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Abstract We propose a class of neutral type high-order
Hopfield neural networks with mixed time-varying delays
and leakage delays on time scales. Applying the expo-
nential dichotomy of linear dynamic equations on time
scales, Banach’s fixed point theorem and theory of calculus
on time scales, we obtain several sufficient conditions to
ensure the existence and global exponential stability of
pseudo almost periodic solutions of the proposed neural
networks. Finally, we illustrate the effectiveness of the
obtained results with an example. The example also shows
that the continuous-time neural network and its discrete-
time analogue have the same dynamical behaviors when
considering the pseudo almost periodicity.

Keywords Hopfield neural networks - Mixed time-varying
delays - Leakage delays - Pseudo almost periodic
solutions - Time scales

1 Introduction
Due to the fact that high-order Hopfield neural networks

(HHNNSs) have stronger approximation property, faster con-
vergence rate, greater storage capacity, and higher fault
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tolerance than lower-order ones, numerous works have inten-
sively analyzed HHNNs in recent years. In particular, there
have been many results on the problem of the existence and
stability of equilibrium points, periodic solutions and almost
periodic solutions of HHNNSs in the literatures. We refer the
reader to [1-9] and the references cited therein. In [1], the
problem about global exponential stability properties of high-
order Hopfield-type neural networks was studied applying
Lyapunov functions; in [2], the authors derived some sufficient
conditions for the global asymptotic stability of equilibrium
points of HHNNs with constant time delays in terms of linear
matrix inequality.

It is natural and important that, when describe and
model the dynamics for a complex neural reaction [10],
some information about the derivative of the past state
should be included. Many works investigated the dynami-
cal behaviors of neutral type neural networks. For example,
stabilities, periodic solutions, almost periodic solutions and
pseudo almost periodic solutions for different classes of
neutral type neural networks were studied in [11-16].

It is well known that time delays inevitably exist in
biological and artificial neural networks because of the
finite switching speed of neurons and amplifiers [17-19],
which can also affect the stability of the systems and may
lead to some complex dynamical behaviors such as oscil-
lation, chaos and instability. In [20] the mixed time-varying
delays were taken into account when modeling realistic
neural networks. Moreover, the leakage delay as a type of
time delay in the leakage term of the systems and as a
considerable factor affecting dynamics for the worse in the
systems, is being introduced to the problem studying sta-
bility for neural networks. Such time delay in the leakage
term is difficult to handle, however, it has great impact to
the dynamical behavior [21-27]. It is significant to discuss
neural networks with time delays in the leakage term.
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In history, both continuous-time and discrete-time neu-
ral networks are important in various applications. In Hil-
ger’s Ph.D. dissertation [28], the theory of time scales was
initiated, which can unify the continuous and discrete
systems. Since then, many works have studied the
dynamics of neural networks on time scales [15, 29-31]. In
[30], for a class of neutral type HHNNs with delays in
leakage terms on time scales, some sufficient conditions for
the existence and global exponential stability of almost
automorphic solutions were obtained; in [31], for com-
petitive neural networks with delays in the leakage terms
on time scales, the existence and global exponential sta-
bility of anti-periodic solutions were investigated.

The concept of pseudo almost periodicity, which is the
central subject of this paper, was introduced by Zhang [32].
Dads et al. in [33] pointed out that it would be of great interest
to study the dynamics of pseudo almost periodic systems
with time delays. Pseudo almost periodic solutions, which
are more general and complicated than periodic and almost
periodic solutions, in the context of differential equations
were studied in [16, 34-49]. The work of [48] studied the
existence and the global exponential stability of positive
pseudo almost periodic solutions. In [49], using the expo-
nential dichotomy theory and the contraction mapping fixed
point theorem, the existence and uniqueness of pseudo
almost periodic solutions of the shunting inhibitory cellular
neural networks with time-varying delays in the leakage
terms were discussed. However, few papers are available for
the existence of pseudo almost periodic solutions for discrete
time neural networks with or without delays.

Li and Wang [50] proposed recently the concept of
pseudo almost periodic functions on time scales. There are
few works on the existence and stability of pseudo almost
periodic solutions for neural networks of neutral type with
mixed time-varying delays and leakage delays on time
scales, which have importance in theories and applications,
and is a challenging problem.

In this paper, we propose a neutral type high-order
Hopfield neural network with mixed time-varying delays
and leakage delays on time scales:

X0 =~ — 50) + 5 a1 (s 1)
=1
3 b8 (5 — ()
=
1=0;;(1)

+ idij(t) /t hj(xjv(s))Vs
J=1

S Tk st — a0kl — L)
=1 =1

+L(n), teT, (1)
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where T is an almost periodic time scale, i = 1,2,...,n,
n corresponding to the number of units in a neural net-
work; x;(7) is the activation of the ith neuron at time 7
¢i(t) > 0 represents the rate at which the ith unit resets
its potential to the resting state in isolation when dis-
connected from the network and external inputs at time
t; a;(t), b;(t) and dj(r) are the delayed strengths of
connectivity, neutral delayed strengths of connectivity
between cell i and j at time ¢, respectively; Tj; () denotes
the second-order connection weight of the neural net-
work; f;, gj, hj and k; are called the activation functions
in the system; [;(¢) is an external input to the ith unit at
time ¢, O0; denotes the Ileakage delay satisfying
t—0;(r) € T; 1y, gy, ;i and (; are transmission delays
satisfying t —1;(1) € T , t —oy(t) € T, t = E(1) € T,
t— () €T with re T,

