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Abstract The support vector ordinal regression (SVOR)

method is derived from support vector machine and developed

to tackle the ordinal regression problems. However, it ignores

the distribution characteristics of the data. In this paper, we

propose a novel method to handle the ordinal regression

problems.Thismethod is referred to asminimumclass variance

support vector ordinal regression (MCVSVOR). In contrast

with SVOR, MCVSVOR explicitly takes into account the

distribution of the categories and achieves better generalization

performance. Moreover, the problem of MCVSVOR can be

transformed into one of SVOR. Thus, the existing software of

SVOR can be used to solve the problem ofMCVSVOR. In the

paper, we first discuss the linear case of MCVSVOR and then

develop the nonlinear MCVSVOR through using the kernel-

ization trick. The comprehensive experiment results show that

the proposed method is effective and can achieve better gen-

eralization performance in contrast with SVOR.

Keywords Machine learning � Ordinal regression �
Support vector machine � Support vector ordinal regression

1 Introduction

Over the past decades, a lot of attention has been drawn to

machine learning of which many methods have been suc-

cessfully applied in substantial practical applications

including protein–protein interactions prediction [1–3],

image retrieval [4], and text data analysis [5]. Ordinal

regression is a type of supervised machine learning prob-

lems and can be applied in a wide range of fields such as

medical image analysis [6], image ranking [7], facial age

estimation [8], and so on. It involves how to find an order

among the different categories according to the learned

rules which are used to predict order of ordinal scale

[9–13]. Therefore, the key issue in ordinal regression is

how to learn the prediction rules from the training data.

Ordinal regression differs from traditional regression and

traditional classification [14–19]. The reason is that the

labels of different categories in ordinal regression are dis-

crete and simultaneously have an ordinal relationship.

Recently, many efforts have been directed toward

tackling the ordinal regression problems [20–23]. In [20],

Herbrich et al., based on a threshold model in which the

threshold values of each ordinal category are estimated,

explored the use of support vector (SV) learning in ordinal

regression. In [21], the authors employed the classification

and regression trees to tackle the ordinal regression prob-

lems. This method actually first maps the ordinal variables

into numeric values and then employs the traditional

classification and regression methods to solve the prob-

lems. However, it is difficult to devise an appropriate

mapping function in that ones can not know the true metric

distances between the ordinal scales in most cases. Thus,

the application of this method may be limited. In [12],

based on Gaussian processes, the authors presented a

probabilistic kernel method to deal with ordinal regression.

In [22], Sun et al. extended the kernel discriminant analysis

(kDa) [16] algorithm to handle the ordinal regression

problems. In [23], through making use of the abundance of

unlabeled patterns, the authors proposed a transductive

learning paradigm for the ordinal regression problems.
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The basic idea of support vector machine (SVM) [17],

which is one of the best-known kernel learning methods

[24], is also developed to deal with the ordinal regression

problems. By extending the formulation of SVM to ordinal

regression, Shashua and Levin [25] introduced two meth-

ods for ordinal regression. These methods embody the

large margin principle, which is the intuitive idea of SVM.

In [13], Chu and Keerthi improved the SVM formulation

for ordinal regression by including the ordinal inequalities

on the thresholds. This method is referred to as support

vector ordinal regression (SVOR). It can be solved by a

sequential minimal optimization (SMO)-type algorithm

and achieves the encouraging experimental results. In [26],

Shevade and Chu further employed minimum enclosing

sphere (MEB) to handle ordinal regression. In [27], the

authors proposed a called block-quantized support vector

ordinal regression (BQSVOR) to tackle the large-scale

ordinal regression problems. All of these methods are

derived from the traditional SVM and share a common

property: borrowing the idea from SVM and generalizing

the SVM formulation to solve the ordinal regression

problems.

However, SVM is essentially a local classifier. This is

because only the so-called support vectors determine the

decision hyperplane of SVM, whereas all other data points

have no impact on it. Therefore, the traditional SVM does

not take into consideration the distribution characteristics

of the data and may receive a non-robust solution. In order

to overcome the limitation of SVM, in [18] the authors

proposed a modified class of SVM. This method is called

minimum class variance support vector machine

(MCVSVM) and motivated by Fisher discriminant analysis

[16]. Similarly to SVM, MCVSVM embodies the large

margin principle [19]. However, different from SVM,

MCVSVM can give a more robust solution in that it further

considers the distribution of the categories in its model.

In this paper, we propose a novel method to handle the

ordinal regression problems. This method is referred to as

minimum class variance ordinal regression (MCVSVOR).

