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Abstract Cross distance minimization algorithm

(CDMA) is an iterative method for designing a hard margin

linear SVM based on the nearest point pair between the

convex hulls of two linearly separable data sets. In this

paper, we propose a new version of CDMA with clear

explanation of its linear time complexity. Using kernel

function and quadratic cost, we extend the new CDMA to

its kernel version, namely, the cross kernel distance mini-

mization algorithm (CKDMA), which has the requirement

of linear memory storage and the advantages over the

CDMA including: (1) it is applicable in the non-linear case;

(2) it allows violations to classify non-separable data sets.

In terms of testing accuracy, training time, and number of

support vectors, experimental results show that the

CKDMA is very competitive with some well-known and

powerful SVM methods such as nearest point algorithm

(NPA), kernel Schlesinger-Kozinec (KSK) algorithm and

sequential minimal optimization (SMO) algorithm imple-

mented in LIBSVM2.9.

Keywords Cross distance minimization algorithm �
Kernel function � Convex hull � Nearest point � Support
vector machine

1 Introduction

Classification is one of the most widely studied problems

within the field of machine learning. As one of the com-

monest tasks in supervised learning, it is the process of

finding a model or function that learns a mapping between

the set of observations and their respective classes [1, 2].

As a successful classifier, support vector machines (SVMs)

have attracted much interest in theory and practice [3–6].

Respectively, let X ¼ fxi : i 2 Ig and Y ¼ fyj : j 2 Jg
denote two classes of data points in Rn (R stands for the set

of all real numbers, n for dimension), and I and J are the

corresponding sets of indices. If X and Y are linearly sep-

arable, the task of a SVM is to find the maximal margin

hyperplane,

f ðxÞ ¼ w� � xþ b�; ð1Þ

where (w�, b�) is the unique solution of the following

quadratic model:

min
1

2
wk k2

s:t:w � xi þ b� 1; i 2 I;w � yj þ b� � 1; j 2 J:
ð2Þ

It has been shown that M ¼ 2=jjwjj is the maximal margin,

and (w�, b�) could be computed from the nearest point pair

(x�, y�) between the two convex hulls CH(X) and CH(Y) [7,

8],

w� ¼ 2ðx� � y�Þ
x� � y�k k2

; b� ¼ y�k k2 � x�k k2

x� � y�k k2
;

where (x�, y�) is the solution of the following nearest point

problem (NPP),

min x� yk k s:t: x 2 CHðXÞ; y 2 CHðYÞ: ð3Þ
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Cross distance minimization algorithm (CDMA) [9] is an

iterative algorithm for computing a hardmargin SVMvia the

nearest point pair between CH(X) and CH(Y). The CDMA is

simple to implementwith fast convergence, but it works only

on linearly separable data. In this paper, we first give a new

version of theCDMAwith clear explanation of its linear time

complexity. Then we extend the new CDMA to solving the

non-linear and non-separable problems, in a similar way to

generalize the S-K algorithm [10].

This paper is organized as follows. Section 2 describes some

relatedwork to the CDMA. Section 3 presents a new version of

theCDMAand introduces its kernel version. Section4provides

experimental results and Sect. 5 concludes the paper.

2 Related work

2.1 Sequential minimal optimization algorithm

The basic idea of sequential minimal optimization (SMO)

algorithm is to obtain an analytical solution for subprob-

lems resulting from the working set decomposition [11].

The performance of SMO could be further improved by the

maximal violating pair working set selection [12, 13].

LIBSVM [14] is a well-known SMO-type implementation,

which solves a linear cost soft margin SVM below:

min
1

2
wk k2 þ C

X

i2I
ni þ

X

j2J
fj

 !

s:t: w � /ðxiÞ þ b� 1� ni; ni � 0; i 2 I;

w � /ðyjÞ þ b� � 1þ fj; fj � 0; j 2 J:

ð4Þ

In Eq. (4), ni and fj denote the slack variables corre-

sponding to two classes.