Let [a,b]; = {t]t € [a,b] N T}. We also need the fol-
lowing notations:

¢ =suplai(n)], ¢ =inflei(0)], of = sup |oi(1)],
te

teT teT
t; = sup |t;(1),
teT
oy = sup lay(1)], & =sup|Eu(t)l, (= sup[Cu(o)l,
reT teT teT

a;; = sup|a;(1)],
teT
+
i

by = sup |b;(1)], d;
€T

= sup|d;(1)], Ty = sup |Tyu(1)],
teT teT
iLj,l=1,2,...,n.
The initial condition of the system (1) is of the form
xi(s) = @i(s), 5 (s) = @) (s), s € [-0,0], (2)

where 0= max{d,1,0,&,(}, d=max;<;<,{0]}, 1=
max) <ij<.{75}, 0=maxi<;j<.{o;}, &=maxi<ji<n
{éijl}’ C = maxj S,»NS,,{C;I}, l',j,l = 1,2, N (X (/)k() is a
real-valued bounded V-differentiable function defined on
[_07 O]T'

We organize the paper as follows. In Sect. 2, we intro-
duce some definitions, as preparations for later sections.
We also extend the almost periodic theory on time scales
with the delta derivative to that with the nabla derivative.
We present some sufficient conditions for the existence of
pseudo almost periodic solutions of (1) in Sect. 3, applying
some Banach’s fixed point theorem and the theory of cal-
culus on time scales. In Sect. 4, we prove that the pseudo
almost periodic solution obtained in the previous section is
globally exponentially stable. In Sect. 5, we demonstrate
the feasibility of our results by an example. We make a
conclusion in Sect. 6.

Remark 1.1 This is the first time to study the pseudo
almost periodic solutions of system (1). Since it is a V-
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dynamic system on time scales, the results obtained in
[15, 29, 30, 50, 53, 54] concerning the A-dynamic systems
cannot be directly applied to (1). Besides, since it studies
almost periodic problem, although paper [56] deals with V-
dynamic systems on time scales, its results also cannot be
directly applied to (1).

2 Preliminaries

In this section, we shall first recall some fundamental
definitions and lemmas. Also, we extend the pseudo almost
periodic theory on time scales with the delta derivative to
that with the nabla derivative.

A time scale T is an arbitrary nonempty closed subset of
the real number set R with the topology and ordering
inherited from R. The forward jump operator ¢ : T — T is
defined by o(t) = inf {s eT,s> t} for all + € T, while
the backward jump operator p: T — T is defined by
p(t) =sup {s € T,s<r} forall r € T.

A point t € T is called left-dense if > inf T and
p(1) =t, left-scattered if p(¢)<t, right-dense if < sup T
and o(t) = t, and right-scattered if a(¢) > ¢. If T has a left-
scattered maximum m, then T* =T\ {m}; otherwise
TK=T. If T has a right-scattered minimum m, then
Ty =T\ {m}; otherwise Ty = T. Finally, the backwards
graininess function v:T; — [0,00) is defined by
v(t) =1t — p(t).

A function f: T — R is ld-continuous provided it is
continuous at left-dense point in T and its right-side limits
exist at right-dense points in T.

Definition 2.1 [51, 52] Let f : T — R be a function and
t € Ty. Then we define £V (¢) to be the number (provided its
exists) with the property that given any & > 0O, there is a
neighborhood U of ¢ (i.e, U = (t — 6,t + ) N T for some
0 > 0) such that

F(p(0) = f(s) = Y (0)(p(r) = 5)| <elp(r) — 5]
for all s € U, we call £V () the nabla derivative of f at t.

Let f: T — R be ld-continuous. If FV(¢) = f(t), then
we define the nabla integral by f:f(t)Vt = F(b) — F(a).

A function p: T — R is called v-regressive if 1 —
v(t)p(r) # 0 for all r € Ty. The set of all v-regressive and
left-dense continuous functions p : T — R will be denoted
by R, =R,(T)=R,(T,R). We define the set R, =
RIT,R) ={peR,:1—v(t)p(t) >0, Vi € T}.

If p € R,, then we define the nabla exponential function
by

é,(t,5) = exp (/I év(r) (p(r))Vr)7 fort,s €T

with the v-cylinder transformation

log(1 — hz) .

_0BU T e
(2) = { ; ifh#0,
b4 ifh=0.

e
=

Let p,g € R,, then we define a circle plus addition by

(p By q)(1) = p(t) + q(t) — v(t)p(1)q(t), for all ¢ € Ty. For
p € R, define a circle minus p by ©,p = — -2

1—wp*

Lemma 2.2 [51, 52] Let p,q € R,, and s,t,r € T. Then

@ éo(t,s) =1and é,(t,1) = 1;
(i) ey(p(1),5) = (1 = v(1)p(1))éy(t, 5);
(i) &,(t,5) =
(

) T ep(s) = é%\p(s7 t)?
(iv)  é,(t,s)ép(s,r) = é,(t,r);
V) (&(t,5)Y = p(1)é,(t,s)

Lemma 2.3 [51, 52] Let f, g be nabla differentiable
functions on T, then

W) (nf +vg)Y =wfY +vagY, for any constants

i) (fe)V (1) = fV(1)g(r) +£(p(1)g" (t) = f(1)g" (¢)
+V(1)g(p(2));

(ili) If fand £V are continuous, then () f(t, 5)Vs)Y =
flp(0), 1) + [Lf(t,5)Vs.

