX1 ea6; ea7ð Þ ¼ SX1 ea6; ea8ð Þ ¼
0:85, SX2 ea6; ea7ð Þ ¼ SX2 ea6; ea8ð Þ ¼ 0:7, SX3 ea6; ea7ð Þ ¼
SX3 ea6; ea8ð Þ ¼ 0:8268, and SX4 ea6; ea7ð Þ ¼ SX4 ea6; ea8ð Þ
¼ 0:7.
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By applying Eq. (10), we obtain

M ea6; ea7ð Þ ¼ 0:875 and M ea6; ea8ð Þ
¼ 0:825 ; so M ea6; ea7ð Þ[M ea6; ea8ð Þ:

The above results indicate that using different similarity

measures can produce different results. In Example 2, the

similarity measures SX2 and SX4 defined by Xu [22] have

lower discrimination, such that they cannot be used to

classify this example. The result obtained from the pro-

posed similarity measure agrees with the results from SX1
and SX3 defined by Xu [22]. The consistent results illustrate

the feasibility and validity of the proposed similarity

measure. In Example 3, all similarity measures defined by

Xu [22] lose their effectiveness. And the reason might be

the ignorance of hesitant degrees. Compared with existing

similarity measures between IVIFNs, the proposed simi-

larity measure takes all of the information into account, it

can characterize the degrees of similarity between IVIFNs

more accurate and effective. Furthermore, the examples

also demonstrate the feasibility and applicability of the

proposed similarity measure.

4 An interval-valued intuitionistic stochastic
MCDM method using set pair analysis

This section describes an interval-valued intuitionistic

stochastic MCDM method using set pair analysis.

For an interval-valued intuitionistic stochastic MCDM

problem, let A = {A1, A2, …, Am} be a set of alternatives,

C = {C1, C2, …, Cn} be a set of criteria, and let

h = {h1, h2, …, hS} be a set of statuses. The probability of

status hk can be denoted as pk, where 0 B pk B 1 andP
k=1
s pk = 1. The weights vector of the criteria can be

denoted as W = (w1, w2, …, wn), satisfying
P

j=1
n wj =

1, 0 B wj B 1, j = 1, 2, …, n. Let Dk = (nijk)m9n9k rep-

resent the interval-valued intuitionistic stochastic decision-

making matrix, where nijk = ([aijk
L , aijk

U ], [bijk
L , bijk

U ], [cijk
L ,

cijk
U ]) is an interval-valued intuitionistic stochastic variable

that refers to the criterion value of Ai with respect to cri-

terion Cj in the kth status. The problem to be addressed

concerns ranking the alternatives or choosing the best

alternative.

The interval-valued intuitionistic stochastic MCDM

approach using set pair analysis proceeds as follows.

Step 1. Determine the criterion weights.

The TOPSIS method, first developed by Hwang and

Yoon [55], is a well-known classical MCDM method. In

TOPSIS, the alternatives are ranked by evaluating the

shortest distance from the ideal solution among the

maximum and minimum criteria values according to

certain criteria. The maximizing deviation method [56],

proposed by Wang, is a method for handling MCDM

problems with numerical information and determining

criterion weights. The basic idea of the maximizing

deviation method is that a criterion with a larger deviation

value among alternatives should be assigned a greater

weight. Base on the TOPSIS and maximizing deviation

methods, we can construct a new method to determine

criterion weights.

(1) Determine the positive ideal alternative and the

negative ideal alternative.

