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Abstract In this paper, a backstepping controller with an

adaptive neural states observer is proposed for MEMS

(Micro-Electro-Merchanical-System) gyroscopes in the

presence of model uncertainties and external disturbance.

Gyroscope states are usually assumed to be available in

controller design procedure. However, gyroscope states

may be unavailable in some circumstances. In this paper,

an adaptive neural states observer is employed to estimate

gyroscope states without physical sensors and thus can help

reducing complexity of the gyroscope system. A back-

stepping controller is utilized to control the vibrating

amplitude and frequency of the mass proof and the control

law is carried out with states estimation rather than actual

gyroscope states. Adaptive laws are investigated in the

Lyapunov stability framework to guarantee the stability of

the observer. Numerical simulation results demonstrate the

effectiveness of the proposed control scheme.

Keywords Backstepping control � Adaptive control �
Neural network � States observer

1 Introduction

Gyroscopes are one of the most common sensors used to

measure angular velocity and they are widely used in areas

such as navigation, automobiles and so on. The principle of

gyroscopes is that the device can transfer energy from

driving axis to sensing axis by the Coriolis force when

gyroscopes are rotating at some angular velocity. In prac-

tical situations, temperature change, manufacturing errors,

quadrature errors are all factors that will deteriorate the

performance of gyroscopes and will lead to false output;

thus, it is necessary to use advanced control methods to

control gyroscopes.

To handle the factors that will hinder the measurement

and improve the performance of gyroscopes, many pro-

fessionals have done much research in the field. Adaptive

control, sliding mode control, intelligent control all have

been used to improve the performance of gyroscopes. Juan

et al. [1] introduced an adaptive fuzzy approach for the

MEMS gyroscope where non-linear parts are compensated.

Fazlyab et al. [2] applied fuzzy sliding mode control to a

z-axis MEMS gyroscope and the parameters of the system

can be estimated. Wang et al. [3] proposed a T-S fuzzy

model based robust adaptive sliding mode control for the

MEMS gyroscope. Besides, adaptive control and intelligent

control [4–12] are commonly combined in control methods

to improve control performances.

Usually, position and velocity signals are essential in the

design of control force. Sometimes, it is difficult or even

impossible to measure the states and adding physical sen-

sors will add to the complexity of the system. So, states

observer is a feasible method to solve the problem and it

has been developed in many areas. Laurent et al. [13]

derived an adaptive controller with observer for the mag-

netic guided microrobot. Kim et al. [14] investigated
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disturbance-observer-based position tracking controller and

carried out the method in electrohydraulic actuators. Jiang

et al. [15] proposed an adaptive neural observer-based

backstepping fault tolerant control and applied the method

in the near space vehicle under control effector damage.

Chen et al. [16] proposed a direct adaptive neural control

based on disturbance observer for a class of uncertain

nonaffine nonlinear systems. Li et al. [17] presented an

adaptive fuzzy backstepping control of static var compen-

sator based on state observer. An adaptive observer back-

stepping control using neural networks was proposed for

the single-input–single-output system by Choi [18]. Yao

et al. [19] introduced extended-state-observer-based output

feedback nonlinear robust control of hydraulic systems

with backstepping. Tong et al. [20] derived an observer-

based adaptive fuzzy backstepping output feedback control

of uncertain multiple-input-multiple-output pure-feedback

nonlinear systems. A novel SPR-filter approach using

indirect adaptive fuzzy control scheme based on observer

was investigated by Boulkroune [21]. An observer-based

adaptive neural network control was derived by Zhou et al.

[22] and was applied in nonlinear stochastic systems. Ting

et al. [23] studied the model of linear stepping motor and

derived an observer-based back-stepping control. Xu et al.

[24] proposed an observer-based fuzzy adaptive control of

nonlinear systems with actuator fault and unmodeled

dynamics. An output feedback dynamic surface control

was derived by Yoo et al. [25] in the application of flexi-

ble-joint robots. Na et al. [26] proposed an adaptive control

for nonlinear pure-feedback systems with high-order slid-

ing mode observer.