Lemma 2.4 [51, 52] Assume p € R, and to € T. If 1 —
v(t)p(t) >0 for t € T, then é,(t,19) >0 forallt € T.

Lemma 2.5 Suppose that f(t) is an ld-continuous function
and c(t) is a positive ld-continuous function which satisfies
that c(t) € R. Let

60 = [ & lipl )9,

t

where to € T, then

gWozﬂo—do/}ﬁmpmy®V&

fo

Proof
t v
S0 = ([ eatennovs)
t v
= <éc(t, to)/t é_.(to, p(s))f(s)Vs>
= &_c(p(1),t0)e—c(to, p(1))f (1) — c(t)e—c(t,t0)
t é—c(t0, p(5))f () Vs

=10 =cl0) [ é-c(r.p6)(5)

The proof is complete. O

@ Springer
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Definition 2.6 [53, 54] A time scale T is called an almost
periodic time scale if

M:={teR:rt1eT,VeeT} # {0}

Definition 2.7 Let T be an almost periodic time scale. A
function f € C(T, R") is called an almost periodic on T, if
for any ¢ > 0, the set

E(e,f)={rel:|f(t+1)—f(t)|<e,Vt €T}

is relatively dense; that is, for any given ¢ > 0, there exists
a constant /(¢) > 0 such that each interval of length I(¢)
contains at least one T = t(¢) € E(e,f) such that

[f(t+ 1) —f(r)| <e, V2 €T.

The set E(e,f) is called the e-translation set of f(z), T is
called the &-translation number of f(r) and I(¢) is called the
contain interval length of E(e,f).

Let AP(T) = {f € C(T,R"): f is almost periodic} and
BC(T,R") denote the space of all bounded continuous
functions from T to R". Define the class of functions
PAPy(T) as follows:

PAPy(T) = {f € BC(T,R") : f is V — measurable such that
1 to+r

lim —
r—+o0 2r to—r

(8)|Vs =0, where to € T,r € H}.

Similar to Definition 4.1 in [50], we give

Definition 2.8 A function f € C(T,R") is called pseudo
almost periodic if f=g+ ¢, where g€ AP(T) and
¢ € PAPy(T). Denote by PAP(T), the set of pseudo
almost periodic functions.

By Definition 2.8, one can easily show that

Lemma 2.9 If f,g € PAP(T), then f + g,fg € PAP(T);
if f € PAP(T), g € AP(T), then fg € PAP(T).

Lemma 2.10 If f e C(R,R) satisfies the Lipschitcz
condition, ¢ € PAP(T), 0 € CY(T,II) and n:=inf,cr
(1 — 0V (1)) > 0, then f(p(t — 0(1))) € PAP(T).

Proof From Definition 2.8, we have ¢ = ¢, + ¢,, where
@, € AP(T) and ¢, € PAPy(T). Set

E(1) = f(o(t = 0()) = f(@1(t = 0(2))) + [f (1 (t — (1))
+ @21 = 0(2)) = f @1 (1 = 0(2)))] = Eq (1) + Ex(2).

Firstly, it follows from Theorem 2.11 in [53] that
E, € AP(T). Next, we show that E, € PAPy(T). Since

@ Springer

1 to+r
lim / IE»(5)|V's
r fo

r——+00 2 _
. 1 fo+r
= Jim o—r F(@1(s = 0(s)) + pals = 0(5)))

—f(@1(s = 0(s)))|Vs

L to+r
< lim —/ |o,(s — 0(5))|Vs

r—+o0 2r to—r
and
to+r
0< [ loals = 0(s)|Vs
r to—r
1 to+r—0(to+r) 1

=— ————| @, (u)|Vu
2r to—r—0(tg—r) 1_0v(5)| 2( )|

lr+0" 1 otrel”
< s [ ewivu=o,
nor 2r4+07) Ji—(rr07)

E, € PAPy(T). Thus E € PAP(T). The proof is com-
plete. O

Similar to Definition 2.12 in [53], we give

Definition 2.11 Let A(r) be an n X n matrix-valued
function on T. Then the linear system

V() =A()x(r), teT (3)
is said to admit an exponential dichotomy on T if there

exist positive constant K, o, projection P and the funda-
mental solution matrix X(#) of (3), satisfying

IX(OPX ™ (5)llg < Kécalt,5), 5,1 €T, 1>,
IX()(I = P)X " (s)|lg < Kéo,u(s,1), s, 1€ T,1<s,
where || - ||, is a matrix norm on T (say, for example, if

A = (a),.,,» then we can take [l = (S0, S Jag[*)?).

nxm?’
Consider the following pseudo almost periodic system:
V(1) = A()x(r) +(1), 1€ T, (4)

where A(f) is an almost periodic matrix function, f(¢) is a
pseudo almost periodic vector function. Similar to the proof
of Theorem 5.2 in [50], we can get the following lemma.