The positive ideal alternative A? is chosen according to

the following formula:

Aþ ¼ aLþ; aUþ� 	
; bLþ; bUþ� 	

; cLþ; cUþ� 	� �
; ð11Þ

where, aL? = maxi=1
m (aijk

L ), aU? = maxi=1
m (aijk

U ), bL? =

mini=1
m (bijk

L ), bU? = mini=1
m (bijk

U ), cL? = 1 - maxi=1
m (aijk

U ) -

mini=1
m (bijk

U ), cU? = 1 - maxi=1
m (aijk

L ) - mini=1
m (bijk

L ), and

1 B i B m, 1 B j B n, 1 B k B s.

The negative ideal alternative A- is chosen according to

the following formula:

A� ¼ aL�; aU�� 	
; bL�; bU�� 	

; cL�; cU�� 	� �
; ð12Þ

where, aL- = mini=1
m (aijk

L ), aU- = mini=1
m (aijk

U ), bL- =

maxi=1
m (bijk

L ), bU- = maxi=1
m (bijk

U ), cL- = 1 - mini=1
m (aijk

U ) -

maxi=1
m (bijk

U ), cU- = 1 - mini=1
m (aijk

L ) - maxi=1
m (bijk

L ), and

1 B i B m, 1 B j B n, 1 B k B s.

(2) Calculate the overall relative closeness between

alternative Ai and the ideal alternative with respect to Cj.

Use Eq. (10) to calculate the similarity between each

criterion value and both positive ideal alternative A? and

the negative ideal alternative A-, as follows:

Mþ nijk
� �

¼ M nijk;A
þ� �

; ð13Þ

M� nijk
� �

¼ M nijk;A
�� �

: ð14Þ

Calculate the relative closeness between each criterion

value and the ideal alternative with the following formula:

M nijk
� �

¼ Mþ nijk
� ��

Mþ nijk
� �

þM� nijk
� �� �

: ð15Þ

The overall relative closeness between alternative Ai and

the ideal alternative with respect to Cj can be determined as

follows:

Mij ¼
Xs

k¼1

M
�

nijk
� �

Pk: ð16Þ

(3) Establish the mathematical programming model.

Calculate the deviation of the relative closeness of

alternative Ai and alternative Al with respect to Cj by

applying the following formula:

d
j
il ¼ Mij �Mlj



 

: ð17Þ

The deviation of all alternatives to other alternatives

with respect to Cj can be determined according to the

following formula:
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dj ¼
Xm

i¼1

Xm

l¼1

Mij �Mlj



 

: ð18Þ

Establish the mathematical programming model on the

basis of the maximizing deviation method as follows:

max L Wð Þ ¼
Xn

j¼1

wjdj

s:t

Pn

j¼1

wj ¼ 1

wj � 0; j ¼ 1; 2; . . .; n:

8
<

:

ð19Þ

The weights W* = (w1
*, w2

*, …, wn
*) can be derived by

solving the programming model (19).

Step 2. Calculate the integrated connection degree gi of
alternative Ai.

On the basis of compatibility between set pair analysis

and IFS, transform the interval-valued intuitionistic fuzzy

value nijk = ([aijk
L , aijk

U ], [bijk
L , bijk

U ], [cijk
L , cijk

U ]) into a corre-

sponding connection degree gijk, and then transform the

interval-valued intuitionistic stochastic decision-making

matrix Dk = (nijk)m9n9k into a connection degree matrix

Mk = (gijk)m9n9k using the following formula:

gijk ¼ aijk þ bijkk
^

þ cijk l
^

; ð20Þ

where aijk = [aijk
L , aijk

U ], bijk = [cijk
L , cijk

U ], and cijk = [bijk
L ,

bijk
U ]. k

^

is the coefficient of discrepancy degree, l
^

is the

coefficient of contrary degree and l
^

¼ �1.

Calculate the overall connection degree matrix

Cij = (gij)m9n of alternative Ai with respect to Cj using the

following formula:

gij ¼
Xs

k¼1

aijkpk þ
Xs

k¼1

bijkpkk
^

þ
Xs

k¼1

cijkpk l
^

: ð21Þ

Calculate the integrated connection degree of alternative

Ai by applying the following formula:

gi ¼
Xm

j¼1

wjgij¼
Xm

j¼1

wj

Xs

k¼1

aijkpk

þ
Xm

j¼1

wj

Xs

k¼1

bijkpkk
^

þ
Xm

j¼1

wj

Xs

k¼1

cijkpk l
^

: ð22Þ

Step 3. Determine the set pair potential.