The key difference between MCVSVOR and the traditional

SVOR is that the former generalizes MCVSVM to deal

with the ordinal regression problems and explicitly incor-

porates the distribution information of the categories,

whereas the latter extends SVM to tackle ordinal regression

and ignores the distribution characteristics of the data.

Simultaneously, as SVOR, MCVSVOR also embodies the

large margin principle in that it stems from MCVSVM.

Following the basic idea of SVOR, we define the primal

optimization model of MCVSVOR and develop the linear

and nonlinear cases of MCVSVOR. We further analyze the

relationship between MCVSVOR and SVOR. The analysis

shows that MCVSVOR can be solved using the existing

SVOR software, which makes the solution easy to be

computed. The comprehensive experimental results sug-

gest that the proposed method is effective and can achieve

superior generalization performance in contrast with

SVOR.

The rest of this paper is organized as follows. The

related work is reviewed in Sect. 2. In Sect. 3, the linear

case of MCVSVOR is first presented, and the relationship

between MCVSVOR and SVOR is then analyzed. In

Sect. 4, the nonlinear case of MCVSVOR is discussed. The

experimental results are reported in Sect. 5. Finally, con-

clusions are drawn in Sect. 6.

2 Related work

In this paper, we will address an ordinal regression problem

with r ranked categories. The training dataset contains N

sample points and is represented by

fðx j
i ; y

jÞjx j
i 2 Rd; y j 2 Y ; i ¼ 1; . . .;Ng, where x j

i refers to

the ith sample in the j-th category and y j is its corre-

sponding rank. Here, d is the dimension of the sample

space and Y ¼ f1; . . .; rg are consecutive integers and used

to keep the known rank information of the training

samples.

Besides, let N j be the number of the samples in the j-th

category and X¼ ½x11; . . .; x1N1 ; x
2
1; . . .; x

2
N2 ; . . .; xr1; . . .;

xrNr �¼ ½x1; . . .; xN � represents the sample matrix. Note, here

N ¼
Pr

j¼1 N
j holds.

2.1 Support vector ordinal regression

Generally, the key step of solving the ordinal regression

problems is to learn a function f : R ! f1; . . .; rg such that

f ðx j
i Þ ¼ y j from the training samples [25, 26]. Therefore,

SVOR directs at constructing r � 1 hyperplanes wTx�
bj ¼ 0 ðj ¼ 1; . . .; rÞ which can separate the samples of

different categories. In the linear case, SVOR defines its

primal optimization problem as [13]

min
w;b;n;n�

1

2
wTwþ C

Xr

j¼1

XN j

i¼1

ðn j
i þ n�ji Þ

s:t: wTx j
i � bj � � 1þ n j

i ; n
j
i � 0; 8i; j

wTx j
i � bj�1 � 1� n�ji ; n

�j
i � 0; 8i; j

bj�1 � bj; 8i; j

ð1Þ

where j ¼ 1. . .; r and i ¼ 1; . . .;N j. Note, SVOR intro-

duces two auxiliary variables b0 and br which are respec-

tively set b0 ¼ �1 and br ¼ þ1. This type of SVOR is

with the explicit constraints on the thresholds. In [13], the

authors simultaneously presented another type of SVOR

with the implicit constraints on the thresholds. More details
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can be found in [13]. Note, SVOR is derived from SVM in

which the large margin principle [17] is implements. Thus,

the principle is also embodied in SVOR.

2.2 Kernel discriminant learning for ordinal

regression

For the given training dataset, the within-class scatter

matrix SW is defined as [16]

SW ¼
Xr

j¼1

X

x2X j

ðx� u jÞðx� u jÞT ð2Þ

where X j ¼ fx j
i jy j ¼ j; i ¼ 1; . . .;N jg is the j-th category

samples, u j ¼ 1
N j

P
x2X j x is the mean sample vector of X j

and T denotes vector transpose. Here, N j is the number of

the j-th category samples X j. KDLOR defines the follow-

ing optimization [22]

min
w

wTSWw� Cq

s:t: wTðujþ1 � u jÞ� q; j ¼ 1; 2; . . .; r � 1
ð3Þ

Obviously, KDLOR takes into account the distribution of

the categories by introducing the within-class scatter matrix

SW in its objective function. However, KDLOR does not

directly embody the large margin principle as SVM.

3 Minimum class variance support vector ordinal
regression

In this section, we will first present the formulation of the

linear SVOR and discuss how to solve it. Then, we will

analyze the relationship between MCVSVOR and SVOR.