Lemma 2.12 Suppose that A(t) is almost periodic, (3)
admits an  exponential dichotomy and  function
f € PAP(T). Then (4) has a unique bounded solution x €
PAP(T) that can be expressed as follows:

-],

- / X0 - PX T (p(s))f () Vs,

X(t)PX~' (p(s))f () Vs
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where X(t) is the fundamental solution matrix of (3).
Similar to the proof of Lemma 2.15 in [53], we have

Lemma 2.13 Let ¢;: T — R™ be a bounded Id-continu-
ous function, ¢; € R and min;<;<,{inf,cr ¢;(t)} > 0.
Then the linear system

x¥(r) = diag(—ci(r), —ea(r), ., —ca(1)x(1)

admits an exponential dichotomy on T.

3 Existence of pseudo almost periodic solutions

In this section, we will state and prove the sufficient con-
ditions for the existence of pseudo almost periodic solu-
tions of (1).

Let
B = {o(t) = (¢:(1), 02(t), ., 0, ()" : 9;(1), 0} (1)
€ PAP(T), i=1.2,...,n}

with the norm [[glls = sup,cy l(1)], where [lp(1)] =
max; <;<.{|@:(t)|,|@Y ()|}, then B is a Banach space.

Throughout the rest of this paper, we assume that the
following conditions hold:

(H)) ¢; € C(T,R") with ¢; € R and ¢; >0, where
R} denotes the set of positively regressive func-
tions from T to R, i =1,2,...,n;

(Ha) ayj,byj,dyj, Ty € AP(T), 6; € C(T,I1), 1, 04, E,
{peCh (T,M), infer (1— ( )) > 0,inf,cy

(1 — 0y (t)) > 0 lnfTET( Ul( )) ll'lfte‘[[
( Cl]l([)) > O and Ii € PAP(—H—)ﬂlﬂ.hl = 1727
.o N

(H3) Functions f;,g;,hj,kj € C(R,R) and there exist

positive constants L; ,Lf, L}, Lf such that
—F W) < Ju— v, |gj(u)

— Iy (V)| L |u — v, |k (w)

1fi (u)
|hj(u)

— &I <Lilu—v,

— k()| < Lfu —vl,

where u,v € R and f(0) = g;(0) =
j=12,...,n

Theorem 3.1 Ler (Hy)-(H3) hold. Suppose that

(Hy) there exists a positive constant r such that

i {&+£7c;’+cip+c +c; I*} N

— — 1 —

1<i<n | ¢ ¢ c; C;
+ —
0, (¢ +c¢;)o;
max k_i’(ti_l)t <1,
1<i<n | C C:
1 1
where

p; = ( +5++Za+Lf+Zb+Lg id; oLl
Jj=
+ ZZT;,L"L’W)r
=c/ol + Za+Lf + ZlﬁLg Zd; oLl
=
+zn:ZT,; LLE+ LLr, i=1,2,...n

Then system (1) has at least one pseudo almost periodic
solution in the region E = {p € B : |||z <r}.

Proof Rewrite (1) in the form

xy (1) = —ci(t)x; ci t xY (s)Vs y a;(1)f;(x;
i (1) (1)) + (f)/tim (s) +; (1) (1))

DWICHETELICIES 210y
+ zn: zn: Tijn()k; (x;

j=1 =1
+ (1), teT, i=1,2,..,n

(Y (5)) Vs

1= En(0) Yk (a8 = L (1))

For any ¢ € B, we consider the following system

xY (1) = —ci(O)xi(t) + Fi(t, @) + Ii(t), t€T, i=1,2,...,n,

(5)

where
vaau QACHG)
+Zb’f (1)g( ®; (t—1;(t +Zd,j /

t—ay(1)
+ZZ La0).

Flo)=e) [ of
hi(¢) (s))Vs

= &n(O))ki(ep(t —

Since min; <<, {inf[g ci(t
2.13 that the linear system

Xy () = —ci(H)xi(t), i=1,2,...,n (6)

)} > 0, it follows from Lemma

admits an exponential dichotomy on T. Thus, by Lemma
2.12, we know that system (5) has exactly one pseudo
almost periodic solution which can be expressed as
follows:

T
Xp = (Xp,,Xg,5 - Xg,)

where

xg)(1) = /m .

(1, p(8)) (Fi(s, @) + I(s)) Vs, i=1,2,...,n

@ Springer
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Define an operator
O:E—-E

((plaq)Za sy (pn)T - ('xd)l?x(l’z’ . '7‘x‘/’n)T'

We will show that @ is a contraction.

First, we show that for any ¢ € E, we have ®¢ € E.

Note that

Fi(s,0)| = |ci(s ' iVuVu na,jsjjs

|Fi(s, )| ()[_MS)(P (u) +FZI (s)fi(o;(s))
+szf(5)gf(¢j(s—fif@)))

+Zd’/ s) h-((pjv(u))Vu

s—aii(s)
+ZZT,,1 $)ki(@;(s
j=1 1=
/ ., T +3 at i,
s—0i(s =1

+ib;!gj<<p,-<s—w<s>>><

Z /) (o7 () Vu

— & (8))ki(@y(s — Cijz(s)))‘

<cf

+IZH;IZ ki (0 (s = & ()i (@1(s = L (5))) |
<c; ot o} ( S)I+Zla$Lf 9;(s)]
j
+Zb3Lf’¢/ —(5)))|
+Zd; Loy (5)]
+ZZT$L"L"|¢.,~ = &)l eils = C(s))]