Calculate the set pair potential of alternative Ai by

applying the following formula:

shi gið Þ ¼
Pm

j¼1 wj

Ps
k¼1 aijkpkPm

j¼1 wj

Ps
k¼1 cijkpk

¼ g�i ; g
þ
i

� 	
; i ¼ 1; 2; . . .;m:

ð23Þ

Step 4. Rank the alternatives according to the values of

set pair potential.

Normalize the interval number shi(gi) = [gi
-, gi

?]. To rank

an interval number on the basis of set pair analysis, the interval

number must be normalized so as to transform the various

interval number shi(gi) = [gi
-, gi

?] into the comparable

interval number shi €gið Þ ¼ €g�i ; €g
þ
i

� 	
, in which the lower limit

€g� and the upper limit €gþ satisfy 0� €g� � 1 and 0� €gþ � 1,

respectively, The transformation formula is as follows:

€g�i ¼ 1� gmin
i

�
g�i

€gþi ¼ 1� gmin
i

�
gþi

(

; ð24Þ

where, gmin
i ¼ min

1� i�m
g�i .

Transform the normalized interval number shi €gið Þ ¼
€g�i ; €g

þ
i

� 	
into a set pair connection degree. The transfor-

mation formula is as follows:

li €g�i ; €g
þ
i

� 	
; 1

� �
¼ ai þ bik

^

þ ci l
^

; ð25Þ

where ai ¼ €g�i �0

1�0
¼ €g�i , bi ¼ €gþ

i
�€g�i

1�0
¼ €gþi � €g�, and

ci ¼ 1�€gþ
i

1�0
¼ 1� €gþi .

Calculate the set pair potential as follows:

shi lið Þ ¼ ai

ci
: ð26Þ

The larger the value of shi(li), the better the alternative

Ai will be.

5 Numerical example

This section applies the proposed method to solve a prac-

tical problem and compares the proposed approach with

existing methods to illustrate its effectiveness and

operability.

5.1 Illustration of the proposed method

Example 4 ABC MANUFACTURE is a manufacturing

company that is primarily involved in the development and

production of mobile phone parts. In order to enhance the

company’s market competitiveness, the company execu-

tives decide to select the best enterprise among four peer

enterprises {A1, A2, A3, A4} to form a corporate union.

ABC MANUFACTURE engages an expert to help select

the best enterprise. The expert assesses the four enterprises

on the basis of three criteria, namely production capability

C1, research and development capability C2 and the cash

flow capacity C3. The expert provides information on the

four enterprises based on the evaluation criterion and the

operational status of each enterprise. Three possible sta-

tuses h1, h2, and h3 may describe the operational status of

an enterprise; h1 indicates that the enterprise is well-run, h2
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indicates that the enterprise is operating at a satisfactory

level, and h3 indicates the enterprise is not well-run. The

corresponding probabilities of each status occurring are

0.3, 0.5 and 0.2, respectively.

The evaluations given by decision-maker are transformed

into interval-valued intuitionistic stochastic variables in

order to reflect any fuzzy or uncertain information in the

evaluations. D1 = (nij1), D2 = (nij2), and D3 = (nij3) con-
tain the transformed evaluation information for statuses h1,
h2, and h3, respectively. For example, in the fourth row

and the first column of decision matrix D2, the interval-val-

ued intuitionistic stochastic variable n412 = ([0.6, 0.7],

[0.1, 0.2], [0.1, 0.3]) indicates the expert’s belif that when

the enterprise is operating at a satisfactory level, enterprise

A4 is 60–70 percent productive and 10–20 percent unpro-

ductive; the range of 10–30 percent expresses his hesitation.

The vector of criterionweights given by the expert is denoted

as X = {0.1 B w1 B 0.3, 0.2 B w2 B 0.4, 0.5 B w3 B 0.7,

w1 ? w2 ? w3 = 1}.

Step 1. Determine the criterion weights.

