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Abstract Instead of clustering data points to cluster

center points in k-means, k-plane clustering (kPC) clusters

data points to the center planes. However, kPC only con-

cerns on within-cluster data points. In this paper, we pro-

pose a novel plane-based clustering, called k-proximal

plane clustering (kPPC). In kPPC, each center plane is not

only close to the objective data points but also far away

from the others by solving several eigenvalue problems.

The objective function of our kPPC comprises the infor-

mation from between- and within-clusters data points. In

addition, our kPPC is extended to nonlinear case by kernel

trick. A determinative strategy using a Laplace graph to

initialize data points is established in our kPPC. The

experiments conducted on several artificial and benchmark

datasets show that the performance of our kPPC is much

better than both kPC and k-means.

Keywords Clustering � k-means � k-Plane clustering �
eigenvalue problem � Laplace graph

1 Introduction

Clustering [1] is the process of grouping data points into

clusters, so that data points within a cluster have high

similarity and data points are very dissimilar in the dif-

ferent clusters. Clustering has been applied in many areas,

including data mining, statistics, biology, and information

retrieval [2–4]. There are many methods for clustering,

such as partitioning methods [5–7], hierarchical methods

[8, 9], and density-based methods [10, 11]. Many clustering

methods [5, 6, 10] aim at clustering data points to several

clusters by center points, such as k-means [3, 12] and fuzzy

C-means [13], which may perform better when data points

distribute as spherical shapes. However, data points may

not be clustered around a data point, e.g., a toy example

shown in Fig. 1a [14], where each cluster’s data points

distribute along a straight line.

k-plane clustering (kPC) [15, 16] is proposed to handle the

case that data points fall into clusters around planes. To

obtain the final center planes, kPC alternates between center

plane updates and cluster assignments. Therefore, in Fig-

ure 1, kPCperforms better than k-means.However, kPConly

consider the within-cluster compactness may leads difficul-

ties. A toy example is given by Fig. 2, in which kPC con-

structs two overlapped lines that misclassify the data points

of cluster 2 into the cluster 1. Hence, kPC fails to find rea-

sonable clusters and ends up estimating the number of

clusters to 2. In addition, selecting the initial data points

randomly in both k-means and kPC will affect the cluster

results in a great extent [17–19]. A set of poor quality initial

seeds may lead to a poor quality clustering result.
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Recent studies [20–22] show that the between-cluster

data points could be used to improve the cluster perfor-

mance. Therefore, we introduce the between-cluster data

points in kPC and propose a novel plane-based clustering,

called k-proximal plane clustering (kPPC). Similar to kPC,

kPPC also updates the center plane and cluster assignments

alternately. The difference is, in the updating process, each

center plane is not only close to its data points but also far

away from the others, leading to solve several eigenvalue

problems. In addition, we extend the above procedure to

nonlinear case by kernel trick [14, 23–27]. Compared with

kPC, the main advantages of our kPPC are: (1) the center

plane in kPPC not only close to its data points but also far

away from the others; (2) instead of the random initial-

ization in kPC, kPPC constructs a Laplace graph to give the

efficient initial clusters; (3) a nonlinear model of kPPC is

also proposed by the kernel trick;

The remainder of this paper is divided into the following

parts. Section 2 gives a brief review of the related work.

Section 3 presents the details of our kPPC. In Sect. 4, we

report the experimental results on both artificial and

benchmark datasets. Finally, Sect. 5 concludes the paper.

2 Related works

In this paper, we consider a set of m unlabeled data points

in the n-dimensional real space represented by the matrix A

in Rm�n. For the clustering problem, the purpose is to
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Fig. 1 Different performance of k-means and kPC on the artificial data points, which distribute along two cross straight lines. The data points

with the same color and shape belong to the same cluster
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cluster A into k clusters with the labels yi 2 N; i ¼
1; 2; . . .;m represented by the vector y 2 Nm. Next, we

briefly review k-means and kPC.