3.1 The linear case of the proposed method

By following the basic idea of SVOR and using the within-

class scatter matrix SW defined as (2), in the linear case, the

primal optimization problem of the proposed method

MCVSVOR is defined as follows

min
w;b;n;n�

1

2
wTSWwþ C

Xr

j¼1

XN j

i¼1

ðn j
i þ n�ji Þ

s:t: wTx j
i � bj � � 1þ n j

i ; n
j
i � 0; 8i; j

wTx j
i � bj�1 � 1� n�ji ; n

�j
i � 0; 8i; j

bj�1 � bj; 8i; j

ð4Þ

where j ¼ 1. . .; r and i ¼ 1; . . .;N j. As SVOR, MCVSVOR

actually tries to find r � 1 binary classifiers with a shared

mapping direction w and the additional constraint thresh-

olds. Here, as in SVOR with the explicit threshold con-

straints, we explicitly include the natural ordinal

inequalities on the thresholds constraints. However, in

contrast with SOVR, MCVSVOR introduces the matrix SW
in the objective function of its primal optimization prob-

lem. In this way, MCVSVOR takes fully into account the

distribution of the categories. Besides, MCVSVOR

implements the large margin principle because it modifies

MCVSVM, which embodies the principle, to handle the

ordinal regression tasks.

Figure 1 illustrates the difference between SOVR and

MCVSVOR. Here, we consider a synthetic ordinal

regression task with 3 ranked categories, each category of

which consists of 100 samples. Figure 1a describes the

decision hyperplanes of SOVR on the artificial dataset. As

can be seen in Fig. 1a, the decision hyperplanes of SOVR

actually do not reflect the characteristic of the data

although it can separate or rank each category. Figure 1b

shows the decision hyperplanes of MCVSVOR. Obviously,

they reflect the distribution characteristic of the data and

shows more reasonable in contrast with ones of SOVR.

This example clearly demonstrates the limitation of SOVR

and the advantage of MCVSVOR in contrast with SVOR.

It is easy to find that the primal optimization problem (4)

of MCVSVOR is a quadratic programming (QP) problem

and similar to one (1) of SVOR. This problem can be

efficiently solved by transforming it into its dual opti-

mization problem [28]. First, we can formulate the primal

Lagrangian of (4) as follows

L¼ 1

2
wTSWwþC

Xr

j¼1

XN j

i¼1

ðn j
i þ n�ji Þ�

Xr

j¼1

XN j

i¼1

a j
i ð�1þ n j

i �wTx j
i þ bjÞ

�
Xr

j¼1

XN j

i¼1

a�ji ð�1þ n�ji þwTxjþ1
i � bj�1Þ�

Xr

j¼1

XN j

i¼1

b j
in

j
i �
Xr

j¼1

XN j

i¼1

b�ji n
�j
i

�
Xr

j¼1

c jðbj � bj�1Þ ð5Þ

where the vectors a¼ ½a11; . . .;arNr �T , a� ¼ ½a�11 ; . . .;a�rNr �T ,
b¼ ½b11; . . .;b

r
Nr �T , b� ¼ ½b�11 ; . . .;b�rNr �T and c¼ ½c1; . . .;cr�

T

are the Lagrangian multipliers for the constraints of (4). By

differentiating with respect to w, n, n� and b, we have the

following formulas

oL

ow
¼ SWw�

Xr

j¼1

XN j

i¼1

ða�ji � a j
i Þx

j
i ¼ 0

oL

on j
i

¼ C � a j
i � b j

i ¼ 0; 8i; j

oL

on�ji
¼ C � a�ji � b�ji ¼ 0; 8i; j

oL

obj
¼ �

XN j

i¼1

ða j
i þ c jÞ þ

XNjþ1

i¼1

ða�jþ1
i þ cjþ1Þ ¼ 0; 8j

ð6Þ

Note, we implement the Karush–Kuhn–Tucker (KKT)

conditions [28] of (4) in the above formulas. If SW is
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nonsingular, according to (6), the mapping direction w can

be formulated as

w ¼ S�1
W

Xr

j¼1

XN j

i¼1

ða�ji � a j
i Þx

j
i ð7Þ

In the practical applications, as in MCVSVM, the matrix

singularity problem may be encountered in MCVSVOR in

that the inverse matrix of SW is needed during the process

of solving the problem (4). Once this singularity problem

occurs, as in [22], ones can add a diagonal matrix to SW ,

i.e., SW ¼ SW þ qI. Here q[ 0 and I is an identity matrix.