( +5++Za+Lf wa Zd; i L}
+JZHZT,;LkLk||<p||B)|¢||B
<+5++Za+L/+Zb+Lg Zd; ;Lf'
=
+ZZT,;L’<Lkr)r_p,,i_1,2,...,n
j=1 =

Therefore, by (H4), we can get

@ Springer

[ ealtps)(Fits ) + 1) s

—00

sup |x,, (1) = sup
teT teT

t ) I+
<swp [ e ()|l o) Vst i
tel J—-cc ' ¢
A
Sp_,l+l_,§r; i=1,2,..,n
¢ c

1 1

On the other hand, for i = 1,2,...,n, by (Hs), we have

Fi(t,(p) +I,(t) —C,‘(t)

sup |xq,l( )] :su%)
te

[ e attptN (Fis0) +16) Vs

o0

( +5++Za LerZb LHZdj oLl
1
—|—ZZTlﬁLkLkr>r+1i++ci+/_océ_c[ (t,p(s))

j=1 1=

(a1 2 i+ 3wt Yoy
Jj=
+rkrk I
+ZZTU,L L r)erJré

j=1I=
c.+—|—c._

+ —
c-—i—c-+
Slcllpi*»lflligr'

i i

Hence, we obtain
1®(e)llg = max < sup|x,, (1)],sup [xy (1)] p <7,
I<i<n ( ¢eT T

which implies that ®¢ € E. Therefore, the mapping @ is a
self-mapping from E to E. Next, we shall prove that @ is a
contraction mapping. For any ¢, € E, we denote

s o) =) [ 070 - T )V

+ Zat/ Y)[f (/J, ‘p (Y))]

+ Z bi(s) [8i(e;(s

+Z@w [y (oY (1)) — (U ()] Vi

s—ai(s)

+ ZZTUI S)

J=1 =1

- kj('ﬁj(s -

= 1i(9))) — &i(W;(s — 7(5)))]

(0 (s = Ciu(s)))ki(@y(s = Li(s)))
Cyijl(s)))kl('pl(s - ‘:tjl(s)))] di=12,...n

Thus, for i =1,2,...,n, we have
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t
w0 =swp| [ élepo)
t
< su é_ +5+ + a+Lf + IJJ’Lg
<sw [ etoon(co s et ) n

Zd* *LMZZT,; (LiLy + LYLY) )Vsn(p—lpHB

J=1 I=1

H,'(S, QD, l//)vs

sup |, (1)
teT

hl
< o= wls,

v
o (1. p()H5, 0. )V )

IV

sup |, (1) =, (1)) | = sup
o) =) [ éaltns)

t
/ é*(',’(np(s))H
( +a++2a+Lf+Zb+Lg > dfoiL
Jj=1

+ ZZT;, (LALf +

j=1 I=1

) lo -l
TF n
v (ror e e D0+ Yoo
z j=1

3OS T L L )w—wnﬂ

j=1 I=1

H,‘(S, ®, W)VS

= sup
teT

<|Hi(t,p. )| +c; sup

i(sv @, w)vs

- »—Vlg-
By (Hi), we have
() = @(W)llg<llo = ¥l

Hence, we obtain that ® is a contraction mapping. By the
fixed point theorem of Banach space [55], it follows that @
has a fixed point in [E; that is, system (1) has a unique
pseudo almost periodic solution. This completes the proof
of Theorem 3.1. O

4 Global exponential stability of pseudo almost
periodic solution

In this section, we will study the exponential stability of
pseudo almost periodic solutions of (1).

Definition 4.1 The pseudo almost periodic solution
x*(1) = (% (1), x5(2), ..., x5(2))" of system (1) with initial
value @*(t) = (¢1(1), @3(1), ..., 0%(1))" is said to be
globally exponentially stable if there exist a positive con-
stant 2 with ©,4 € R} and M > 1 such that every solution
x(t) = (x1(£),x2(2), .. ., x,(£))" of system (1) with initial

value ¢(1) = (@, (1), 9,(1), ..., ¢, (1))" satisfies

[[x(2) — x* (1) || < Mes, (1, 10) ¥,
where ||| = sup,¢(_g;, maxi <i<a{|@:(t) —
—(97)V ()]}, to = max{[—0,0] }.

Theorem 4.2 Assume that (H;)—(Hy) hold, then system
(1) has a unique almost periodic solution that is globally
exponentially stable.

vt € (0,+00)y,
o; (0], oy (1)

Proof From Theorem 3.1, we see that system (1) has at
least one pseudo almost periodic

(x5 (), x5(8), .o x5 (1)

Q5(1), .., @it ))T Suppose that x(z) =
xn(t))T
@(t) = (@1(1), @2(1), .-

system (1) that

—ci(t)zi(t = 9;
+Zb,,
+Zd,] /

1= “l/(’)
+Z§)u — &)l — L(r)
- kj(xj( = &n())k(x) (1 = La(1)))], (7)

where z;(¢) = x;(t) —x(¢),i=1,2,...,n
The initial condition of (7) is

solution x*(¢) =
(7 (1),
(xl (t),xz(t), RN

is an arbitrary solution of (1) with initial value

with initial value ¢*(f) =

L@,(1)". Then it follows from

+Za,,

= 75(1)))

[fi(xi(1) = (x5 (1))]