2.1 k-means

k-means [28, 29] wishes to cluster m data points into

k clusters so that data points of each cluster lie near the

cluster center data point.

k-means keeps each data point from the same cluster

being the closest to its cluster center data point, which uses

the sum of the squared error to represent the dissimilarity

measure by solving the following problem

min
Ai

Xk

i¼1

X

x2Ai

jjx� Aijj22; ð1Þ

where x is the data point in space representing a given data

point, Ai is the cluster center points of the ith cluster, Ai

contains the rows of A that belong to the ith cluster, and

jj � jj2 means the L2 norm.

By using the Lagrangian multiplier method [30, 31],

cluster centers points can be updated according to

Ai ¼
1

mi

X

x2Ai

x; i ¼ 1; . . .; k: ð2Þ

where mi is the number of data points corresponding to Ai.

2 4 6 8 10 12 14 16 18
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
Cluster 1
Cluster 2
Cluster 3
Noise

(a) Original data
2 4 6 8 10 12 14 16 18

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
Cluster 1
Cluster 3
Cluster 2
Noise

(c) k-meansl

2 4 6 8 10 12 14 16 18
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
Cluster 1
Cluster 3
Noise

(c) kPCl

2 4 6 8 10 12 14 16 18
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
Cluster 2
Noise
Cluster 1
Cluster 3

(d) kPPCl

Fig. 2 Different methods on artificial dataset, who’s cluster 1 and cluster 2 lie approximately on the same line
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After getting the cluster center points, a data point x is

labeled by its nearest center as follow

yi ¼ argmin
i

jjx� Aijj; i ¼ 1; . . .; k: ð3Þ

Given a set of m data points, k-means randomly choose

k data points as the initial cluster centers. In turn, every

data point is assigned to its cluster center by (3). Then,

k cluster centers points are updated by (2). The final

k clusters are obtained if no redistribution of data points or

cluster’s centroid in any cluster.

2.2 kPC

The kPC [15] wishes to cluster A into k clusters such that

the data points of each cluster lie close to a cluster center

plane defined as follows

fiðxÞ ¼ xwi þ bi ¼ 0; i ¼ 1; 2; . . .; k; ð4Þ

where wi 2 Rn is the weighted vector and bi 2 R is the bias.

kPC keeps each data point from the same cluster being the

closest to the same cluster center plane, which leads to solve

the following programming problems with i ¼ 1; 2; :::; k.

min
wi;bi

jjAiwi þ bieijj22

s:t: jjwijj22 ¼ 1;
ð5Þ

where Ai contains the rows of A that belong to the ith

cluster, ei is a vector of ones of appropriate dimension. The

geometric interpretation is clear, i.e., given the ith cluster,

the objective of (5) minimizes the sum of the distances

between the data points of the ith cluster and the ith center

plane, and the constraint normalizes the normal vector of

the center plane. The solution of the problem (5) can be

obtained by solving k eigenvalue problems [15].

Once we obtained the k cluster center planes, a data

point x is assigned to the ith cluster by

y ¼ argmin
i

jjxwi þ bijj; i ¼ 1; . . .; k: ð6Þ

Given the original data points A, kPC starts from randomly

initializing ðwi; biÞ, where jjwijj22 ¼ 1. In turn, every data

point is assigned a label by (6). Then, k center planes are

updated by solving (5). The final k cluster center planes are

obtained if a repeated overall assignment of data points to

cluster center plane or a non-decrease in the overall

objective function occur.

3 kPPC formulation

3.1 Linear kPPC

For each cluster, kPPC not only requests the objective data

points close to the corresponding center plane but also

requests the other data points far away from this cluster

center plane, which leads to solve the following program-

ming problems with i ¼ 1; 2; :::; k

min
ðwi;biÞ

jjAiwi þ bieijj22 � cjjBiwi þ bi�eijj22

s:t: jjwijj22 ¼ 1;

ð7Þ

whereAi contains the rows ofA that belong to the ith cluster

andBi is the data points not belonging to the ith cluster; c[ 0

is a parameter to weight the proximal term and the aloof

term; ei and �ei are vectors of ones with an appropriate

dimensions. Oncewe obtained the k cluster center planes, the

data points can be assigned the same as kPC by (6).