2.2 Nearest point algorithm

The most similar approach to our work is the nearest point

algorithm (NPA) by Keerthi et al. [7], which combines the

Gilbert’s algorithm [15] and the Mitchell algorithm [16] to

find the nearest points between the two convex hulls CH(X)

and CH(Y). In order to deal with the non-linear and non-

separable cases, the NPA solves a new nearest point

problem that is equivalent to the following quadratic cost

soft margin SVM [17] (QCSM-SVM),

min
1

2
wk k2 þ C

X

i2I
n2i þ

X

j2J
f2j

 !

s:t:w � /ðxiÞ þ b� 1� ni; i 2 I;

w � /ðyjÞ þ b� � 1þ fj; j 2 J:

ð5Þ

Note that negative values of ni or fj cannot occur at the
optimal solution of QCSM-SVM because we may reset

ni ¼ 0 (fj ¼ 0) to make the solution still feasible and also

strictly decrease the total cost if ni\0 (fj\0). Thus, there

is no need to include nonnegativity constraints on ni and
fj.With a simple transformation, the QCSM-SVM model

can be converted into an instance of hard margin SVM

(Eq. 2) with the dimensionality of nþ jIj þ jJj by mapping

xi 2 X to xi
0 2 X0 and yj 2 Y to y0j 2 Y 0 as follows:

x0i ¼ xi;
eiffiffiffiffiffiffi
2C

p
� �

¼ ½xi; 0; :::;
1ffiffiffiffiffiffi
2C

p ; :::; 0�;

y0j ¼ yj;
�ejIjþjffiffiffiffiffiffi

2C
p

� �
¼ ½yj; 0; :::;

�1ffiffiffiffiffiffi
2C

p ; :::; 0�;
ð6Þ

where ek denotes the nþ Ij j þ Jj j dimensional vector in

which the kth component is one and all other components

are zero. Accordingly, w0 and b0 can be computed as:

w0 ¼ ½w;
ffiffiffiffiffiffi
2C

p
n1; :::;

ffiffiffiffiffiffi
2C

p
njIj;

ffiffiffiffiffiffi
2C

p
f1; :::;

ffiffiffiffiffiffi
2C

p
fjJj�; b0 ¼ b:

ð7Þ

The kernel function transformed is given by

K 0ðxi; xjÞ ¼ Kðxi; xjÞ þ di;j
1

2C
; ð8Þ

where K denotes the original kernel function, di;j is one if

i ¼ j and zero otherwise. Thus, for any pair of ðxi; yjÞ the
modified kernel function is easily computed.

2.3 Schlesinger-Kozinec algorithm

Another closely related approach is Schlesinger-Kozinec

(SK) algorithm [10]. The original SK algorithm solves the

NPP problem by computing an approximate point pair (x�,
y�) to construct a e-optimal hyperplane w� � xþ b� ¼ 0,

where w� ¼ x� � y� and b� ¼ ðk y�k2� k x�k2Þ=2. This

algorithm starts from two arbitrary points x� 2
CHðXÞ; y� 2 CHðYÞ and stops when satisfying the e-opti-
mal criterion, namely,

k x� � y� k � mðvtÞ\e;

where vt 2 X [ Y , t ¼ argmin
i2I[J

mðviÞ, and

mðviÞ ¼

ðvi � y�Þ � ðx� � y�Þ
k x� � y� k ; vi 2 X; i 2 I

ðvi � x�Þ � ðy� � x�Þ
k x� � y� k ; vi 2 Y; i 2 J

8
>><

>>:

The SK algorithm has been generalized to its kernel ver-

sion (KSK) [10]. It should be noted that in the SK algo-

rithm, if vt ¼ xtðt 2 IÞ violates the e-optimal criterion, x�
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will be updated by the Kozinec rule xnew ¼ ð1� kÞx�þ kxt,
with y� fixed and k computed for minimizing the distance

between xnew and y�. Otherwise, if vt ¼ ytðt 2 JÞ violates

the e-optimal criterion, y� will be updated by the Kozinec

rule ynew ¼ ð1� lÞy� þ lyt, with x� fixed and l computed

for minimizing the distance between ynew and x�. If k
x� � y� k �mðvtÞ\e holds, w� ¼ x� � y� and b� ¼ ðk
y�k2� k x�k2Þ=2 gives an e-optimal solution, which coin-

cides with the optimal hyperplane for e ¼ 0.