It can be found from [1] and [3] that the states of the

gyroscope are assumed to be measurable and the states are

directly used in the design of control forces. If the states are

assumed to be unmeasurable and the states can not be used

directly, the control forces can hardly be carried out, thus a

states observer can be used to estimate system states and

the states estimation can be used in the design process. This

paper proposes a backstepping controller using states

observer for z-axis gyroscopes. All the states are replaced

by the states estimation. Adaptive laws in both states

observer and controller are derived in framework of Lya-

punov stability theory, so the stability of the entire system

can be guaranteed. The contribution of the control

scheme can be concluded as follows:

1. In the presence of disturbances, an adaptive neural

observer is proposed to estimate gyroscope states. The

complexity of the gyroscope system will be reduced

for not installing physical sensors. Lyapunov stability

theorem guarantees bounded estimation error.

2. A backstepping controller is carried out with states

estimation rather than actual gyroscope states. This

solves the problem when gyroscope states are essential

in controller design procedure while they are unavail-

able in actual circumstances.

3. The combination of backstepping controller and states

observer is applied to MEMS gyroscopes for the first

time.

The paper is organized by 5 parts in all. In Sect. 2, the

dynamics of MEMS gyroscope are studied through non-

dimensional transformation. The design of the states

observer is presented in Sect. 3 where the stability of the

observer is analyzed with Lyapunov stability theory as

well. In Sect. 4, the backstepping controller using states

estimation is proposed. Simulation results are shown in

Sect. 5 to verify the effect of the control method and

observer. Section 6 gives the conclusion.

2 Dynamics of MEMS gyroscope

Generally, a vibratory gyroscope consists of a proof mass

suspended by springs, the driving mechanism and the

sensing mechanism. The proof mass is two-degree-free

which means that the proof mass can only move on the

plane of X–O–Y. The electrostatic driven mechanism is set

to force the proof mass to oscillate while the sensing

mechanism is set to sense the position and velocity of the

proof mass. A z-axis vibratory gyroscope is shown in

Fig. 1.
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Fig. 1 Schematic model of a z-axis vibratory gyroscope
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We assume that the gyroscope is rotating about the z

axis at a constant velocity over a long time interval. The

dynamics of the Gyroscope can be described as:

m€xþ dxx _xþ dxy _yþ kxxxþ kxyy ¼ ux þ 2mXz _y

m€yþ dxy _xþ dyy _yþ kxyxþ kyyy ¼ uy � 2mXz _x
ð1Þ

where x and y are the coordinates of the proof mass in the

direction of X and Y ,kxx, kyy are the spring coefficients and

dxx,dyy are the damping coefficients along the X and Y axis.

For the fabrication imperfection and the fact that the

structure of the gyroscope is not totally symmetric and the

asymmetric structure contributes mainly to the cross spring

term kxy and cross damping term dxy. m is the weight of the

proof mass, and ux and uy are the control forces in the X

and Y direction.

We can get the non-dimensional form of the dynamics

by dividing both sides of (1) with m; q0;x2
0 where m; q0;x

2
0

represent the reference mass, length and natural resonance

frequency respectively. The dynamics of the gyroscope can

be rewritten in non-dimensional form as:

€xþ dxx _xþ dxy _yþ x2
xxþ xxyy ¼ uxþ 2Xz _y

€yþ dxy _xþ dyy _yþ xxyxþ x2
yy ¼ uy � 2Xz _x

ð2Þ

where dxx
mx0

! dxx,
dxy
mx0

! dxy,
dyy
mx0

! dyy,
Xz

x0
¼ Xz,

ffiffiffiffiffiffiffi

kxx
mx2

0

q

! xx,
ffiffiffiffiffiffiffi

kyy
mx2

0

q

! xy,
kxy
mx2

0

! xxy.

The dynamics of the model can be rewritten in the

vector form as

€qþ D _qþ Kq ¼ u� 2X _q ð3Þ

where q ¼ x

y

� �

, u ¼ ux
uy

� �

, D ¼ dxx dxy
dxy dyy

� �

,

K ¼ x2
x xxy

xxy x2
y

� �

, X ¼ 0 �Xz

Xz 0

� �

.

3 Adaptive neural observer design

In this section, an adaptive observer based on RBF (Radial

Basis Function) neural network is proposed to estimate the

states of the gyroscope. In order to avoid using the states in

the design of control force, the states estimation from the

observer is used to replace the position and velocity signals

of the proof mass, thus the control force can be achieved

without using gyroscope states. The nonlinear part in the

model caused by parameter variation can be approximated

by the neural network, and arbitrary small estimation error

can be achieved.