Now, we give the details to solve (7). For i ¼ 1; 2; . . .; k,
the problem (7) can be solved by the Lagrangian multiplier

method [23, 30, 31] below. The Lagrangian function of (7)

is

L ¼ jjAiwi þ bieijj22 � cjjBiwi þ bi�eijj22 � kðjjwijj22 � 1Þ;
ð8Þ

where k is the Lagrangian multiplier. Set the partial

derivatives of L with respect to ðwi; biÞ to zero, we get the

following two equalities:

1

2

oL

owi

¼ ðA>
i Ai � cB>

i BiÞwi þ ðA>
i ei � cB>

i �eiÞbi � kwi ¼ 0;

ð9Þ
1

2

oL

obi
¼ ðe>i Ai � c�e>i BiÞwi þ ðe>i ei � c�e>i �eiÞbi ¼ 0: ð10Þ

When e>i ei � c�e>i �ei ¼ 0, bi will disappear, and thus there

are two cases of the solution of (7):

Case (1). e>i ei � c�e>i �ei 6¼ 0:

Qwi ¼ kwi; ð11Þ

bi ¼
ðe>i Ai � c�e>i BiÞwi

�e>i ei þ c�e>i �ei
; ð12Þ

where Q ¼ A>
i Ai � cB>

i Biþ
ðe>i Ai � c�e>i BiÞ>ðe>i Ai � c�e>i BiÞ

�e>i ei þ c�e>i �ei
.

Case (2). e>i ei � c�e>i �ei ¼ 0:

ðA>
i Ai � cB>

i BiÞwi ¼ kwi; ð13Þ

bi ¼
1

mi

X

x2Ai

xwi; ð14Þ

where mi is the number of data points corresponding to Ai.

It is easy to conclude that wi is the eigenvector of the

smallest eigenvalue of the matrix Q in (Eqs. 11, 12) (or

A>
i Ai � cB>

i Bi of (Eqs. 13, 14, 15].

Now, we turn to the initialization of the proposed

kPPC. As we know, the initial centers selection is very
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important in both k-means and kPC [18, 32–35].

Therefore, we propose an effective way to give the

initial centers. Specifically, we introduce a similarity

graph to initialize the centers. The following steps are

adopted:

1. Calculate the P nearest neighbors undirected graph G

[36] for A by

Gij ¼
1 if xi 2 NðxjÞ or xj 2 NðxiÞ
0 otherwise

�
ð15Þ

where NðxiÞ ¼ fxð1Þi ; x
ð2Þ
i ; :::x

ðPÞ
i g is the set of its P

nearest neighbors. The data points are labeled into �c

connected components by tagging them the same label

if they are connected in G, and different labels if they

are not connected.

2. Suppose k is the number of clusters one wanted. If

�c\k, repeatedly find two neighbors with the largest

distance and break their neighborhood to divide a

connected component into two, until the number of the

current connected components is k; if �c[ k, find two

connected components of data points with the closest

distance and merge them into one repeatedly, until the

number of the current connected components is k.

3. Export the current cluster labels as the initial cluster.

According the above procedure, we obtain the following

algorithm 1.

Algorithm 1 Linear kPPC.
Input: A: Dataset; P : number of nearest neighbors;
k: number of clusters; c: appropriate parameter.
Output: wi, bi, i = 1, . . . , k; y: the label of A.
Process:
1. initialize w0

i , b
0
i by using the above Laplace graph procedure.

2. for j = 1,2, . . ., update wj
i , b

j
i by solving (7), where the ith cluster is represented

by Aj
i and the other clusters is represented by Bj

i = A\Aj
i .

3. obtain the label of Ai by using wj
i , b

j
i from (6).

4. if the algorithm converges, then terminate the iteration. Otherwise, go to Step2.

We consider the algorithm converges if a repeated

overall assignment of data points to cluster center plane or

a non-decrease in the overall objective function occur.

3.2 Nonlinear kPPC

When the data points distribution in the nonlinear manifold

(such as Figs. 5 and 6), the linear methods may not doing

well. In this section, we extend our linear kPPC to manifold

clustering by kernel trick. The thought of kernel trick [31,

37, 38] is to map the input into a higher-dimensional fea-

ture space with some non-linear transformation. The trick

is that this mapping is never given explicitly, but implicitly

applied in this newly-mapped data space. The nonlinear

kPPC formulation also follows this process.