= g(x; (r = 7(1)))]

g] (x(t

Vis) = @i(s) — i (s), ¥y (s) = oY (5) — (¢})" (9,
where s € [-0,0],i=1,2,...,n
Rewrite (7) in the form
Ziv(t) +ci(D)zi(t) = ¢i(2) /t ziv(s)Vs
1=5;(t)
+Zau f,x] ];( ())]
+ Zbu (8 (3 (1t — (1)) — gi(x; (1 — 75(1)))]

+Zd,, /

1= (f:/(t)
+ Z Z Ty (1) [k (0 (1 — & (0)) Yk Cxa (1 — Ly (1))
=1 =
= SOk — C)], = 1.2, m.
(8)
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Multiplying the both sides of (8) by é_, (o, p(s)) and
integrating over [fo, ]y, where #y € [-0,0];, by Lemma
2.5, we get

ait) = 2i0)é o, (t,0) + / el (a0 [ v
+Zat/ f]xj
+Zb,,

dij(s [ (xY (u)) — by x;vu Vu
+Z ) [ T @) =) )]
+22Tu1

— kj(x;.‘(s — &) (x] (s — C,«j,(s)))})Vs, i=12,...,n
)

— (% (9))]
gi(x; (s — 7(5)))]

g/ (xi(s — 135(s))) —

ki(xi(s = Cyi(s))kixi(s — Cya(s))

Let S; and R; be defined as follows:
Sif)y=c —p- exp(ﬁsupv(s))

( o7 exp(Bo;) +Za+Lf Zb*Lgexp ;)
Zd*LhO'+ exp(foy;) + Z Z T,f; LkLk exp(B&;)
—|—LkLk exp(/ﬂCU,)) >

and

Ri(B)=c; — B~ (cf exp(Bsup(s)) +c; — p)

seT
( £57 exp(po7) +Za;L,f Zb;Lfexp prs)
Zd*Lh i exp(Bay))
+zzr,,+, (Wit exn(peg) + LiLtexpli))r )
i=1,2,...,n

By (Hy), we get

50 =< - (<o +sz Shirs+ S djr
=1 =1
+ Z Z T (LALf + Lﬁ‘Lf)r> >0
and

@ Springer

Ri(0) =¢; —(¢f ( Fof +Za+Lf+Zb+Lg

+ Zd;.Lh + ZZT; LAk +L,ij’f)r> >0,
j=1
i=1,2,...n

Since S; and R; are continuous on [0,4+o0c) and
Si(B),Ri(p) — —o0, as § — +oo, there exists (;,7;, >0
such that S;(;) = Ri(y;) =0 and S;(f) > 0 for § € (0,(;),
Ri(B) > 0 for B € (0,7,). Take a = min <;<, {(;,7;}, we
have S;(a) >0, R;(a)>0. So, we can choose a positive
constant 0 </ < min {@, min; <;<,{c; }} such that

Si(4) >0, R(4) >0, i=1,2,....n,

which implies that

i exp(Asupv(s)) n
ci—ﬂ( +5++Z Lf+2b+Lg ]:Zld;Ljh

+>y 3T LkL"+L§L]’f)r> <1
j=1 I=1

and

i exp(Asupv(s))
(1 "

seT
c;—ei ><+5++Za+Lf+Zb+Lg
# D 3N T+t <1
=1

i=1,2,...,n.

Let

M = max
1<i<n

c;

{ G+ ar + E biLE + Ed*L’l +3 Z Ty (LELY + LELK) r }
j=1i=

ij = ijl
j=1

then by (H4) we have M > 1.
Hence, it is obvious that

l2()] <Mée, (2, 10) ¥ || s
where ©,4 € R}. We claim that
l2()] <Méc,; (1 10) Y|, V2 € (10, +-00) - (10)

To prove (10), we show that for any P > 1, the following
inequality holds:

lz(D)]] <PMés (1, 10) [ ||,

vt € -0, 1]y,

Vi € (l‘07+OO)T, (11)
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which implies that, for i = 1,2, ...
|zi(1)| < PMeéc, i (t,0) Y]] s,
and

|2 ()] <PMéc (1, 10) 1Y ] g,

If (11) is not true, then there must be some #; €
and some ij,i € {1,2,...,n} such that

2(r2) || = max{|z;, (1)1, |25 ()]} = PMéc, i (11, 10) [l

and

lz(D)]] < PMéc, (1, 10) ||

,n, we have

Vit € (ty, +00)

vt € (to, +00)7.

t € (to,t1]y, to € [—6,0]y.

Therefore, there must exist a constant ¢ > 1 such that

lz(e)l = max{las, (1)1, |2 (1)} = ePMéc, (11, 10) V]|
(12)

and

l2()| < cPMéc i (1, 10) Y]] s,

In view of (9), we have

|zi, ()] = |z, (to)e—, (11, t0) + /ZI e, (t1,p(s))
(a0 [, Vs S aualits(s) 5059
+ Z biyj() 8 (xi(s — 7 (5))) — &% (5 — 7iyj()))]

+Zdl,, / BT @) () )]
+ZZT11]1

(5 — )i (5 — ci1ﬂ<s>>>]>w
<é g, (t1,10)|[Yllg + cPMeés (11, 10) |V |g
/ e (1, 0())és(11, p(s)
X (CI /“' é;(p(s),u)Vu + Zaiijfé;v(p(s), s)
5=0i, (s) =1
+ Z bij"eA
+ Zdw /  aes0ve
+ Z Z T (LELfe (p(s), s