Rewrite the dynamics in state space form as

_X ¼ AX þ Bu

y ¼ CTX

(

ð4Þ

where A ¼
0 1 0 0

�x2
x �dxx �xxy �ðdxy � 2XzÞ

0 0 0 1

�xxy �ðdxy þ 2XzÞ �x2
y �dyy

2

6

6

4

3

7

7

5

, B ¼

0 0

1 0

0 0

0 1

2

6

6

4

3

7

7

5

, C ¼

1 0

0 0

0 1

0 0

2

6

6

4

3

7

7

5

, u ¼ ux
uy

� �

X ¼ ½x1 _x1 x2 _x2�T .

By taking the parameters variation and external distur-

bance into account, the model can be rewritten as:

_X ¼ ðAþ DAÞX þ Buþ dðtÞ
¼ AX þ Buþ DAX þ dðtÞ

ð5Þ

where X 2 Rn, y 2 Rm, A 2 Rn�n, B 2 Rn�m, u 2 Rm; DA
represents unknown parameters variation in A,dðtÞ is an

external disturbance.

Assumption 1 There exist some appropriate functions fm,

du such that DAX ¼ Bfm and dðtÞ ¼ Bdu. Therefore, the

dynamics can be expressed as

_X ¼ AX þ Buþ Bðfm þ duÞ ð6Þ

where fm, du represent the parameter uncertainties and

external disturbance.

The observer is proposed as

_̂
X ¼ AX̂ þ B½f̂m þ u� v� þ Kðy� CTX̂Þ
ŷ ¼ CTX̂

(

ð7Þ

where X̂ is the estimation of X,ŷ is the estimation of the

gyroscope output y, f̂m is the estimation of the unknown

function fm, u is the control force, the robust term v is set to

address the parameter variation and disturbance, K is the

gain vector.

Define the states estimation error as

~X ¼ X � X̂

The derivative of the states estimation error becomes

_~X ¼ _X � _̂X

Substitute the gyroscope model (6) and the observer (7)

into the derivative of the states estimation error gives

_~X ¼ ðAX þ BU þ Bðfm þ duÞÞ�
ðAX̂ þ Bðf̂m þ u� vÞ þ Kðy� CTX̂ÞÞ

¼ ðA� KCTÞ ~X þ Bð~fm þ du þ vÞ:

ð8Þ

Define the output estimation error as ~y ¼ y� ŷ, then the

states estimation error and output estimation error become
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_~X ¼ ðA� KCTÞ ~X þ Bð~fm þ du þ vÞ
~y ¼ CT ~X

(

ð9Þ

where ~fm is the nonlinear function approximation error,

which is expressed as

~f ¼ fm � f̂m: ð10Þ

The Laplace transform of _~X in (9) becomes

S ~XðSÞ ¼ ðA� KCTÞ ~XðSÞ þ Bð~fm þ du þ vÞ: ð11Þ

The Laplace transform of ~y in (9) becomes

~yðSÞ ¼ CTB

S� ðA� KCTÞ ð
~fm þ du þ vÞ

¼ HðSÞð~fm þ du þ vÞ:
ð12Þ

Lemma 1 [26] Meyer-Kalman-Yokubovic (MKY) If a

proper transfer function HðSÞ ¼ CTðSI � AÞ�1
B with A a

Hurwitz matrix is SPR (strictly positive real), then for

any given Q ¼ QT [ 0, there exist a P ¼ PT [ 0 such

that

ATPþ PA ¼ �Q; PB ¼ C:

Lemma 2 [26] Consider the linear time-invariant system

in the form

_xðtÞ ¼ AxðtÞ þ Bu; xð0Þ ¼ x0

with xðtÞ 2 Rn,uðtÞ 2 Rm and the matrices

A 2 Rn�n,B 2 Rn�m. Then, every solution xðtÞ of the system
is such that

xðtÞk k� k1 þ k2 uk ka28t� 0

with k1 decaying exponentially to zero and k2 a positive

constant that depends on the eigenvalues of A.

For the great advantage of neural network in dealing

with nonlinear systems, a RBF neural network is adopted to

approximate the unknown function fm.

The structure of a RBF network is a three-lawyer feed

forward network. The input layer passes input signals

without any operation; the hidden layer performs activation

function in each node of the layer and the output layer

gives the output. The structure of a RBF network is shown

in Fig. 2.