Instead of the aforementioned linear plane in input

space, we consider the following kernel-generated surface

[39–41]

Kðx>;A>Þwi þ bi ¼ 0; i ¼ 1; 2; . . .; k; ð16Þ

where K is an appropriately chosen kernel.

Nonlinear kPPC is to minimize the following program-

ming problems with i ¼ 1; 2; :::; k.

min
ðwi;biÞ

jjKðAi;A
>Þwi þ eibijj22 � cjjKðBi;A

>Þwi þ �eibijj22

ð17Þ

s:t: jjwijj22 ¼ 1; ð18Þ

where Ai is the data points of the ith cluster and Bi is the

data points not in the ith cluster, c[ 0 is a parameter to

weight the proximal term and the aloof term, ei and �ei are

vectors of ones of appropriate dimensions. Once we

obtained k clustering surfaces, a data point x is assigned to

the ith cluster by

y ¼ argmin
i

jjKðx>;A>Þwi þ bijj; i ¼ 1; . . .; k: ð19Þ

The above problems (17, 18) also can be solved by the

Lagrangian multiplier method below

L ¼ jjKðAi;A
>Þwi þ eibijj22 � cjjKðBi;A

>Þwi þ �eibijj22
� kðjjwijj22 � 1Þ; ð20Þ

where k is the Lagrangian multiplier. Set the partial

derivatives of L with respect to ðwi; biÞ Ù:
Case (i). e>i ei � c�e>i �ei 6¼ 0:

Qwi ¼ kwi ð21Þ

bi ¼
ðe>i KðAi;A

>Þ � c�e>i KðBi;A
>ÞÞwi

�e>i ei þ c�e>i �ei
; ð22Þ

whereQ¼ðKðAi;A
>Þ>KðAi;A

>Þ�cKðBi;A
>Þ>KðBi;A

>Þ

þðe>i KðAi;A
>Þ�c�e>i KðBi;A

>ÞÞ>ðe>i KðAi;A
>Þ�c�e>i KðBi;A

>ÞÞ
�e>i eiþc�e>i �ei

Þ.

Case (ii). e>i ei � c�e>i �ei ¼ 0:

ðKðAi;A
>Þ>KðAi;A

>Þ� cKðBi;A
>Þ>KðBi;A

>ÞÞwi ¼ kwi

ð23Þ

bi ¼
1

mi

X

x2KðAi;A
>Þ
xwi; ð24Þ

where mi is the number of data points corresponding to Ai.

We also use a similarity graph to construct the initial

cluster center planes instead of the randomly initialization

for nonlinear kPPC. The process contains the following

steps: (1) we choose an appropriately kernel function
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Kð�; �Þ to map the data points into a higher-dimensional

feature space; (2) the same strategy as linear kPPC is used

to construct the initial center planes. Then, we obtain the

algorithm 2.

From algorithm 1 and 2, we can see that the main

computational cost in our kPPC is to compute one P nearest

neighbors undirected graph G and some eigenvalue

decomposition problems. The computational complexity of

each is at most O(n3). Thus, the complexity of our kPPC is

O(t � n3), where t is the number of iterations.

Algorithm 2 Nonlinear kPPC.
Input: A: Dataset; P : number of nearest neighbors; k: number of clusters;
K(·, ·): kernel function; c: appropriate parameter.
Output: wi, bi, i = 1, . . . , k; y: the label of A.
Process:
1. map A into a higher-dimensional feature space using K(·, ·).
2. initialize w0

i , b
0
i by using the above Laplace graph procedure.

3. for j = 1,2, . . ., update wj
i , b

j
i by solving (17), where the ith cluster is represented

by Aj
i and the other clusters is represented by Bj

i = A\Aj
i .

4. obtain the label of the Ai by using wj
i , b

j
i from (19).

5. if the algorithm converges, then terminate the iteration. Otherwise, go to Step3.

The convergence criterion of algorithm 2 is the same as

algorithm 1.