3 Cross kernel distance minimization algorithm

3.1 Cross distance minimization algorithm

Let d stand for the Euclid distance function. In this sub-

section, we will depict a new version of the CDMA in

Algorithm 2, where e is called ‘‘precision parameter’’, for

controlling the convergence condition.

The original CDMA (OCDMA, see Algorithm 1) is

designed to iteratively compute the nearest points of two

convex hulls. If ðx�; y�Þ is a nearest point pair obtained by

solving the NPP in (3), i.e., dðCHðXÞ;CHðYÞÞ ¼
jjx� � y�jj, then it can be proven that their perpendicular

bisector is exactly the hard-margin SVM of X and Y [9].

The procedure of OCDMA includes two basic blocks.

The steps 3–4 are to compute a nearest point pair ðx�; y�Þ
between CH(X) and CH(Y). The steps 5–6 are to construct a

SVM, f ðxÞ ¼ w� � xþ b�.

Compared to the OCDMA, the new CDMA can reduce

half an amount of distance computations needed in the case

k[ 0 by minimizing dðz; y�Þ instead of dðx2; y�Þ and

dðz; y�Þ as well as dðx�; zÞ instead of dðx�; y2Þ and dðx�; zÞ.
The geometric meaning of z point is illustrated in Fig. 1.

According to Theorem 5 in Ref. [9], if x1 ¼ x� is not the

nearest point from y� to CH(X), there must exist another

point x2 6¼ x1 in X such that dðz; y�Þ\dðx�; y�Þ, where

z¼ x1þ kðx2� x1Þ;k¼min 1;
ðx2� x1Þ � ðy� � x1Þ
ðx2� x1Þ � ðx2� x1Þ

� �
[0:

Similarly, if y1 ¼ y� is not the nearest point from x� to

CH(Y), there must exist another point y2 6¼ y1 in Y such that

dðx�; zÞ\dðx�; y�Þ, where

(a) (b)

Fig. 1 The geometric meaning of point z: (a) if k =1, then z ¼ x2 is a

point in X; (b) if 0\k\1, then z ¼ x1 þ kðx2 � x1Þ is actually the

vertical point from y� to the line segment CHfx1; x2g. If x1 is not the
nearest point from y� to CH(X), there must exist another point z ¼ x2
or z ¼ x1 þ kðx2 � x1Þ such that dðz; y�Þ\dðx�; y�Þ
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z¼ y1þlðy2� y1Þ;l¼min 1;
ðy2� y1Þ � ðx� � y1Þ
ðy2� y1Þ � ðy2� y1Þ

� �
[0:

Therefore, if (x�; y�) is not the nearest point pair, the

CDMA can always find a nearer one until it converges.

It has been shown that CDMA converges with a rough

time complexity of OðIðeÞ � ð Xj j þ Yj jÞÞ, where IðeÞ is

guessed a constant as an open problem [9], representing the

total number of running loops for CDMA to converge at e-
precision. In fact, IðeÞ can be clearly bounded by a simple

constant, namely, IðeÞ� L=e, where L may be estimated as

L ¼ maxx2X;y2Y x� yk kf g, because we cannot get a cross

distance decrease less than e in each running loop until

satisfying the stopping condition for CDMA.