This technique that deals with the matrix singularity

problem is referred to as regularization method [29]. It is

difficult to directly obtain the optimum value of q. As

determining other parameters in SVOR and MCVSVOR,

we can estimate a suitable value of q through using the

cross validation technique.

According to the KKT conditions of (4) and the formula

(7), the Wolf dual problem of the primal problem (4) of

MCVSVOR can be formulated as

min
a;a�

X

j;i

X

j
0
;i
0
ða�ji � a j

i Þða
�j0

i
0 � aj

0

i
0 Þðx j

i Þ
TS�1

W xj
0

i
0 �
X

j;i

ða�ji þ a j
i Þ

s:t: 0�a j
i �C; 8i; j

0�a�jþ1
i �C; 8i; j

XN j

i¼1

a j
i þ c j ¼

XNjþ1

i¼1

a�jþ1
i þ cjþ1; c j�0;8j ð8Þ

where j runs over 1; . . .; r� 1. This problem is similar to the

dual optimization problem of SVOR and can be solved by

using the same technique as in SVOR. Suppose that

fa;a�;cg solves the above optimization problem (8), then

the mapping direction w is obtained with (7) and the dis-

criminant function value of a new input vector x in

MCVSVOR is given by

f ðxÞ ¼ wTx ¼ S�1
W

Xr

j¼1

XN j

i¼1

ða�ji � a j
i Þx

j
i

 !T

x

¼
Xr

j¼1

XN j

i¼1

ða�ji � a j
i Þðx

j
i Þ

TS�1
W x ð9Þ

Further, the predictive ordinal rank of the input vector x

can be determined by the following decision function

min arg
i

fi : f ðxÞ\big ð10Þ

Here, as in SVOR, bj’s are the thresholds and can be

determined by the optimality conditions for the dual

problem, which is discussed in detail in [13]. For the sake

of completeness, here we offer the computation method of

bj’s, and more details can be found in [13]. First, we set

I
j
0a ¼ fi 2 f1; . . .;N jg : 0\a j

i\Cg
I
j
0b ¼ fi 2 f1; . . .;Njþ1g : 0\a�jþ1

i \Cg
I
j
1 ¼ fi 2 f1; . . .;Njþ1g : a�jþ1

i ¼ 0g
I
j
2 ¼ fi 2 f1; . . .;N jg : a j

i ¼ 0g
I
j
3 ¼ fi 2 f1; . . .;N jg : a j

i ¼ Cg
I
j
4 ¼ fi 2 f1; . . .;Njþ1g : a�jþ1

i ¼ Cg
I
j
0 ¼ I

j
0a [ I

j
0b; I

j
up ¼ I

j
0 [ I

j
1 [ I

j
3; I

j
low ¼ I

j
0 [ I

j
2 [ I

j
4

ð11Þ

and

F j
upðljÞ ¼

f ðx j
i Þ þ 1 if i 2 I

j
0a [ I

j
3

f ðxjþ1
i Þ � 1 if i 2 I

j
0b [ I

j
1

8
<

:

F
j
lowðljÞ ¼

f ðx j
i Þ þ 1 if i 2 I

j
0a [ I

j
2

f ðxjþ1
i Þ � 1 if i 2 I

j
0b [ I

j
4

8
<

:

b
j
low¼maxfFi

lowðljÞ : i 2 I
j
lowg

b j
up¼minfFi

upðljÞ : i 2 I jupg

ð12Þ
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(a) The decision hyperplanes of SOVR (b) The decision hyperplanes of MCVSVOR

Fig. 1 Illustration of the decision hyperplanes generated by SOVR and MCVSVOR on a synthetic dataset
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Therefore, any value from the interval bj 2 ½Bj
low;B

j
up�

can be viewed as the feasible value of the threshold bj.

Under the circumstances, the final value of bj might

encounter the non-uniqueness problem. In order to handle

this problem, ones can determine the final value of bj by

simply taking

bj ¼
1

2
ðBj

low þ Bj
upÞ ð13Þ

where

B
j
low ¼

~Bjþ1
low if cjþ1 [ 0

~Bj
low otherwise

(

and B j
up ¼

~Bj�1
up if c j [ 0

~Bj
up otherwise

(

ð14Þ

Here ~Bj
low¼maxfbklow : k ¼ 1; . . .; jg and ~Bj

up¼minfbkup :
k ¼ j; . . .; r � 1g.