+ LiL}és(p(s), s — Zf'f’(‘v)))r> v

Cz,/l( )k (xi(s — Ciljl(s)))

»8 = Tij(s))

élljl( ))

(tO, "l_oo)‘[l'

t € (to,t1]y, to € [-6,0]y.

n
e, (n,00) [V lg +cPMeés i (11,0) [Vl / ¢ ¢, e,i(h,p(s))
1

0
+
< iy 511 e/(

S5
+ Z “tuLl e/

n

B0l S
=

s—0,(s +Z “ﬂ LkLke/ s),s =& a(s))

j=1 I=1

IR (p(s).5 c,-]ﬂ<s>>)r> Vs<é_ (i)Wl

n
bePMés )Wl | 6o eitnpls)

fo

+ZanLfexp /Lsu%)v( 5))
NS

+Zdlll J Iljexp

< ot exp [M(6] + sup (s

+ Z b,*l',Lf exp

V( ,.,+SuPV( 5))]

+ Z Z T:rll L"LL exp

==

[X(C;:jJrilelwII)V(s))})r) Vs=cPMég,,(t1,0)||V|g

w+§upv

5T,+SHPV( $))] + L exp

1
{pMe,L”ﬂ; 2(t1,10) +exp (Mupv(c))

seT

x <c+b+exp (407) +Zaf]erf+Zb:JLgexp )

h k
+Zd$L, alexp(ay)) +ZZT$I L Liexp(A&)
Jj= =1 1=

stithexp(ic))r) [ alnpto) bos

R 1,
chMea;.m,zo>||w||B{—efc,.ea‘m,to)+exp (Zsupv(s))

]JM seT

( c; 0, exp(40; +Zal|]Lf+Zb:ngexp (47)

h k
+Zd,+uL, a:,exp Aam +ZZ ,”, L Ljexp /lg,]j)
a

j=1 1=

. 1—é_¢ a,.(t1,00
+L1,‘Lj.‘exp(2 ) ) X¢}

Si c; —4

S s&T
M ¢ —A

1

o7 exp(46])

unon

ScPMébvz(tl,to)||l//||B{ [ L e (

I
+Z% ,+Zbﬁ,Lf exp(i) +Zdﬁﬁmexp ()

+ ZZT;I LkLkexp (A& +LkLkexp()C:j))r)} ¢, a,2(11,10)

j=1 I=1

seT

¢ — A
A Kk
—&-deuL arjexp /lalu —&—ZZT;;, L L exp(/lqj)
=

+L¢L;exp<ij>)r) } <ePMé-(11,10) 1V

N exp (7» sup V(S)) (

flé,*exp )5+ +Za, ij-i-Zb:ijexp M’W
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and

la ()] < cfée, (1) W lls + cPMéc (11, 10) [l

n
(C:g/ ll, VM+Za+Lfe; l],l]
t

. l*ér’z(t”

+ meL é; l‘17t1 Tizj(tl))

Jj=

+ d+Lh/
Z f1—0,(11)

+ZZ (e (n,n —

+ Lf‘L]’,‘e](t. st — Cizjl(tl)))r)

é,(p(u),u)Vu

Enit(t))

n
+ i ePMéc (11, 0) [l / e, (11, p(s))ei(tr, p(s))

fo
X {LZ/
5—'1;2( )
e
zwv/

5—0iyj(s)
+ Z Z T (LELfe (s, 1 —

+ Lj‘Lj’.‘éA‘(S, t — Cigjl(s)))r}vs

<che e, (t,10) W llg + cPMéc,; (11, 10) [Y]]g

(CZ(SJr exp(16;) + Zalz] ;i

J=

u)Vu + Z a+ Lf
— Tiyj(5))

é,(p(u),u)Vu

fizjl(s))

+ Zb* Lf exp(/t;) + Zd*Lho'+ exp(4a;,;)

)
Jj=1

+ Z Z Ty (KLY exp(28],) + LEL exp(AL),))r )

(1 +egenpispy(s) [l p(9)Vs)

seT to
R i
<cPMés,,(t1, 1) ||V ]g ML(L-:)M)(IMIO)

+ (C+5+ exp(49;,) + Z ai ;L + Z bl Lf exp(Zt}))

[ 5
j=

+ Z djLal;exp(laiy) + Z Z T, (AL exp(2EE,)

+LkLkexp()Cl )T ) (1 + ¢; exp(Asup v(s))
seT
1

—(c;; = A) (

n

¢ (e -n (01 10) — 1)> }
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<cPMég, (1, t0) Y] g

 explisupv(s) .
{ {7 et < rol exp(20]) S ait!

M C»_ _} iy
(1 =1

+ Zb:JLg exp(4ty; Zd+ Lh()’+ exp(4ay)))

+ Z Z T;l LkL" exp /lél_/l) + Lk exp(&(lzﬂ)) )}

C;;e,(cifz,;h) (l] s to)
cih exp(Asup u(s))
+ (1 + — iez ) (cgbg exp(Ad;))

)

+ Z aL + Z byl explily) + ZdLL, 7y xp(A)

+ Z Z T;I L"L exp ig;rzj,) + LiL} eXP(MzJI)) ) }
<cPMe@ra(f1Jo)H‘//||B~

The above two inequalities imply that
l2() || <cPMeés (11, t0) [V ||,

which contradicts (12), and so (11) holds. Letting P — 1,
then (10) holds. Hence, the pseudo almost periodic solution
of system (1) is globally exponentially stable. The proof is
complete. O

5 An example

In this section, we give an example to illustrate the feasi-
bility and effectiveness of our results obtained in Sects. 3
and 4.