(1) Determine the positive and negative ideal alternatives.

The positive ideal alternative and negative ideal alter-

native can be derived using Eqs. (11) and (12). The results

are as follows:

Aþ ¼ 0:8; 0:9½ �; 0; 0:1½ �; 0; 0:2½ �ð Þ; A�

¼ 0:2; 0:4½ �; 0:3; 0:4½ �; 0:2; 0:5½ �ð Þ:

(2) Calculate the overall relative closeness between

alternative Ai and the ideal alternative with respect to Cj.

The overall relative closeness can be obtained by using

Eqs. (10), (13), (14), (15) and (16). The results are shown

in Table 3.

(3) Establish the mathematical program model.

The deviation of all alternatives to other alternatives

with respect to Cj can be obtained using Eqs. (17) and (18),

with the following results

d1 ¼ 0:936; d2 ¼ 0:518; d3 ¼ 0:946:

Establish the mathematical programming model as fol-

lows, according to Eq. (19):

max L Wð Þ ¼ 0:936w1 þ 0:518w2 þ 0:946w3

s:t:

w1 þ w2 þ w3 ¼ 1

0:1�w1 � 0:3

0:2�w2 � 0:4

0:5�w3 � 0:7

8
>>><

>>>:

The weights W = (0.1, 0.2, 0.7) can easily be obtained

using LINGO.

Step 2. Calculate the integrated connection degree gi of
alternative Ai.

The stochastic connection degree matrixes M1 = (gij1),
M2 = (gij2), and M3 = (gij3) are derived by applying

Eq. (20), and the results are as follows:

Table 3 Overall relative closeness between each alternative and the ideal alternative

C1 C2 C3

A1 0.6033 0.5463 0.5504

A2 0.5132 0.5645 0.4694

A3 0.4648 0.4924 0.5678

A4 0.5736 0.5736 0.5017

D1 ¼

0:8; 0:9½ �; 0:0; 0:1½ �; 0:0; 0:2½ �ð Þ
0:6; 0:7½ �; 0:2; 0:3½ �; 0:0; 0:2½ �ð Þ
0:4; 0:5½ �; 0:2; 0:4½ �; 0:1; 0:4½ �ð Þ
0:7; 0:8½ �; 0:1; 0:2½ �; 0:0; 0:2½ �ð Þ

0:7; 0:8½ �; 0:1; 0:2½ �; 0:0; 0:2½ �ð Þ
0:5; 0:7½ �; 0:2; 0:3½ �; 0:0; 0:3½ �ð Þ
0:6; 0:8½ �; 0:0; 0:1½ �; 0:1; 0:4½ �ð Þ
0:5; 0:6½ �; 0:2; 0:3½ �; 0:1; 0:3½ �ð Þ

0:5; 0:7½ �; 0:1; 0:3½ �; 0:0; 0:4½ �ð Þ
0:3; 0:6½ �; 0:2; 0:3½ �; 0:1; 0:5½ �ð Þ
0:7; 0:9½ �; 0:0; 0:1½ �; 0:0; 0:3½ �ð Þ
0:4; 0:5½ �; 0:2; 0:4½ �; 0:1; 0:4½ �ð Þ

2

6664

3

7775

D2 ¼

0:7; 0:8½ �; 0:1; 0:2½ �; 0:0; 0:2½ �ð Þ 0:6; 0:7½ �; 0:1; 0:3½ �; 0:0; 0:3½ �ð Þ 0:6; 0:8½ �; 0:0; 0:2½ �; 0:0; 0:4½ �ð Þ
0:5; 0:7½ �; 0:1; 0:2½ �; 0:1; 0:4½ �ð Þ 0:8; 0:9½ �; 0:0; 0:1½ �; 0:0; 0:2½ �ð Þ 0:5; 0:6½ �; 0:2; 0:3½ �; 0:1; 0:3½ �ð Þ
0:5; 0:7½ �; 0:2; 0:3½ �; 0:0; 0:3½ �ð Þ 0:4; 0:5½ �; 0:1; 0:3½ �; 0:2; 0:5½ �ð Þ 0:6; 0:7½ �; 0:1; 0:2½ �; 0:1; 0:3½ �ð �
0:6; 0:7½ �; 0:1; 0:2½ �; 0:1; 0:3½ �ð Þ 0:7; 0:8½ �; 0:1; 0:2½ �; 0:0; 0:2½ �ð Þ 0:5; 0:7½ �; 0:1; 0:3½ �; 0:0; 0:4½ �ð Þ