3.2 Connection to SVOR

By observing the optimization problems of MCVSVOR

and SVOR, it is easy to find that they actually have a close

relationship. Suppose the within-class scatter matrix SW is

nonsingular and let P ¼ S
�1

2

W , we have PT ¼ ðS�
1
2

W ÞT ¼
S
�1

2

W ¼ P since SW is invertible and symmetric. Therefore,

the optimization problem (4) of MCVSVOR can be

transformed into

min
v;b;n;n�

1

2
vTvþ C

Xr

j¼1

XN j

i¼1

ðn j
i þ n�ji Þ

s:t: vTy j
i � bj � � 1þ n j

i ; n
j
i � 0; 8i; j

vTy j
i � bj�1 � 1� n�ji ; n

�j
i � 0; 8i; j

bj�1 � bj; 8i; j

ð15Þ

where y j
i ¼ PTx j

i and v ¼ P�1w. The above optimization

problem is actually the same as the primal optimization

problem of SVOR. This reveals the close relationship

between SVOR and MCVSVOR. Further, it can be con-

cluded that the MCVSVOR problem can be solved by

using the existing SVOR software. Thus, the solution of

MCVSVOR is easy to be computed.

4 The nonlinear case

In the nonlinear case, ones generally use the kernelization

trick [24] to map the d-dimensional sample space into a

high-dimensional feature space. In this way, a linear

hyperplane in the feature space corresponds to a nonlinear

hyperplane in the original sample space. Without loss of

generality, the optimization problem of MCVSVOR in the

feature space is defined as

min
w;b;n;n�

1

2
wTS/Wwþ C

Xr

j¼1

XN j

i¼1

ðn j
i þ n�ji Þ

s:t: wTuðx j
i Þ � bj � � 1þ n j

i ; n
j
i � 0; 8i; j

wTuðx j
i Þ � bj�1 � 1� n�ji ; n

�j
i � 0; 8i; j

bj�1 � bj; 8i; j

ð16Þ

where uðx j
i Þ denotes the sample in the feature space and

SuW is the corresponding within-class scatter matrix.

Assume

Xu¼½uðx11Þ; . . .;uðx1N1Þ;uðx21Þ; . . .;uðx2N2Þ;uðxr1Þ; . . .;uðxrNrÞ�
¼ ½uðx1Þ; . . .;uðxNÞ� ð17Þ

according to [30], SuW can be further rewritten as

SuW ¼ XuLðXuÞT ð18Þ

where L ¼ I�W. Here I is a identity matrix and W is

defined as

Wij ¼
1
�
Nk; if xi and xj belong to the kth category

0; otherwise:

(

ð19Þ

On the other hand, according to the representation the-

orem for Reproducing Kernel Hilbert Spaces [28], of which

the vector w can be formulated as

w ¼
XN

i¼1

aiuðxiÞ ð20Þ

where ai 2 R.

Thus, according to the above discussion and by using

(18) and (20), the optimization problem (16) can be

reformulated as

min
a;b;n;n�

1

2
aTKLKaþ C

Xr

j¼1

XN j

i¼1

ðn j
i þ n�ji Þ

s:t: aTk j
i � bj � � 1þ n j

i ; n
j
i � 0; 8i; j

aTk j
i � bj�1 � 1� n�ji ; n

�j
i � 0; 8i; j

bj�1 � bj; 8i; j

ð21Þ

where K ¼ kðxi; xjÞ
� �

N�N
is the kernel matrix, the vectors

k j
i and a are defined as k j

i ¼ ½kðx j
i ; x1Þ; kðx

j
i ; x2Þ; . . .;

kðx j
i ; xNÞ�

T
and a ¼ ½a1; . . .; aN �T , respectively. Here

kðxi; xjÞ ¼ uTðxiÞuðxjÞ is a predefined kernel function. Let

M ¼ KLK, the above optimization problem (21) can be

further written as
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min
a;b;n;n�

1

2
aTMaþ C

Xr

j¼1

XN j

i¼1

ðn j
i þ n�ji Þ

s:t: aTk j
i � bj � � 1þ n j

i ; n
j
i � 0; 8i; j

aTk j
i � bj�1 � 1� n�ji ; n

�j
i � 0; 8i; j

bj�1 � bj; 8i; j

ð22Þ

This is the final formulation of the optimization problem

of the nonlinear MCVSVOR. It should be noted that the

above optimization problem (22) actually is a optimization

problem defined by linear MCVSVOR since M ¼ KLK is

the within-class scatter matrix of the dataset which consists

of kiði ¼ 1; . . .;NÞ. So, according to the previous discus-

sion about the linear MCVSVOR, it can be efficiently

solved. Here, it is worthwhile to note that our method uses

aTKLKa as the regularization term in the nonlinear case.