4 Experimental results

In this section, to validate our kPPC, experiments are

carried out on several artificial datasets and benchmark

datasets [42]. We compare our kPPC with other clustering

methods, including kmeans [28, 29], kPC [15], and updated

versions of DBSCAN [43, 44]. All these methods are

implemented by Matlab (2008a) [45] on a PC with an Intel

P4 processor (2.5 GHz) with 2 GB RAM. Clustering

accuracy and F-measure [46] are used as the performance

evaluation criterions, which are defined as follows. Con-

sider eC = ð ec1 ; :::; eckÞ a prediction partition of a clustering

method and eH = ð eh1 ; :::; ehkÞ is a artificial defined partition

of A. We refer to a pair of data points ðxi; xjÞ from A using

the following terms:

SS: if both data points belong to the same cluster of the

clustering structure eC and to the same group of eH .

SD: if data points belong to the same cluster of eC and to

different group of eH .

DS: if data points belong to different cluster of eC and to

the same group of eH .

DD: if data points belong to different cluster of eC and to

different group of eH .

Assuming now that f11, f10, f01 and f00 are the number of

SS, SD, DS and DD pairs respectively. Now we can define

the following indices to measure the degree of similarity

between eC and eH :

R and Statistic ¼ f11 þ f00

f11 þ f10 þ f01 þ f00
: ð25Þ

In this paper, the clustering accuracy is computed by the

Rand statistic [46] as above.

F-measure [46] is computed as follow:

F � measure ¼ 2 � eP � eR
eP þ eR

: ð26Þ

where eP is the precision, eR is the recall.

eP ¼ f11

f11 þ f10
: ð27Þ

eR ¼ f11

f11 þ f01
: ð28Þ

The parameter c in both linear and nonlinear kPPC is

selected from f2iji ¼ �8;�7; . . .; 8g. For the nonlinear

cluster methods, we choose the RBF kernel and select the

kernel parameter p in f2iji ¼ �8;�7; . . .; 8g. The param-

eter P nearest neighbors undirected graph based initial-

ization is selected from fP ¼ 1; 3; 5; 7; 9g.

4.1 Artificial datasets

In this subsection, four artificial datasets are generated. The

first two datasets (see Figs. 3a and 4a are composed of three

clusters and rest two datasets (see Figs. 5a and 6a are

composed of two clusters. The number of data points are

160, 160, 126, and 150, respectively. Figs. 3, 4, 5 and 6b–e

show the results of the different cluster methods performed

on these datasets. Tables 1 and 2 show the clustering

accuracies and the F-measures of these methods,

respectively.

The first two datasets are cross-plane type datasets, and

we use the linear cluster methods to cluster these datasets.

From Figs. 3 and 4 , we observe that both kPC and our

linear kPPC are better than k-means and DBSCAN on

these two datasets, and our kPPC get the best performance,

while kPC performs not as good as our kPPC. This shows

that our linear kPPC is more reasonable than the others

when the dataset has the linear structure. Table 1 shows

that our linear kPPC gives the best performance and both

the clustering accuracies and F-measure are highest.

The rest two datasets have nonlinear structure, and we

use the nonlinear cluster methods to cluster these datasets.

From Figs. 5 and 6, we observe that DBSCAN get the best

performance, and our nonlinear kPPC clusters two clusters

almost the same as the original datasets, while the other

two methods do not perform well in the nonlinear case.

This shows DBSCAN and our nonlinear kPPC can catch

1542 Int. J. Mach. Learn. & Cyber. (2017) 8:1537–1554

123



−1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

Cluster 1
Cluster 2
Cluster 3

(a) cross dataset 1
−1 −0.5 0 0.5 1 1.5 2 2.5 3

−4

−3

−2

−1

0

1

2

3

4

Cluster 1
Cluster 2
Cluster 3

(b) k-means l

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

Cluster 3
Cluster 2
Cluster 1

(c) kPC l

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

Cluster 1
Cluster 2
Cluster 3
Halo

(d) DBSCAN

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4
c=0.0039

Cluster 3

Cluster 2

Cluster 1

(e) kPPCl

Fig. 3 Different methods on cross dataset 1. ð�Þl denotes the linear cases. In e, the value of parameter c is corresponding to linear kPPC’s

clustering accuracy
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Fig. 4 Different methods on cross dataset 2. ð�Þl denotes the linear cases. In e, the value of parameter c is corresponding to linear kPPC’s

clustering accuracy
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Fig. 6 Different methods on two-moons dataset. ð�Þn denotes the nonlinear cases. In e, the value of parameters c and p are corresponding to
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the distribution of the manifold datasets more precisely.