3.2 Cross kernel distance minimization algorithm

Based on the description mentioned above, now we gen-

eralize the CDMA to its kernel extension, namely, cross

kernel distance minimization algorithm (CKDMA). Given

a kernel function Kðxi; yjÞ ¼ /ðxiÞ � /ðyjÞ, the objective of

CKDMA is to minimize the kernel distance kdð~x; ~yÞ
between ~x 2 CH /ðXÞð Þ and ~y 2 CH /ðYÞð Þ,
min kdð~x; ~yÞ ¼ min ~x� ~yk k
s:t: ~x 2 CH /ðXÞð Þ; ~y 2 CH /ðYÞð Þ:

ð9Þ

For ~x� 2 CH /ðXÞð Þ and ~y� 2 CH /ðYÞð Þ, we can express

them as,

~x� ¼
X

i2I
ai � /ðxiÞ ¼

X

i2I
ai � ~xi;

X

i2I
ai � 0; ~xi 2 /ðXÞ;

~y� ¼
X

j2J
bj � /ðyjÞ ¼

X

j2J
bj � ~yj;

X

j2J
bj � 0; ~yj 2 /ðYÞ:

ð10Þ

If ~x� is not the nearest point from ~y� to CH /ðXÞð Þ, we
can find t1 2 I to compute a new point ~xnew ¼ ð1� kÞ~x�þ
k~xt1 , where k¼min½1;ðð~xt1 � ~x�Þ � ð~y�� ~x�ÞÞ=ðð~xt1 � ~x�Þ�
ð~xt1 � ~x�ÞÞ�, such that ~xnew is nearer to ~y� than ~x�, i.e.,

~xnew� ~y�k k\ ~x�� ~y�k k.
Because ~xnew ¼

P
i2I

anewi ~xi ¼ ð1� kÞ
P
i2I

ai~xi þ k~xt1 ¼
P
i2I

½ð1� kÞai þ kdi;t1 �~xi, ~xnew can be obtained by updating

ai, namely,

anewi ¼ ð1� kÞai þ kdi;t1 ; ð11Þ

where di;j is one if i ¼ j and zero otherwise.

Similarly, if ~y� is not the nearest point from ~x� to

CH /ðYÞð Þ, we can also find a nearer point ~ynew ¼ ð1� lÞ
~y� þ l~yt2 ; t2 2 J with the adaptation rule below,

bnewj ¼ ð1� lÞbj þ ldj;t2 : ð12Þ

For convenience, we further introduce the following

notations:

A ¼ ~x� � ~x� ¼
X

i2I

X

j2J
aiajKðxi; xjÞ;

B ¼ ~y� � ~y� ¼
X

i2I

X

j2J
bibjKðyi; yjÞ;

C ¼ ~x� � ~y� ¼
X

i2I

X

j2J
aibjKðxi; yjÞ;

8i 2 I;Di ¼ /ðxiÞ � ~x� ¼
X

j2I
ajKðxi; xjÞ;

8i 2 I;Ei ¼ /ðxiÞ � ~y� ¼
X

j2J
bjKðxi; yjÞ;

8j 2 J;Fj ¼ /ðyjÞ � ~x� ¼
X

i2I
aiKðxi; yjÞ;

8j 2 J;Gj ¼ /ðyjÞ � ~y� ¼
X

i2J
aiKðyi; yjÞ:

Using these notations to express the CDMA in terms of

kernel inner product, it is easy to obtain the CKDMA

described in Algorithm 2. Note that sqrt indicates the

square root function.

In Step 6 of the CKDMA, A;C;Di;Fj are updated as

follows:
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Anew ¼ ð1� kÞ2Aþ 2ð1� kÞkDt1 þ k2Kðxt1 ; xt1Þ;
Cnew ¼ ð1� kÞC þ kEt1 ;

Dnew
i ¼ ð1� kÞDi þ kKðxt1 ; xiÞ;

Fnew
j ¼ ð1� kÞFj þ kKðxt1 ; yjÞ:

And in Step 9, B;C;Ei;Gj are updated as follows:

Bnew ¼ ð1� lÞ2Bþ 2ð1� lÞlGt2 þ l2Kðyt2 ; yt2Þ;
Cnew ¼ ð1� lÞC þ lFt2 ;

Enew
i ¼ ð1� lÞEi þ lKðyt2 ; xiÞ;

Gnew
j ¼ ð1� lÞGj þ lKðyt2 ; yjÞ:

Moreover, in Algorithm 2, d� stands for the distance between
the nearest points, and dnew for its updated value. If d� � dnew

is less than e, the CKDMA will return the result of a linear

function in kernel space, namely, f ðxÞ ¼ ~w� � /ðxÞ þ ~b
�
,

which can be further expressed as a kernel form below,

f ðxÞ ¼
X

i2I
aiK xi; xð Þ �

X

j2J
bjK yj; x
� �

 !