Actually, here aTKLKa is employed in that it is derived

form wTS/Ww in (16) by using (18) and (20). If ones used

aTKa in (21), then it is reduced to the optimization prob-

lem of the kernelized SVOR. Besides, the matrix M ¼
KLK may be singular. This singularity problem can be

tackled as the linear case in Sect. 3.1 since the problem

(22) essentially formulates a linear MCVSVOR in which

the training data is represented by kiði ¼ 1; . . .;NÞ and the

matrix M ¼ KLK is its within-class scatter matrix.

Suppose fa; b; n; n�g is the solution of the above opti-

mization problem, the discriminant function value of a new

input vector x is

f ðxÞ ¼ aTk ð23Þ

where k ¼ ½kðx1; xÞ; kðx2; xÞ; . . .; kðxN ; xÞ�T . Thus, the

predictive ordinal decision function is given by

min arg
i

fi : f ðxÞ\big ð24Þ

Here thresholds bj’s can be determined by the same

strategy in Sect. 3.1.

5 Experiments

In the experiments, we first demonstrate the effectiveness

of the proposed method on a synthetic dataset. Then, we

conduct the experiments on a synthetic dataset with noise

in which the data is non-separable. This experiments

intuitionisticly illustrates the difference between SOVR

and the proposed method MCVSVOR in the situation

where a noisy data is encountered. After that, we conduct

experiments on several benchmark datasets to evaluate its

performance by comparing it with KDLOR and SVOR-

EXC. Finally, we report the experimental results on several

real datasets. Note, for the sake of fairness, SVOR with

explicit threshold constraints (called SVOR-EXC) is con-

sidered since our method is with explicit threshold

constraints.

5.1 Synthetic dataset

In order to evaluate the effectiveness of the proposed

method, in this subsection we report the experimental result

on a synthetic dataset. As is shown in Fig. 2, the dataset

contains three ordinal categories, each ordinal category of

which has 100 samples.

In the experiment, we used the Gaussian kernel, i.e.

kðx; yÞ ¼ expð�cjjx� yjj2Þ. The experimental result is

showed in Fig. 2. It can be found that the samples of dif-

ferent category can be ordinally arranged by the hyper-

planes of the proposed method, i.e., the samples that have

the same rank are arranged in same bin by the proposed

method. The experimental result shows that the proposed

method MCVSVOR is effective to handle the ordinal

regression task.

5.2 Noisy dataset

In the above experiment, we validate the effectiveness of

the proposed method on a synthetic dataset where the data

is obviously separable. In order to further intuitionisticly

demonstrate its ability of dealing with the data with noise,

we create a synthetic dataset which contains noise and so

the categories are not completely separable. As is shown in

Fig. 3, the synthetic dataset also includes three ordinal

categories and each category consists of 100 samples.

In this experiment, we adopted the liner kernel function,

i.e. kðx; yÞ ¼ xTy. Figures 3a and b respectively show the

decision hyperplanes generated by SOVR and MCVSVOR.

It is easy to be observed that the decision hyperplanes of

MCVSVOR reflect the characteristic of the data and show
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Fig. 2 Illustration of the decision hyperplanes generated by

MCVSVOR
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more reasonable in contrast with SOVR. This experimental

results further verify the fact that incorporating the distri-

bution information of the data in SOVR can improve its

performance. The proposed method embodies this principle

by using the within-class scatter matrix in SOVR.

5.3 Benchmark datasets

In order to assess the performance of MCVSVOR, we

conducted the experiments on several benchmark datasets.

These datasets were frequently used to test the ordinal

regression methods, for example, in [13, 22]. In this section

we report the experimental results. Table 1 shows a sum-

mary of the characteristics of the selected datasets. For

each dataset, the target values were discretized into ten

ordinal quantities through using equal-frequency binning.

In the experiments, each dataset was randomly partitioned

into training/test splits as specified in Table 1. Each attri-

bute of the samples were scaled to 0 mean and 1 variance.

On evaluating the ordinal regression methods, there are

generally two metrics to be used to quantify the accuracy of

predicted values with respect to true targets [13, 22]. One

of which is mean-absolute-error (MAE) which measures

how far the predicted ordinal scales of the samples differ

from their true targets and is formulated as 1
N

PN
i¼1 jyi � ~yij,

where yi and ~yi are respectively the predicted ordinal scales

and the true targets, and j � j denotes the absolute operation.
The other is mean-zero–one-error (MZE). It measures the

classification error of the samples and is defined as
1
N

PN
i¼1 Iðyi 6¼ ~yiÞ. Here yi and ~yi are respectively the pre-

dicted rank of the respective method and the true rank, and

Ið�Þ is an indicator function that takes 1 if yi 6¼ ~y and

returns 0 otherwise.