The output of the NN can be described as

y ¼ xT/ ð13Þ

where x ¼ ½x1 x2 . . . xn�T is the weight vector and xn is

the neural weight connecting the nth neuron in the hidden

layer and the output neuron. / represents the activation

function that is performed in every node in the hidden

layer; / ¼ ½/1 /2 . . ./n�T is the output vector of the hid-

den layer. Gaussian function is usually chosen as the

activation function and the output of the nth node in the

hidden layer is given by

/nðxÞ ¼ exp � x� cnk k2

b2n

 !

ð14Þ

where cn and bn are the center and the width of the

Gaussian function respectively.

The fm can be expressed as

fm ¼ WTrðXÞ þ eðXÞ ð15Þ

where W is the optimal weight of the network, rðXÞ is the
Gaussian function in terms of the states X, eðXÞ is the

approximation error.

We assume that the approximation error and the weight

are bounded by known bounds, such as eðXÞj j � ed,
Wk kF �WM , where ed,WM are positive constants.

Let the estimation of fm be given by

f̂m ¼ ŴTrðX̂Þ ð16Þ

where the input of the Gaussian function is the states

estimation instead of the states of the gyroscope for the

purpose of avoiding to use the gyroscope states.

Substituting (15) and (16) into (10) yields

~fm ¼ fm � f̂m ¼ WTrðXÞ þ eðXÞ � ŴTrðX̂Þ: ð17Þ

Define the Gaussian function error as

~rðXÞ ¼ rðXÞ � rðX̂Þ: ð18Þ

Substituting (18) into (17) yields

~fm ¼ fm � f̂m

¼ WTð~rðXÞ þ rðX̂ÞÞ � ŴTrðX̂Þ þ eðXÞ
¼ ~WTrðX̂Þ þWT ~rðXÞ þ eðXÞ

ð19Þ

where the weight error is given by ~W ¼ W � Ŵ , the dis-

turbance term is defined as WT ~rðXÞ ¼ q, and q is bounded

such as qk k� b, where b is a positive constant.

Substituting f̂m in (16) into the observer in (7), we can

get

1r

2r

1

2

n

1

n

2

.

.

.

.

y
1x

2x

Input units

Hidden units

Output units

Fig. 2 Architecture of a RBF network
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_̂
X ¼ AX̂ þ B½ŴTrðX̂Þ þ u� v� þ Kðy� CTX̂Þ
ŷ ¼ CTX̂

(

: ð20Þ

Substituting ~fm in (17) into the states estimation error in

(9) yields

_~X ¼ ðA� KCTÞ ~X þ Bð ~WTrðX̂Þ
þ qðtÞ þ eðXÞ þ du þ vÞ

~y ¼ CT ~X

8

>

>

<

>

>

:

: ð21Þ

Substituting (17) into (12), the output estimation error

becomes

~yðSÞ ¼ HðSÞð~fm þ du þ vðtÞÞ
¼ HðSÞð ~WTrðX̂Þ þ qðtÞ þ eðXÞ þ du þ vÞ

ð22Þ

where HðSÞ is a transfer function with stable poles which

are realized by ðA� KCT ;B;CÞ.
The output estimation error (22) can be rewritten as

~yðSÞ ¼ HðSÞLðSÞL�1ðSÞð~fm þ du þ vÞ
¼ HðSÞLðSÞðL�1ðSÞð ~WTrþ dÞ
þ L�1ðSÞðqþ eþ du þ vÞÞ

¼ HðSÞLðSÞð ~WT �rþ �dþ �qþ �eþ �du þ �vÞ

ð23Þ

where L�1ðSÞ is a transfer function with stable poles and

the over bar means that all the signals are filtered by

L�1ðSÞ,such as �r ¼ L�1ðSÞr, �q ¼ L�1ðSÞq, �e ¼ L�1ðSÞe,
�du ¼ L�1ðSÞdu, �v ¼ L�1ðSÞv.

And in (23), the term d is defined as

L�1ðSÞ ~WTr ¼ fL�1ðSÞ½ ~WTr� � ~WT ½L�1ðSÞr�g
þ ~WT ½L�1ðSÞr�

¼ dþ ~WT �r

Rewrite d in the form d ¼ L�1ðSÞð ~WTrÞ � ~WTL�1ðSÞr,
it can be concluded that d is bounded such as

dk k� c1 ~W
�

�

�

�

F
, where c1 is a computable positive constant.