However, DBSCAN achieves better clustering perfor-

mance than the kPPC in Table 2. As we know, DBSCAN is

a density-based spatial clustering technique and can merge

the overlapping datasets into one cluster. Therefore, we

observe that DBSCAN get the worse performance in

Table 1. While we have two non-overlapping datasets and

the spatial clustering density of the datasets is uniform in

Table 2. Therefore, the clustering effect of DBSCAN is a

little better.

4.2 Benchmark datasets

In this subsection, we compare our kPPC with the others in

their ability to recover cluster labels [15] on several

benchmark datasets listed in Table 3. We use accuracy and

F-measure as cluster evaluation criteria in the following

tables. Both the random initialization and graph-based

initialization k-means, kPC, and kPPC are experimented.

For random initialization, all these methods are run ten

times, and we record the average accuracy, the standard

deviation and the one-run CPU time in Tables 4 and 9. The

better results are marked by bold. The p value was calcu-

lated by performing a paired t test [47–49] that comparing

our kPPC to the other methods under the assumption of the

null hypothesis that there is no difference between the

dataset accuracy distributions.

From Table 4, it is seen that our kPPC has better ability

to recover cluster labels than the other methods, especially

the linear kPPC gets the six highest accuracies on these

eight datasets, and the accuracy of our kPPC is almost

higher than kPC on both random and graph-based initial-

ization. This indicates that our kPPC is better than kPC,

which means that the introduction of the between-cluster

information can improve the clustering ability of kPC.

Furthermore, graph-based clusters are more stable because

their standard deviation are always zero, while the bias of

random clusters are ranging from 0.02 to 2.17%. Therefore,

our graph-based initialized kPPC are more reasonable and

stable than randomly initialized kPPC. From Table 5, it is

seen that kmeans is more stable than other methods with

random initialization, which implies the F-measures of

these plane-based methods, includes kPC and kPPC,

strongly depend on the initialization. our linear kPPC also

gets the five highest F-measures on these eight datasets.

From Tables 4 and 5, we can seen that our kPPC owns the

highest cluster results compared with the others. One

Table 1 Experiments on linear

artificial datasets, where ð�Þl
denotes linear case

Dataset k-meansl kPCl DBSCAN kPPCl

Acc (%) Acc (%) Acc (%) Acc (%)

F-measure (%) F-measure (%) F-measure (%) F-measure (%)

Cross dataset1 65.42 76.42 36.43 96.64

53.10 78.04 49.76 97.50

Cross dataset2 59.39 75.60 58.66 99.28

53.92 67.83 66.11 99.37

Highest value in each row is in bold

Table 2 Experiments on

nonlinear artificial datasets,

where ð�Þn denotes nonlinear

case

Dataset k-meansn kPCn DBSCAN kPPCn

Acc (%) Acc (%) Acc (%) Acc (%)

F-measure (%) F-measure (%) F-measure (%) F-measure (%)

Two-circles 70.95 56.91 100.00 98.41

62.51 53.29 100.00 99.21

Two-moons 80.81 67.79 100.00 94.77

81.20 70.32 100.00 97.33

Highest value in each row is in bold

Table 3 Details of the benchmark datasets

Dataset Points Features Clusters

(a) Ionosphere 351 33 2

(b) Seeds 210 7 3

(c) Glass 214 9 6

(d) Spiral 312 2 3

(e) Jain 373 2 2

(f) Flame 240 2 2

(g) Ecoli 336 7 8

(h) Haberman 306 3 2
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shortcoming of kPPC is that the time consuming is larger

than other methods from Table 6.

For the nonlinear case, Tables 7 and 9 have the similar

results with the above linear case. Therefore confirm our

conclusions further.

4.3 Parameter influence

In this subsection, we show the influence of parameters

c and p in our kPPC of the above benchmark datasets.