2

664

3

775

D3 ¼

0:6; 0:7½ �; 0:1; 0:3½ �; 0:0; 0:3½ �ð Þ 0:4; 0:7½ �; 0:1; 0:2½ �; 0:1; 0:5½ �ð Þ 0:6; 0:7½ �; 0:1; 0:3½ �; 0:0; 0:3½ �ð Þ
0:4; 0:6½ �; 0:1; 0:2½ �; 0:2; 0:5½ �ð Þ 0:4; 0:5½ �; 0:3; 0:4½ �; 0:1; 0:3½ �ð Þ 0:5; 0:7½ �; 0:2; 0:3½ �; 0:0; 0:3½ �ð Þ
0:2; 0:4½ �; 0:0; 0:1½ �; 0:5; 0:8½ �ð Þ 0:3; 0:6½ �; 0:0; 0:1½ �; 0:3; 0:7½ �ð Þ 0:5; 0:7½ �; 0:1; 0:2½ �; 0:1; 0:4½ �ð Þ
0:7; 0:8½ �; 0:0; 0:1½ �; 0:1; 0:3½ �ð Þ 0:8; 0:9½ �; 0:0; 0:1½ �; 0:0; 0:2½ �ð Þ 0:7; 0:8½ �; 0:1; 0:2½ �; 0:0; 0:2½ �ð Þ

2

664

3

775
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The overall connection degree matrix C = (gij)m9n can

be obtained through Eq. (21), with the following results:

The integrated connection degree of alternative Ai can

be obtained using Eq. (22) as follows:

g1 ¼ 0:588; 0:752½ � þ 0:004; 0:35½ �k
^

þ 0:062; 0:244½ � l
^

; g2

¼ 0:485; 0:654½ � þ 0:069; 0:338½ �k
^

þ 0:177; 0:277½ � l
^

;

g3 ¼ 0:556; 0:712½ � þ 0:1; 0:369½ �k
^

þ 0:075; 0:188½ � l
^

; g4

¼ 0:554; 0:689½ � þ 0:034; 0:325½ �k
^

þ 0:121; 0:277½ � l
^

:

Step 3. Determine the set pair potential.

Using Eq. (23), the set pair potential shi(gi) of alterna-
tive Ai can be determined as follows:

shi(g1) = [2.4098, 12.129],

shi(g2) = [1.7509, 3.6949], shi(g3) = [2.9574, 9.4933],

shi(g4) = [2, 5.6942].

Step 4. Rank the alternatives according to the values of set

pair potential.

The normalized interval number shi €gið Þ can be derived

as follows using Eq. (24).

shi €g1ð Þ ¼ 0:2734; 0:8556½ �; shi €g2ð Þ ¼ 0; 0:5261½ �; shi €g3ð Þ
¼ 0:4080; 0:8156½ �; shi €g4ð Þ ¼ 0:1245; 0:6925½ �:

Transform the interval number into a set pair connection

degree according to Eq. (25)

l1 shi €g1ð Þ; 1ð Þ ¼ 0:2734þ 0:5822k
^

þ 0:1444 l
^

;

l2 shi €g2ð Þ; 1ð Þ ¼ 0þ 0:5261k
^

þ 0:4739 l
^

;

l3 shi €g3ð Þ; 1ð Þ ¼ 0:408þ 0:4076k
^

þ 0:1844 l
^

;

l4 shi €g4ð Þ; 1ð Þ ¼ 0:1245þ 0:568k
^

þ 0:3075 l
^

:

Rank the alternatives according to Eq. (26), as

follows:

shi(l1) = 1.8941, shi(l2) = 0, shi(l3) = 2.2119,

shi(l4) = 0.405,

shi l2ð Þ\shi l4ð Þ \shi l1ð Þ\shi l3ð Þ:

The order of the alternatives is A2 � A4 � A1 � A3,

indicating that the best enterprise for ABC MANU-

FACTURE to choose is enterprise A3.