þ 1

2

X

i2J

X

j2J
bibjK yi; yj

� �
�
X

i2I

X

j2I
aiajK xi; xj

� �
 !

¼
X

i2I
aiK xi; xð Þ �

X

j2J
bjK yj; x
� �

 !
þ 1

2
B� Að Þ

In addition, note that CKDMA can only solve separable

problems in a kernel-induced feature space. After using

Eq. (6) mentioned in Sect. 2.2, it can be directly applied to

non-separable cases, for finding a generalized optimal

hyperplane with the quadratic cost function.

Finally, it seems that the update rules of the CKDMA

are very similar to that of the KSK algorithm [10]. How-

ever, there are at least two notable differences between

them: (1) in each iteration the KSK algorithm updates only

one of two points, either x� or y�, whereas the CKDMA

generally updates both of them; (2) Given x� and y�, the
two algorithms may pick different data points even in the

same training set for updating the nearest pair. For exam-

ple, suppose X ¼ fx1; x2; x3g and Y ¼ fy1g. In Fig. 2a, the

KSK algorithm will choose x3 2 X to update x� with

xnewKSK ¼ ð1� kÞx� þ kx3 . This is because

mðx3Þ ¼ q� y�k k ¼ ðx3 � y�Þ � ðx� � y�Þ
k x� � y� k ;

mðx2Þ ¼ p� y�k k ¼ ðx2 � y�Þ � ðx� � y�Þ
k x� � y� k ;

and mðx3Þ\mðx2Þ (see Sect. 2.3).

But from Fig. 2, the CKDMA will choose x2 2 X to

update x� with xnewCKDMA ¼ ð1� kÞx� þ kx2, because

dðy�;CHfx�; x2gÞ\dðy�;CHfx�; x3gÞ (see Sect. 3.1).

4 Experimental results

In this section, we conduct a series of numerical experi-

ments to evaluate the classification performances of

CKDMA on 17 data sets, which are listed with their code,

size and dimensionality in Table 1. All these data sets are

selected from the UCI repository [18], but Fourclass from

THK96a [19], German.number and Heart from Statlog

[20], Leukemia and Gisette from LIBSVM Data [21]. The

experiments are divided into two parts. The first part

compares the proposed method with KSK, NPA and

LIBSVM2.9, and the second part shows the influence of

precision parameter e on CKDMA.

4.1 Comparison with other algorithms

We used 14 data sets in this experiment. The 14 data sets

can be seen in Table 2. They are binary problems with

features linearly scaled to [-1, 1]. Note that the ‘‘training

? test’’ sets have been partitioned for the last four data sets,

including mo1, mo2, mo3 and spl. For the sake of homo-

geneity in results’ presentation, we first merge the training

and test sets of them. And then, we randomly split each of

them into two halves for 10 times, one half for training, the

other for testing. We report the average results on all the

experiments, which were conducted with RBF kernel

function on a Dell PC having I5-2400 3.10-GHz proces-

sors, 4-GB memory, and Windows 7.0 operation system.

The two parameters, C and c respectively from the candi-

date sets f2iji ¼ �4;�3; :::; 3; 4g and f2iji ¼ �7;�6; :::;

4; 5g, were determined by 5-fold cross validation on the

training sets. The precision parameter e was chosen as 10�5

for CKDMA, 10�3 for KSK and NPA, and the default (i.e.,

10�3) for LIBSVM 2.9. Note that, in experimental results,

the bold values represent higher accuracies, less training

time or less support vectors.