In the experiments, we employed the Gaussian kernel,

which is formulated as kðx; yÞ ¼ expð�cjjx� yjj2Þ. We

employed fivefold cross validation to choose the appro-

priate values for the relevant parameters (i.e. the Gaussian
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(a) Illustration of the decision hyperplanes generated by SVOR
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(b) Illustration of the decision hyperplanes generated by MCVSVOR

Fig. 3 Illustration of the decision hyperplanes of SVOR and MCVSVOR on a synthetic data with noise

Table 1 Characteristics of the selected benchmark datasets

Datasets No. of

attributes

No. of training

samples

No. of test

samples

Pyrimidines 27 50 24

Machine CPU 6 150 59

Boston housing 13 300 206

Abalone 8 1000 3177

Bank 32 3000 5182

Computer 21 200 192

California 8 5000 15,640

Census 16 6000 16,784
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kernel parameter c and the regularization factor C, which

were chose from the sets {2-5, 2-4, 2-3, 2-2, 2-1, 20, 21,

22, 23, 24, 25} 9 {10-4, 10-3, 10-2, 10-1, 100,101, 102,

103, 104}) involved in the problem formulation of each

method. The final test error of each method was obtained

by using the selected parameters for it. The experiment on

each dataset was repeated 20 times independently.

The experimental results are reported in Table 2. In

comparison with KDLOR and SVOR-EXC, the proposed

method has the lowest MZE and MAE on the whole. These

indicate that it is competitive with the other two methods in

generalization ability. The reason is that in MCVSVOR not

only the distribution of the categories is explicitly consid-

ered but also the large margin principle is embodied.

Actually, KDLOR also takes the distribution characteristic

of the data into consideration, and so it performs better than

SVOR-EXC on the whole. However, it does not explicitly

embody the large margin principle but MCVSVOR does.

In order to further investigate the statistical significance,

we performed the paired two-tailed t-tests [31] according to

MZE of these methods. The smaller the p value of a t test,

the more significant the difference of the two average

values is. T test usually takes a p value of 0.05 as a typical

threshold which is considered statistically significant.

Table 3 reports the experimental results of the t-tests. For

example, the p value of the t test is 0.0207 (\0.05) when

comparing KDLOR and SVOR-EXC on the Pyrimidines

dataset. This means that KDLOR performs significantly

better than SVOR-EXC on this dataset at the 0.05 signifi-

cant level. From Table 3, although the proposed method

MCVSVOR has on the whole better MZE, compared with

KDLOR, its improvement is not significant. However,

MCVSVOR significantly outperforms SVOR-EXC on five

of eight datasets.

We further investigated the computational cost of sev-

eral methods. Table 4 reports the results. It can be observed

that KDLOR has the least time consumption on the whole.

The proposed method need more time consumption in

contrast with the other two methods. The reason is that the

inversion of SW is necessary when solving the solving the

optimization (8) of the proposed method. So, we need to

further research more efficient method to solve the opti-

mization problem of the proposed method in the future.

5.4 Real datasets

In order to further evaluate the performance of the pro-

posed method, we conducted the experiments on several

real datasets including USPS [32], UMIST [33], FG-NET

Table 2 The experimental results on the selected benchmark datasets

Datasets Mean-zero–one-error Mean-absolute-error

KDLOR SVOR-EXC MCVSVOR KDLOR SVOR-EXC MCVSVOR

Pyrimidines 0.739 ± 0.050 0.752 ± 0.063 0.713 – 0.052 1.100 ± 0.100 1.331 ± 0.193 1.003 – 0.089

MachineCPU 0.480 – 0.010 0.661 ± 0.056 0.491 ± 0.027 0.690 – 0.015 0.986 ± 0.127 0.694 ± 0.071

Boston 0.560 ± 0.020 0.569 ± 0.025 0.548 – 0.032 0.700 ± 0.035 0.773 ± 0.049 0.692 – 0.014

Abalone 0.740 ± 0.020 0.736 – 0.011 0.738 ± 0.031 1.400 ± 0.050 1.391 – 0.021 1.397 ± 0.005

Bank 0.745 ± 0.002 0.744 ± 0.005 0.739 – 0.016 1.450 ± 0.020 1.512 ± 0.017 1.445 – 0.014