5.2 Comparison analysis and discussion

In order to verify the feasibility of the proposed decision-

making approach based on IVIFSs and set pair analysis, we

M1 ¼

0:8; 0:9½ � þ 0; 0:2½ � k
^

þ 0; 0:1½ � l
^

0:7; 0:8½ � þ 0; 0:2½ �k
^

þ 0:1; 0:2½ � l
^

0:5; 0:7½ � þ 0; 0:4½ �k
^

þ ½0:1; 0:3� l
^

0:6; 0:7½ � þ 0; 0:2½ �k
^

þ 0:2; 0:3½ � l
^

0:5; 0:7½ � þ 0; 0:3½ �k
^

þ 0:2; 0:3½ � l
^

0:3; 0:6½ � þ 0:1; 0:5½ �k
^

þ 0:2; 0:3½ � l
^

0:4; 0:5½ � þ 0:1; 0:4½ �k
^

þ 0:2; 0:4½ � l
^

0:6; 0:8½ � þ 0:1; 0:4½ �k
^

þ 0; 0:1½ � l
^

0:7; 0:9½ � þ 0; 0:3½ �k
^

þ 0; 0:1½ � l
^

0:7; 0:8½ � þ 0; 0:2½ �k
^

þ 0:1; 0:2½ � l
^

0:5; 0:6½ � þ 0:1; 0:3½ �k
^

þ 0:2; 0:3½ � l
^

0:4; 0:5½ � þ 0:1; 0:4½ �k
^

þ 0:2; 0:4½ � l
^

2

66664

3

77775

M2 ¼

0:7; 0:8½ � þ 0; 0:2½ �k
^

þ 0:1; 0:2½ � l
^

0:6; 0:7½ � þ 0; 0:3½ �k
^

þ 0:1; 0:3½ � l
^

0:6; 0:8½ � þ 0; 0:4½ �k
^

þ 0; 0:2½ � l
^

0:5; 0:7½ � þ 0:1; 0:4½ �k
^

þ 0:1; 0:2½ � l
^

0:8; 0:9½ � þ 0; 0:2½ �k
^

þ 0; 0:1½ � l
^

0:5; 0:6½ � þ 0:1; 0:3½ �k
^

þ 0:2; 0:3½ � l
^

0:5; 0:7½ � þ 0; 0:3½ �k
^

þ 0:2; 0:3½ � l
^

0:4; 0:5½ � þ 0:2; 0:5½ �k
^

þ 0:1; 0:3½ � l
^

0:6; 0:7½ � þ 0:1; 0:3½ �k
^

þ 0:1; 0:2½ � l
^

0:6; 0:7½ � þ 0:1; 0:3½ �k
^

þ 0:1; 0:2½ � l
^

0:7; 0:8½ � þ 0; 0:2½ �k
^

þ 0:1; 0:2½ � l
^

0:5; 0:7½ � þ 0; 0:4½ �k
^

þ 0:1; 0:3½ � l
^

2

66664

3

77775

M3 ¼

0:6; 0:7½ � þ 0; 0:3½ �k
^

þ 0:1; 0:3½ � l
^

0:4; 0:7½ � þ 0:1; 0:5½ �k
^

þ 0:1; 0:2½ � l
^

0:6; 0:7½ � þ 0; 0:3½ �k
^

þ ½0:1; 0:3� l
^

0:4; 0:6½ � þ 0:2; 0:5½ �k
^

þ 0:1; 0:2½ � l
^
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^

þ 0:3; 0:4½ � l
^
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^
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^
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^
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^