From Table 2, it can be seen that CKDMA obtains

higher accuracies on six data sets than KSK, six data sets

than NPA, and seven data sets than LIBSVM2.9, respec-

tively. Even in the case of lower accuracies, CKDMA can

(a) (b)

Fig. 2 Different updates of the KSK algorithm and the CKDMA
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achieve the same level of performance with other algo-

rithms. Moreover, CKDMA generally takes less training

time and produces less support vectors than KSK and NPA,

but more than LIBSVM2.9.

In addition, we also conducted experiments on three

large/high-dimensional data sets (i.e., a9a, leu and gis),

with the results described in Table 3. Since it take too long

cross validation time to choose C and c for Libsvm 2.9, we

directly set the default values, namely, C ¼ 1 and c ¼
1=dim (0.00813 for a9a, 0.00014 for leu, and 0.00020 for

gis). From Table 3, we can get that, on the selected large/

high-dimensional data sets, the CKDMA is comparable to

the other three classifiers.

Next, we further compare the statistical significance of

CKDMA with KSK, NPA, LIBSVM. Referring to [22, 23],

we use Bonferroni-Dunn test for comparison over all the

selected data sets. Table 4 presents the average ranking of

four algorithms, and Fig. 4 provides the corresponding

critical difference (CD) diagram. The test results show

there are no significant differences between CKDMA and

the others.

4.2 Influence of precision parameter

In this subsection we investigate influence of precision

parameter e on performance of CKDMA, with e set from

10�1 to 10�6. We choose eight data sets of different

dimensions (i.e., fou, mo1, hea, ger, bre, son, a9a and mus).

For mo1 and a9a, we directly use the indicated training and

testing sets for conducting experiments. For fou, hea, ger,

Table 1 Data sets used in the experiments

Data sets Code Size Dim

Breast cancer bre 569 30

Fourclass fou 862 2

German.number ger 1000 24

Heart hea 270 13

Ionosphere ion 351 34

Liver-disorders liv 345 6

Monks-1 mo1 124 ? 432 6

Monks-2 mo2 169 ? 432 6

Monks-3 mo3 122 ? 432 6

Musk (Version 1) mus 476 166

Parkinsons par 195 22

Pima indians diabetes pim 768 8

Sonar son 208 60

Splice spl 1000 ? 2175 60

Adult-9 a9a 32561 ? 16281 123

Leukemia leu 38 ? 34 7129

Gisette gis 6000 ? 1000 5000
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bre, son and mus, we randomly split each of them into two

halves only once, one half for training, the other for testing.

The corresponding results are shown in Fig. 3, including

testing accuracy, training time, and number of support

vectors.

From Fig. 3, we can see that as e gets smaller and

smaller, testing accuracies generally tend to increase and

become stable. In Fig. 3a, a vertical dashed line marks a

good choice of 10�5 for CKDMA because it gives rise to

satisfactory performance with relatively reasonable train-

ing time (see Fig. 3b) and number of support vectors (see

Fig. 3c).

5 Conclusions

In this paper, we have explained the linear time complexity

for CDMA, and further proposed a new iterative algorithm,

i.e., the cross kernel distance minimization algorithm

(CKDMA), to train quadratic cost support vector machines

using kernel functions. Over CDMA, CKDMA can take

advantages to solve non-linear and non-separable prob-

lems, preserving the simplicity in geometric meaning.

Moreover, it gives a novel way to understand the nature of

support vector machines. Since the basic idea of CKDMA

is to express the CDMA in kernel-induced feature space, it

can be implemented in a similar way to KSK and NPA, but

different from LIBSVM. Experimental results show that

Table 3 Comparison of four classifiers on large/high-dimensional data sets

Datasets Accuracies (%) Training time (ms) Number of support vectors

CKDMA KSK NPA LIBSVM CKDMA KSK NPA LIBSVM CKDMA KSK NPA LIBSVM

a9a 84.66 85.17 85.23 84.81 82738.300 850430.000 901374.000 69742.400 10499 19269 20248 11956

leu 67.65 67.65 67.65 67.65 328.368 476.557 361.713 301.078 38 38 38 38

gis 97.80 97.80 97.90 97.70 113918.000 1465460.000 518021.000 83906.900 1293 2376 2444 1666

Table 4 Average rankings of four algorithms

Algorithm Ranking

CKDMA 2.5882352941176467

KSK 2.6470588235294112

NPA 2.1176470588235294

LIBSVM 2.6470588235294117
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the CKDMA is very competitive with NPA, KSK and

LIBSVM2.9 on the selected data sets. As future work, we

would try to introduce large margin clustering [24] for

rapid generation of supports vectors.