The error dynamics can be realized as

_~z ¼ Ac~zþ Bcð ~WT �rþ �dþ �qþ �eþ �du þ �vÞ
~y ¼ CT

c ~z:

(

ð24Þ

Remark 1 Ac 2 Rn�n,Bc 2 Rn�m, Cc ¼ C is the minimal

state space representation of HðSÞLðSÞ such as

HðSÞLðSÞ ¼ CT
c ðSI � AcÞ�1

Bc ¼ ððSI � AcÞðCT
c Þ

�1Þ�1
Bc:

ð25Þ

Define a Lyapunov function candidate as:

V1 ¼
1

2
~zTP~zþ 1

2
trð ~WTF�1 ~WÞ ð26Þ

where P ¼ PT [ 0 , F ¼ FT [ 0.

Differentiating V1 with respect to time yields

_V1 ¼
1

2
_~zTP~zþ 1

2
~zTP _~zþ trð ~WTF�1 _~WÞ

¼ 1

2
~zTQ~zþ ~yDþ trð ~WTF�1 _~WÞ:

ð27Þ

Remark 2 Lemma 1 is referred to in the reasoning process

of (27). For HðSÞLðSÞ is SPR, according to Lemma 1, there

exists a proper matrix P ¼ PT [ 0 such that

AT
c Pþ PAc ¼ �Q,PBc ¼ Cc,Q ¼ QT [ 0 .

_~zTP~zþ ~zTP _~z ¼ ðAc~zþ BcDÞTP~zþ ~zTPðAc~zþ BcDÞ
¼ ~zTðAT

c Pþ PAcÞ~zþ DTBT
c P~zþ ~zTPBcD

¼ �~zTQ~zþ 2~zTPBcD

¼ �~zTQ~zþ 2~zTCcD

¼ �~zTQ~zþ 2~yTD ¼ �~zTQ~zþ 2~yD ð28Þ

and D ¼ ~WT �rþ �dþ �qþ �eþ �du þ �v. Thus, the Eq. (27) is

proved.

To make _V1 � 0, we can choose the adaptive law as

_̂
W ¼ F�r~y� KF ~yj jŴ ð29Þ

Substituting (29) into (27) gives

_V1 ¼
1

2
~zTQ~zþ ~yDþ trð ~WTF�1ð�F�r~yþ KF ~yj jŴÞÞ

¼ 1

2
~zTQ~zþ ~yð�dþ �qþ �eþ �du þ �vÞ þ trð ~WTK ~yj jŴÞ

� � 1

2
kminðQÞ ~zk k2þ~yð�eþ �du þ C ~W

�

�

�

�

F
Þ

þ K ~yj jtrð ~WTðW � ~WÞÞ ð30Þ

where trð� ~WT �r~yÞ ¼ �~y ~WT �r

Remark 3 In the reasoning process of (30), the design of

robust term in the observer in (7) is set as

v ¼ �D
~y

~yj j ð31Þ
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where D� brM ,rM ¼ rmax½L�1ðSÞ�. And the result in (32)

is derived to finish the proof of (30)

~yð�q1 þ �vþ dÞ ¼ ~yð�q� Dsgnð~yÞÞ þ ~yd

¼ ~yL�1ðSÞq� D ~yj j þ ~yd

� ~yj jbrM � D ~yj j þ ~yd

� 0þ c ~yj j ~W
�

�

�

�

F
¼ c ~yj j ~W

�

�

�

�

F

ð32Þ

with dk k� c ~W
�

�

�

�

F
mentioned above. If ~y is 0, v is set as 0,

(32) can still be derived to finish the proof of (30).

With the inequality derived in (32) and using the norm

inequality below

� 1

2
kminðQÞ ~zj j2 � � 1

2
kminðQÞ ~yj j2

tr½WTðW � ~WÞ� �WM
~W

�

�

�

�

F
� ~W
�

�

�

�

2

F

(30) becomes

_V1 � � 1

2
kminðQÞ ~yk k2þ ~yj jð�eþ �duÞ

þ ~yj jc ~W
�

�

�

�

F
þK ~yj jðWM

~W
�

�

�

�

F
� ~W
�

�

�

�

2

F
Þ:

ð33Þ

For rM ¼ rmaxðL�1ðSÞÞ, �e ¼ L�1ðSÞe, �du ¼ L�1ðSÞdu
and ed, dud are the bounds of e, du, we can get:

ð�eþ �duÞ� rMðed þ dudÞ ð34Þ

Substituting (34) into (33) yields

_V1 � � 1

2
kminðQÞ ~yj j2þ ~yj jrMðed þ dudÞ

þ ~yj jC ~W
�

�

�

�

F
þK ~yj jðWM

~W
�

�

�

�

F
� ~W
�

�

�

�

2

F
Þ

¼ � ~yj j½1
2
kminðQÞ ~yj j � rMðed þ dudÞ

� ðC þ KWM � K ~W
�

�

�

�

F
Þ ~W
�

�

�

�

F
�

¼ � ~yj j½1
2
kminðQÞ ~yj j � rMðed þ dudÞ

þ Kð ~W
�

�

�

�

F
� 1

2
aÞ2 � 1

4
Ka2�

ð35Þ

where

a ¼ WM þ c
K
;

�Kða� ~W
�

�

�

�

F
Þ ~W
�

�

�

�

F
¼ Kð ~W

�

�

�

�

F
� 1

2
aÞ2 � 1

4
Ka2:

To make _V1\0, we get the following conditions to be

satisfied

~yj j �
rMðed þ dudÞ þ 1

2
Ka2

kminðQÞ
ð36Þ

Or

~W
�

�

�

�

F
� 1

2
aþ ðrMðed þ dudÞ

K
þ 1

4
a2Þ1=2 ð37Þ

_V1 is negative outside the set defined by (36) and (37).

This demonstrates that ~y, ~W are UUB (uniformly ultimately

bounded); any excursion of ~y, ~W beyond the bounds set by

the conditions in (36) and (37) will cause decrease in the

Lyapunov function. That is to say the bounds defined by

the right side of Eqs. (36) and (37) can be taken as the

bounds on ~yj j and ~W
�

�

�

�

F
; and arbitrary small error bounds

can be achieved by setting large K and small rM .
Consider the estimation error dynamics in (21),

according to Lemma 2, the bounds of ~x can be expressed

such that ~xðtÞk k�m0 þ m1 uk ka2. For ~u ¼ ~WT �̂rþ �dþ �qþ �e
þ�du þ �v, it can be seen that all the terms in ~u are all

bounded and mostly relative to the neural weight error ~W ,

using Lemma 2 and norm inequality yields ~xðtÞk k�m0 þ
m1ðc1 þ c2 ~WF

�

�

�

�

a

F
Þ with m0 decaying exponentially to zero

and m1 a positive constant that depends on the eigenvalues

of A; c1, c2 are computable constants. It has been proven

that ~W
�

�

�

�

F
is bounded, thus ~xðtÞk k is also bounded.

4 Backstepping controller using states estimation

In this section, a backstepping controller is proposed using

the states estimation. The control objective is to make the

states X1 to track the reference trajectory X1d. And the

novelty is that the controller is designed with the states

estimation in stead of practical states.

The block diagram of the backstepping controller with

neural states observer is depicted in Fig. 3. States estima-

tion is incorporated in the controller to replace the states of

the gyroscope. The design procedure of the backstepping

controller using states estimation is investigated step by

step as follows:

MEMS 
Gyroscope

( ) ( )X A A X BU d t= + Δ + +

Backstepping 
controller

2 2 2 2 1

ˆˆ ˆ
du A X f v ky X a e e= − − + − + − −

State observer
ˆˆ ˆ ˆˆ[ ( ) ( )] ( )TX AX B f x u v t K y C X= + + − + −

RBF neural 
network

1 1

ˆ ˆ ˆ( )T
mf W Xσ=

dX

X̂

Adaptive law

1 1 1 1 1 1
ˆ ˆˆW F y K F y Wσ= −

Fig. 3 Block diagram of the backstepping controller with neural

states observer
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We consider the Eq. (4) as the system model, the states

are defined as X1 ¼ q and X2 ¼ _q. The system model can

be rewritten in state-space form as

_X1 ¼ X2

_X2 ¼ �ðDþ 2XÞX2 � KX1 þ u

(

ð38Þ

The output is expressed as

y ¼ X1 ð39Þ

Consider the model with parameter variation and

external disturbances, according to (4), the system model

can be rewritten as

_X2 ¼ �ðDþ 2XÞX2 � KX1 þ uþ fm þ du ð40Þ

Step 1. Define the tracking error as

e1 ¼ X̂1 � X1d ð41Þ

Differentiating the tracking error with respect to time

yields

_e1 ¼ _̂
X1 � _X1d ¼ X̂2 � _X1d: ð42Þ

Define the tracking error of X̂2 as

e2 ¼ X̂2 � X̂2d ð43Þ

where X̂2d is the virtual control force

The virtual control X̂2d is chosen as

X̂2d ¼ _̂
X1d � a1e1 ð44Þ

where a1 is a positive constant.