2
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3
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C ¼

0:71; 0:81½ � þ 0; 0:22½ �k
^

þ 0:07; 0:19½ � l
^

0:59; 0:73½ � þ 0:02; 0:31½ �k
^

þ 0:1; 0:25½ � l
^

0:57; 0:75½ � þ 0; 0:38½ �k
^

þ 0:05; 0:25½ � l
^

0:51; 0:68½ � þ 0:09 ; 0:36½ �k
^

þ 0:13; 0:23½ � l
^

0:63; 0:76½ � þ 0:02; 0:25½ �k
^

þ 0:12; 0:22½ � l
^

0:44; 0:62½ � þ 0:08; 0:36½ �k
^

þ 0:2; 0:3½ � l
^

0:41; 0:58½ � þ 0:13; 0:43½ �k
^

þ 0:16; 0:29½ � l
^

0:44; 0:61½ � þ 0:19; 0:51½ �k
^

þ 0:05; 0:2½ � l
^

0:61; 0:76½ � þ 0:07; 0:32½ �k
^

þ 0:07; 0:17½ � l
^

0:65; 0:75½ � þ 0:07; 0:27½ �k
^

þ 0:08; 0:18½ � l
^

0:66; 0:76½ � þ 0:03; 0:23½ �k
^

þ 0:11; 0:21½ � l
^

0:51; 0:66½ � þ 0:03; 0:36½ �k
^

þ 0:13; 0:31½ � l
^

2

6666664

3

7777775
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conducted a comparison analysis based on the same illus-

trative example.

The comparison analysis includes two cases. One

incorporates the methods outlined in Li et al. [37] and Li

et al. [38], which are compared to the proposed method

using intuitionistic fuzzy information. In the other case, the

method introduced in Gao and Liu [36] is compared with

the proposed approach using interval-valued intuitionistic

fuzzy information.

Case 1: The proposed method is compared with other

methods using intuitionistic fuzzy information.

In order to apply the methods in Li et al. [37] and Li

et al. [38], all interval-valued intuitionistic fuzzy evaluation

values are translated into intuitionistic fuzzy evaluation

values using the mean values of membership, non-mem-

bership and hesitation.

In the method developed by Li et al. [37], the intu-

itionistic fuzzy distance is defined, and the prospect deci-

sion matrix is obtained based on prospect theory and

intuitionistic fuzzy distance. Then, the comprehensive

prospect values which are in the form of intuitionistic fuzzy

numbers are calculated and the alternatives are ranked

using the score function. According the Li et al. [37], the

score function values are S1 = -0.3394, S2 = -0.6060,

S3 = -0.3668 and S4 = -0.4069.

The method introduced in Li et al. [38] consists of two

main steps. First the intuitionistic fuzzy information is

transformed into crisp values through a new score function.

Then, based on prospect theory, the prospect matrix is

obtained, and the alternatives are ranked by comprehensive

prospect values. According to Li et al. [38], the compre-

hensive prospect values are W1 = 0.7843, W2 = 0.3610,

W3 = 0.9917, W4 = 0.5533.

Case 2: The proposed method is compare with the

method using interval-valued intuitionistic fuzzy

information.

The method developed in Gao and Liu [36] consists of

two main steps. First, the IVIFNs are transformed into real

numbers through the proposed P-score function, and the

corresponding P-score function matrix is constructed.

Then, the positive and negative prospect values are com-

puted, and the integrated prospect values are derived. And

the alternatives can be ranked according to the integrated

prospect values.

Table 4 summarizes the ranking results according to

different methods, based on the criterion weights obtained

using the proposed programming model.

As Table 4 shows, different methods yield different

ranking results, but all of the methods except that found in

in Li et al. [37] identify A3 as the optimal alternative. This

inconsistency likely occurs because Li et al. [37] uses the

intuitionistic fuzzy distances between the evaluation values

and reference point to construct the prospect matrix. The

validity and efficiency of the reference point [0.5, 0.5] in

Li et al. [37] requires further study and the score function

used to rank alternatives in Li et al. [37] needs to be

improved.