Acknowledgments This work was supported in part by the National

Science Foundation of China under Grant 61175004, the Beijing

Natural Science Foundation under Grant 4112009, the Program of

Science Development of Beijing Municipal Education Commission

under Program KM201010005012, and the Specialized Research

Fund for the Doctoral Program of Higher Education of China under

Grant 20121103110029.

References

1. Webb D (2010) Efficient piecewise linear classifiers and appli-

cations. Ph. D. Dissertation, The Graduate School of Information

Technology and Mathematical Sciences, University of Ballarat

2. Wang X, Ashfaq RAR, Fu A (2015) Fuzziness based sample

categorization for classifier performance improvement. J Intell

Fuzzy Syst 29(3):1185–1196

(a) (b)

(c)

Fig. 3 Experimental results for different precision parameters

Fig. 4 Comparison of CKDMA against the others with the Bonfer-

roni-Dunn test. All classifiers with ranks outside the marked interval

are significantly different (a ¼ 0:05) from the control

1592 Int. J. Mach. Learn. & Cyber. (2017) 8:1585–1593

123



3. Ertekin S, Bottou L, Giles CL (2011) Nonconvex online support

vectormachines. IEEETrans PatternAnalMach Intell 22(2):368–381

4. Wang X, He Q, Chen D, Yeung D (2005) A genetic algorithm for

solving the inverse problem of support vector machines. Neuro-

computing 68:225–238

5. Wang X, Lu S, Zhai J (2008) Fast fuzzy multi-category SVM

based on support vector domain description. Int J Pattern

Recognit Artif Intell 22(1):109–120

6. Xie J, Hone K, Xie W, Gao X, Shi Y, Liu X (2013) Extending

twin support vector machine classifier for multi-category classi-

fication problems. Intell Data Anal 17(4):649–664

7. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2000)

A fast iterative nearest point algorithm for support vector

machine classifier design. IEEE Trans Neural Netw

11(1):124–136

8. Bennett KP, Bredensteiner EJ (1997) Geometry in learning. In:

Geometry at work

9. Li Y, Liu B, Yang X, Fu Y, Li H (2011) Multiconlitron: a general

piecewise linear classifier. IEEE Trans Neural Netw 22(2):267–289
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22. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

23. Garca S, Herrera F (2009) An extenson on ’statistical compar-

isons of classifiers over multiple data sets’ for all pairwise

comparisons. J Mach Learn Res 9:2677–2694

24. Xu L, Hu Q, Hung E, Chen B, Xu T, Liao C (2015) Large margin

clustering on uncertain data by considering probability distribu-

tion similarity. Neurocomputing 158:81–89

Int. J. Mach. Learn. & Cyber. (2017) 8:1585–1593 1593

123

http://www.csie.ntu.edu.tw/cjlin/libsvm
http://archive.ics.uci.edu/ml
http://www.liacc.up.pt/ml/old/statlog/-datasets.html
http://www.liacc.up.pt/ml/old/statlog/-datasets.html
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/

	Cross kernel distance minimization for designing support vector machines
	Abstract
	Introduction
	Related work
	Sequential minimal optimization algorithm
	Nearest point algorithm
	Schlesinger-Kozinec algorithm

	Cross kernel distance minimization algorithm
	Cross distance minimization algorithm
	Cross kernel distance minimization algorithm

	Experimental results
	Comparison with other algorithms
	Influence of precision parameter

	Conclusions
	Acknowledgments
	References