Figs. 7 and 8 show the relations between the parameters

Table 4 The clustering

accuracy of the linear clustering

methods on the benchmark

datasets

Data k-meansr k-meansl kPCr kPCl kPPCr kPPCl

Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%)

p value p value p value p value p value p value

(a) 58.41 ± 0.00 58.65 50.12 ± 0.29 57.95 56.64 ± 0.42 59.89

0.0000 0.0000 0.0000 0.0000 0.0270 –

(b) 89.97 ± 0.00 89.97 57.24 ± 1.14 53.78 83.34 ± 0.65 82.37

0.0000 0.0000 0.0000 0.0000 0.0074 –

(c) 65.88 ± 1.36 67.08 65.78 ± 1.48 66.25 65.73 ± 2.16 69.29

0.0001 0.0000 0.0000 0.0000 0.0018 –

(d) 55.38 ± 0.02 55.46 55.32 ± 0.29 55.50 55.87 ± 0.25 56.27

0.0000 0.0000 0.0000 0.0000 0.6550 –

(e) 65.91 ± 0.00 66.21 61.41 ± 0.00 61.41 68.35 ± 0.03 69.43

0.0000 0.0000 0.0000 0.0000 0.8137 –

(f) 71.55 ± 0.00 73.24 55.07 ± 1.83 70.46 73.98 ± 2.17 74.39

0.0000 0.0000 0.0000 0.0000 0.0226 –

(g) 79.79 ± 1.65 83.06 27.60 ± 0.95 27.60 70.65 ± 0.00 72.38

0.0000 0.0000 0.0000 0.0000 0.0000 –

(h) 49.89 ± 0.04 63.21 52.67 ± 0.73 65.59 62.30 ± 0.93 63.55

0.0000 0.0000 0.0000 0.0000 0.0021 –

ð�Þr denotes random initialization and ð�Þl denotes the Laplace graph based initialization

Highest value in each row are in bold

Table 5 The F-measure of the linear clustering methods on the benchmark datasets

Data k-meansr k-meansl kPCr kPCl kPPCr kPPCl

F-measure (%) F-measure (%) F-measure (%) F-measure (%) F-measure (%) F-measure (%)

p value p value p value p value p value p value

(a) 71.19 ± 0.00 71.48 57.14 ± 3.85 64.23 72.21± 5.13 78.13

0.0000 0.0000 0.0000 0.0000 0.0053 –

(b) 89.09 ± 0.24 89.54 42.88 ± 2.14 45.43 81.79 ± 0.58 83.51

0.0000 0.0000 0.0000 0.0000 0.0000 –

(c) 47.95 ± 1.82 48.64 29.32 ± 1.80 40.50 44.56 ± 3.43 44.38

0.0000 0.0000 0.0000 0.0000 0.8698 –

(d) 34.98 ± 0.37 35.26 35.24 ± 0.88 36.22 43.94 ± 4.78 48.44

0.0000 0.0000 0.0000 0.0000 0.0156 –

(e) 79.61 ± 0.00 79.86 85.05 ± 0.15 85.05 82.44 ± 0.24 94.47

0.0000 0.0000 0.0000 0.0000 0.0000 –

(f) 83.24 ± 0.00 82.83 67.48 ± 0.20 82.43 76.31 ± 11.94 85.29

0.0000 0.0000 0.0000 0.0000 0.0414 –

(g) 66.67 ± 4.05 64.88 41.96 ± 0.74 42.46 49.63 ± 2.31 60.26

0.0000 0.0000 0.0000 0.0000 0.0000 –

(h) 59.55 ± 6.45 71.15 51.63 ± 2.21 57.55 68.30 ± 1.80 72.67

0.0000 0.0000 0.0000 0.0000 0.0000 –

ð�Þr denotes random initialization and ð�Þl denotes the Laplace graph based initialization

Highest value in each row is in bold
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and the accuracies of our kPPC on these datasets, where

Fig. 7 corresponds to the linear kPPC and Fig. 8 corre-

sponds to the nonlinear kPPC, respectively. In Fig. 8, we

conduct experiments on four selected benchmark datasets

listed in Table 3.