Substituting (44) into (42) gives

_e1 ¼ X̂2 � _X1d ¼ e2 þ X2d � _X1d

¼ e2 þ _X1d � a1e1 � _X1d ¼ e2 � a1e1:
ð45Þ

Choose the first Lyapunov function as

V2 ¼
1

2
e21 ð46Þ

and the derivative of V2 is

_V2 ¼ e1 _e1 ¼ e1e2 � a1e
2
1 ð47Þ

If e2 ! 0, then
_V2 ¼ �a1e

2
1\0.

As can be seen in (7), the observer is designed as

_̂
X2 ¼ �ðDþ 2XÞX̂2 þ k1X̂1 þ f̂ þ u� vþ G1~y: ð48Þ

Step 2. Differentiating e2 with respect to time and using

(48), we obtain

_e2 ¼ _̂X2 � _̂X2d

¼ �ðDþ 2XÞX̂2 þ k1X̂1 þ f̂ þ u� vþ G1~y� _̂
X2d

:

ð49Þ

Define the second Lyapunov candidate as

V3 ¼
1

2
e21 þ

1

2
e22 ð50Þ

and the derivative of V3 is expressed as

_V3 ¼ e1 _e1 þ e2 _e2

¼ e1ðe2 � a1e1Þ þ e2ð�ðDþ 2XÞX̂2 þ k1X̂1

þ f̂ þ u� vþ G1~y� _̂
X2dÞ

¼ �a1e
2
1 þ e2ð�ðDþ 2XÞX̂2 þ k1X̂1

þ f̂ þ u� vþ G1~y� _̂
X2d þ e1Þ

ð51Þ

According to (51), to make _V3 negative, the control law

can be designed as

u ¼ ðDþ 2XÞX̂2 � k1X̂1 � f̂ þ v� G1~yþ _̂
X2d � a2e2 � e1

ð52Þ

where a2 is a non-zero positive constant.

Theorem 1 If the control force in (52) is applied to

gyroscope model described in (40), the entire system is

stable.

Proof Substituting the controller (52) into (51) gives

_V3 ¼ �a1e
2
1 � a2e

2
2 � 0

This implies that _V3 is a negative semi-definite function; _V3

is negative semi-definite ensures that e1, e2 are bounded. For

_V3 � 0, the integral of _V3 is
R

t

0

_V3ðtÞdt ¼ V3ðtÞ � V3ð0Þ� 0.

Since V3ð0Þ is bounded and V3ðtÞ is a non-increasing and

bounded function, e1, e2 are bounded. So, €V3ðtÞ ¼
�2a1e1 _e1 � 2a2e2 _e2 is also bounded. €V3ðtÞ is bounded

implies that _V3 is uniformly continuous in the time domain.

According to Barbalat lemma, it can be concluded that _V3ðtÞ
will converge to zero,whichmeans that e1, e2 will converge to

zero. Thus, with arbitrary small error between gyroscope

states and their estimation, the trajectory tracking object can

be achieved and the tracking error will converge to zero.

5 Simulation study

According to the proposed observer based backstepping

control approach, the simulation is performed in

MATLAB/Simulink software. The parameters of the

MEMS gyroscope are set as follows:

m ¼ 1:8� 10�7kg; kxx ¼ 63:955 N/m, kyy ¼ 95:92 N/m;

kxy ¼ 12:779 N/m
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dxx ¼ 1:8� 10�6N � s/m, dyy ¼ 1:8� 10�6N � s/m;

dxy ¼ 3:6� 10�7N � s/m

choose the reference length q0 ¼ 1 lm, the reference fre-

quency x0 ¼ 1 kHz, and the angular velocity

Xz ¼ 100 rad/s . Through non-dimensional transform, the

parameters can be obtained:

x2
x ¼ 355:3; x2

y ¼ 532:9; xxy ¼ 70:99; dxx ¼ 0:01;

dyy ¼ 0:01; dxy ¼ 0:002; dxy ¼ 0:002; X ¼ 0:1

The control objective is to make the system states to

track the desired trajectory given by:

qm ¼ xm
ym

� �

¼ sinð4:17tÞ
1:2 sinð5:11tÞ

� �

We choose the initial states as X0 ¼ 0 0 0 0½ �, the

external disturbances as d ¼ d1
d2

� �

¼ 10 sinðx1tÞ
10 sinðx2tÞ

� �

. For

comparison, another case is provided where the disturbance

is chosen as d ¼ d1
d2

� �

¼ 10randomð1Þ
10randomð1Þ

� �

.

Parameters of the observer are set as follows:

The gain of the observer K ¼
K1 0

0 K2

" #

¼
900 0

0 900

" #

, gain of the robust part D ¼
D1 0

0 D2

" #

¼
900 0

0 900

" #

,

and the transfer function with stable pole is set as

L�1ðsÞ ¼ 1
Sþ3

:

Parameters in the backstepping control are set

as:a ¼
a1 0

0 a2

" #

¼
5 0

0 5

" #

In the design of the adaptive neural network part, the

parameters are set as: F ¼
F1 0

0 F2

" #

¼ 0:01 0

0 0:01

� �

.

The center and width of the Gaussian function of the neural

network is chosen as c ¼ 0:1 � ones ð1; nodeÞ and b ¼
0:3 � onesð1; nodeÞ and node is the number of neurons in

the hidden layer where node ¼ 40.

Figures 4, 5, 6, 7, 8, 9 are simulation results where the

disturbance is chosen as d ¼ 10 � sinðxtÞ and Figs. 10, 11,

12, 13 present tracking and estimation performance where

a random signal with zero mean and unity variance is

chosen as the disturbance.
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Figure 4 depicts the position tracking performance with

backstepping control. It can be observed from Figs. 4 and 5

that the position in the X,Y direction can track the given

trajectory in a short time and the tracking error converges

to zero asymptotically. That is to say that the designed

backstepping controller can maintain the proof mass to

oscillate in the X, Y direction at the given frequency and

amplitude.
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Figure 6 depicts the position estimation performance and

Fig. 7 depicts the estimation error in theX,Y direction. It can

be observed from Figs. 6 and 7 that the position estimation

can track the gyroscope position in a short time and the

tracking error is within a small bound. Thus, the states esti-

mation can be adopted to replace the position of the gyro-

scope. Figures 8 and 9 depict the control force along the X

axis and Y axis where the control force is very smooth.

Figures 10 and 11 depict the trajectory tracking and

tracking error where the disturbance is chosen as

d ¼ 10 � randomð1Þ. It can be observed form Fig. 10 that

the system states can still track the desired trajectory

although a random signal is a much stronger disturbance.

But it can also been seen that the bound of tracking error

becomes larger.

The states estimation and estimation error are shown

in Figs. 12 and 13. It can be found form Fig. 12 that the

states estimation(blue dotted line) almost overlap with

system states(read line) which means that the states

observer can correctly estimate the system states. And

the bound of estimation error also becomes larger

because the random signal disturbance is a stronger

disturbance.

It can be concluded that the proposed estimator can

correctly estimate gyroscope states in the presence of dis-

turbance and estimation errors under different disturbances

in Figs. 7 and 13 show that the proposed estimator has very

good robustness. Tracking errors in Figs. 5 and 11 show

that it is feasible to use states estimation in controller

design.
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(d ¼ 10� randomð1Þ)
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6 Conclusion

In the paper, a backstepping control scheme with adaptive

neural observer is proposed for MEMS gyroscopes. The

states estimation is used to replace actual gyroscope states

in the controller design. Thus, the control force can be

derived without using gyroscope states and this can help to

reduce the complexity of the system for not installing

physical sensors in the system. Both the controller and the

observer are designed in the sense of Lyapunov stability

theory, so bounded states estimation error can be achieved

and the stability of the entire control system is guaranteed.

Numerical simulations demonstrate that the gyroscope

trajectory can track the command trajectory very well.

Small estimation error and tracking error indicate that it is

feasible to use states estimation in controller design pro-

cedure. Simulation results also show strong robustness to

different disturbances.
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