Example 5.1 Let n=2. Consider the following neural
network system on time scale T:

2
—|—Za 1) (5

J=1

x (1) =

—ci()x;(t—o;

2

2 t
£ 3 b0 00— (1) + Y1) / PUCONE

J=1 J=1

2
Z TUI

1 I=1

™~ T

+ = &)kl (2 = (1)) + 1i(2),

(13)

where i = 1,2, t € T and the coefficients are follows:

J
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cos x—|—1 cos’x+ 1
filx) = ————, folx) = T’
25111 x+3 (x) = sin®x +7
P E 2
- 4 2
sin” x + 2 5 —3cos“x
i M - -2
TR 24
3 -2
cos’x+ 7 7 —2sin“ x
T RWETe

g1(x) =
hl(x) =

k1 (X) =

c1(t) = 0.540.1]sint|, c2(t) = 0.7 — 0.1] cos ¢,

I,(t) = 0.2sint, I(r) =0.15cost,
ayi (1) = 0.1]sin(V21)|, an(r) = 0.2] cos(v/31)],
az1 (1) = 0.1| cost|, axn(t) = 0.2]sint|,
bi1(r) = 0.2| cos(V/21)|, bia(t) = 0.15|sin1],
b1 (1) = 0.1| cos 1|, by (r) = 0.25|sin(v/37)],

dy1 (1) = 0.15sin’t, d5(1) = 0.2cos’t, dy (1) = 0.1]

cos(V/31)], dy(r) = 0.15cos* ¢,
Ti11(t) = Tr11 (1) = 0.015]| cos ¢,
T112(t) = Ta12(t) = 0.01] sin¢|,
T121(t) = Ty (£) = 0.02sin’ ¢,
Ti2(t) = Tapn(t) = 0.015| cost],
01(t) = 0.02| cos(2xt)|, 02(¢) = 0.03sin |(27t)],
7;(1) = 0.1 sin®(4nz),

0;(t) = 0.4sin*(nt), &;(t) = L(t) = 0.3sin*(2nt),

ij,l=1,2.

By a simple calculation, we have LJI = LJ; =L =

Li=L=L{=15=1

2
plz(c'T5T+ZaTij Zb*Lg Z oLy

2 2
+ 3N THLELE) P = 0.20957 + 0.003757,
j=1 I=1

= (505 + Za*Lf + Z byLf + Zd*agLf

2

2
+ Zl ; T3 LALEr)r = 02085 +0.0037572,

0, =ciof +Za+Lf+Zh+Lg+Zd (rl*]Lh

~.

B
MN

+
1/

0 =07+ Zathf + szﬁﬁ + Zdzi%

D>

11

1

~.

MN

sz

1

~.

TH(LELY + LELY)r = 0.2095r 4 0.0075/7,

J(LYLY + LL)r = 0.2085r +0.007577,

o 50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400
t

Fig. 1 T = R. Numerical solution x; () and x,(¢) of system (7) for
(1(1); ¢2(1)) = (1.3,0.8).

-100

-150 . . . . . . . . .
100 120 140 160 180 200 220 240 260 280 300
n

-40 . . . . . © . . .
100 120 140 160 180 200 220 240 260 280 300
n

Fig. 2 T = Z. Numerical solution x;(n) and x,(n) of system (7) for

(@1(n), @a2(n)) = (1.7,1.3).

and we let r = 1, then we obtain

max {p’ +Li,ci++cfpi+c ] I*}
1<i<2 C:

= max{0.8265,0.60375,0.90915,0.784875} <1 = r,

and

i

L
max {&,C tei g,} = max{0.434,0.36,0.4774,0.468} < 1.

1<i<2 C

Therefore, for 1 — v(¢)c;(t) > 0, i = 1,2, all the condi-
tions of Theorem 4.2 are satisfied, hence, we know that
system (13) has a unique pseudo almost periodic solution
that is globally exponentially stable. Especially, whether
T =R or T =2, all the conditions of Theorem 4.2 are
satisfied. Therefore, system (13) has a unique pseudo
almost periodic solution that is globally exponentially
stable when T = R or T = Z. This is, the continuous-time
neural network and its discrete-time analogue have the
same dynamical behaviors for the pseudo almost period-
icity (see Figs. 1, 2).
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Remark 5.2 All the results obtained in [16, 33-49, 56]
cannot be applied to obtain that system (13) has a unique
pseudo almost periodic solution.

6 Conclusion

In this paper, we proposed a class of neutral type high-order
Hopfield neural networks with mixed time-varying delays
and leakage delays on time scales. Based on the exponential
dichotomy of linear dynamic equations on time scales,
Banach’s fixed point theorem and the theory of calculus on
time scales, we obtained the existence and global exponen-
tial stability of pseudo almost periodic solutions for this class
of neural networks that effectively unified the continuous-
time and discrete-time neural network cases. The results of
this paper are essentially new. Our methods used in this paper
can be used to study the pseudo almost periodic problem for
other types’ neural networks. For example, fuzzy neural
networks that are very important in implementation and
applications (see [57-63]).
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