Computer 0.472 ± 0.020 0.462 ± 0.005 0.458 – 0.025 0.601 ± 0.025 0.602 ± 0.009 0.597 – 0.031

California 0.643 ± 0.005 0.640 ± 0.003 0.639 – 0.001 0.907 ± 0.004 1.068 ± 0.005 0.898 – 0.003

Census 0.711 ± 0.020 0.699 ± 0.002 0.688 – 0.013 1.213 ± 0.003 1.270 ± 0.007 1.206 – 0.005

Bold values in each row denote the best performance

Table 3 P-value of t-test on the selected benchmark datasets

Datasets KDLOR/

SVOR-EXC

MCVSVOR/

SVOR-EXC

MCVSVOR/

KDLOR

Pyrimidines 0.0207 0.0076 0.0271

MachineCPU 0.0161 0.0391 0.0942

Boston 0.0611 0.0113 0.0246

Abalone 0.8913 0.1743 0.5314

Bank 0.0878 0.0426 0.2138

Computer 0.1632 0.6236 0.3492

California 0.3215 0.3218 0.0872

Census 0.0139 0.0573 0.0164

Bold values in each row mean that the p-values are smaller that 0.05

Table 4 The computational cost (in seconds) on the selected

benchmark datasets

Datasets SVOR-EXC KDLOR MCVSVOR

Pyrimidines 0.70 0.71 0.85

MachineCPU 0.92 1.02 1.26

Boston 2.09 2.25 2.41

Abalone 18.93 17.19 19.86

Bank 158.26 149.47 179.59

Computer 331.37 300.19 450.93

California 697.82 567.64 728.36

Census 5357.38 4939.41 6891.52
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[8] and Mixed-Gambles [34]. The USPS dataset comprises

11,000 grayscale handwritten digit images and each image

has a resolution with 16 9 16. The dataset is divided into

ten ranked categories (from 0 to 9) and each category

consists of 1100 images. In this experiment, our aim is to

rank the data. The UMIST dataset is a multi-view face

dataset. It contains 564 images of 20 individuals and the

images of each individual change from profile to frontal

views. We select six consecutive ordinal interval angles for

ordinal regression. The FG-NET dataset is widely used for

evaluating the age estimation methods. It has 1002 face

images of 82 individuals. In this dataset, the age varies

from 0 to 69 years. Note, the age distributions are imbal-

anced in the dataset. So, we divided the ages into five

ranges: 0–9, 10–19, 20–29, 30–49, and 50?. The age label

is ordinally denoted by 1,…, 5, respectively. Here we use

the AAM algorithm [35] to extract the used features. The

Mixed-Gambles task is a functional MRI dataset. In this

dataset, there are 16 different rank levels. Similar to [7, 36],

we also only consider gain levels and adopt the GLM

regression coefficients as the used features.

For each dataset, we randomly selected 40 % samples from

each category for training and the rest for testing. The relevant

parameters were determined by the strategy used in Sect. 5.2.

Finally, we report the averaged results over 30 runs.

Table 5 shows the ranking results of several methods on

the datasets. It can be found that KDLOR and SVOR-EXC

achieve comparable performance on the whole. However,

the proposed method performs better in comparison with

KDLOR and SVOR-EXC on three of the four datasets. The

reason is, in our opinion, that MCVSVOR embodies the

large margin principle as SVOR-EXC and simultaneously

incorporates the distribution information of the categories

as well as KDLOR.

6 Conclusions

In this paper, we proposed a novel ordinal regression

method. This method stems from MCVSVM and is called

MCVSVOR. In contrast with SVOR, it takes full use of the

distribution information of the categories. At the same

time, MCVSVOR embodies the large margin principle as

well as SVOR. Therefore, MCVSVOR achieves better

generalization performance compared with SVOR and

KDLOR. The comprehensive experimental results suggest

that MCVSVOR is effective to handle the ordinal regres-

sion problems and can obtain better generalization perfor-

mance over SVOR and KDLOR.

Additionally, similar to SVOR, the proposed method

can also be extended to the case where the threshold con-

straints are implicit. Moreover, according to the discussion

in Sect. 3.2, MCVSVOR can be efficiently solved using the

existing SVOR software and so its solution is easy to be

computed. However, compared with SVOR, the proposed

method is time-consuming because the inverse matrix of

the within-class scatter matrix SW is necessary in solving

the optimization problem (4). Therefore, how to accelerate

the proposed method is another important research topic.
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