Although the ranking results obtained through the

methods developed by Gao and Liu [36] and Li et al.

[38] are consistent with the results of the proposed

method, the decision-making processes are different. Both

the method introduced by Gao and Liu [36] and that

introduced by Li et al. [38] are based on prospect theory,

with one of the methods applying to interval-valued

intuitionistic fuzzy environment and the other dealing

with intuitionistic fuzzy information. These two methods

use different score functions to transform interval-valued

intuitionistic information or intuitionistic fuzzy informa-

tion into real numbers during the first step of the deci-

sion-making process, which may cause a loss of fuzzy

information. Besides, all of the methods except the pro-

posed method are based on prospect theory, it is difficult

to determine the reference point and the parameters,

because they depend on the psychological behavior of the

decision-makers.

According to the above comparison analysis, the pro-

posed method for addressing intuitionistic stochastic

MCDM problems has the following advantages.

1. The proposed approach represents interval-valued

intuitionistic fuzzy information using connection

degrees, which can simultaneously characterize the

membership degree, non-membership degree and

hesitation degree with a simple mathematic depiction

and we can directly compute with connection degrees

without transformation. Compared with methods that

involve transforming IVIFNs into real numbers, the

proposed approach’s used of connection degrees can

effectively avoids the loss of information.

2. Considering the difficulty to determine the reference

points and parameters, the proposed method is more

applicable to hand MCDM problem in which the

decision-makers do not need to consider reference

point and parameters. The calculations of the proposed

approach are relatively simple. Besides, the proposed

method can also be extended to address stochastic

MCDM problems under IFS environments.

Table 4 Ranking results using different methods

Methods Ranking results

Li et al.’s [37] method A2 � A4 � A3 � A1

Li et al. ’s [38] method A2 � A4 � A1 � A3

Gao and Liu’s [36] method A2 � A4 � A1 � A3

The proposed approach A2 � A4 � A1 � A3
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3. The results obtained by the proposed similarity mea-

sure might be more accurate for it takes the hesitation

degree into account. And the new method to determine

criterion weights on the basis of TOPSIS and the

deviation maximizing method can effectively deal with

the MCDM problem with incomplete criterion weights

information.

6 Conclusion

In this paper, we present an approach for MCDM prob-

lems based on set pair analysis and IVIFSs, in which the

criteria values are interval-valued intuitionistic stochastic

variables. In the proposed method, an optimization weight

model based on TOPSIS and the maximizing deviation

methods is constructed to determine the criterion weights.

Evaluation values are expressed in corresponding con-

nection degrees based on the compatibility between set

pair analysis and IFS. Combining set pair analysis and

IVIFSs, alternatives are ranked according to the values of

set pair potential. The feasibility and applicability of the

proposed method was illustrated by an example, and a

comparison analysis verified the validity of the proposed

method and demonstrated its advantages over existing

methods.

The proposed method fully considers the advantages of

set pair analysis by using the connection degree to repre-

sent interval-valued fuzzy information and ranking the

alternatives according to set pair potential. The proposed

method effectively overcomes the shortcomings of the

existing methods as was discussed earlier. Nevertheless,

interval-valued intuitionistic fuzzy information cannot be

directly given by decision-makers. Normally, the evalua-

tion values of multiple decision-makers are collected and

transformed into interval-valued intuitionistic fuzzy infor-

mation and this preparation needs to be completed by the

experts who have certain understanding of IFS or IVIFS.

Besides, the method of determining the criterion weights in

the proposed method is applicable to handle the situation

that the criteria information is incomplete and, on the basis

of this method, it is worth studying how to calculate the

criterion weights in the case that nobody is capable of

giving them. In future study, we will also study the inter-

val-valued intuitionistic stochastic MCDM problems, and

extend them to other fields, such as selection of green

suppliers or evaluation of environmental comprehensive

service providers, etc.
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