From Fig. 7, we obtain three interesting observations: (1)

we know that kPPCwith commonly setting parameter P ¼ 1

performs better than other values ofP, and kPPC oftenworks

not well if one increase P from 5, 7, and 9. Therefore, we

suggest one to set P smaller to get a better performance. (2)

the parameter c has a great influence for the clustering

accuracy, and with the increase of c, the clustering accuracy

tends to be stable. (3) kPPC performs well when c is

relatively small but larger than zero and it can be seen that

when c ¼ 0, the clustering accuracies are mostly lower. The

reason lies in that when c ¼ 0, our kPPC degrades to kPC.

Therefore, we conclude that the parameter c can be set more

flexible, such as from 0 to 64.

There are three parameters c, p, and P in the nonlinear

kPPC. From Fig. 8, we can see that (1) the parameter P ¼ 3

can makes nonlinear kPPC perform better than other values

of P. (2) both c and p have great influence for the clustering

accuracy. Moreover, c 2 ½1; 64� may be a good option to

obtain a well performance. (3) the best accuracy of the

different datasets is obtained with different p, and p 2
½0:02; 32� often makes it perform well.

Table 6 The time of the linear clustering methods on the benchmark datasets

Data k-meansr, Time (s) k-meansl, Time (s) kPCr, Time (s) kPCl, Time (s) kPPCr, Time (s) kPPCl, Time (s)

(a) 0.03 0.09 0.05 0.19 0.05 0.22

(b) 0.05 0.18 0.07 0.62 0.58 0.74

(c) 0.06 0.21 0.58 1.58 1.47 1.67

(d) 0.04 0.28 0.01 0.18 0.04 0.58

(e) 0.06 0.68 0.02 0.74 0.04 0.28

(f) 0.02 0.06 0.01 0.42 0.28 0.56

(g) 0.01 0.02 0.01 0.03 0.58 0.66

(h) 0.02 0.03 0.01 0.12 0.28 0.36

ð�Þr denotes random initialization and ð�Þl denotes the Laplace graph based initialization

Fastest one in each row are in bold

Table 7 The clustering

accuracy of the manifold

clustering methods on the

benchmark datasets

Data k-meansr k-meansl kPCr kPCl DBSCAN kPPCr kPPCl

Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%)

p value p value p value p value p value p value p value

(a) 60.67 ± 0.00 60.67 54.18 ± 0.00 54.34 68.67 59.64 ± 0.01 60.67

NAN NAN 0.0000 0.0000 0.0000 0.0000 –

(b) 90.96 ± 0.61 91.65 56.28 ± 0.31 86.66 33.01 80.17 ± 3.85 80.31

0.0000 0.0000 0.0000 0.0000 0.0000 0.1440 –

(c) 69.86 ± 0.56 69.56 57.43 ± 7.02 62.58 27.17 62.75 ± 0.02 62.77

0.0000 0.0000 0.5988 0.0000 0.0000 0.1316 –

(d) 56.17 ± 0.94 57.74 56.04 ± 0.06 59.62 100.00 65.12 ± 2.27 100.00

0.0000 0.0000 0.0000 0.0000 NAN 0.0000 –

(e) 82.46 ± 2.31 86.53 79.59 ± 11.83 88.06 90.00 79.14 ± 3.45 90.79

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

(f) 91.01 ± 0.01 95.10 79.79 ± 3.84 88.97 64.81 91.38 ± 1.25 95.10

0.3453 NAN 0.0000 0.0000 0.0000 0.0027 –

(g) 81.03 ± 0.36 82.39 70.25 ± 2.54 72.11 31.95 73.27 ± 0.23 75.35

0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 –

(h) 60.74 ± 0.54 61.26 61.20 ± 0.41 61.57 60.08 58.33 ± 4.56 62.21

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

ð�Þr denotes random initialization and ð�Þl denotes the Laplace graph based initialization

Highest values in each row are in bold
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5 Conclusions

In this paper, we have proposed an improved version of

kPC, called kPPC. In kPPC, each cluster center plane is not

only close to the objective data points but also far away

from the other data points. Our kPPC has been extended to

nonlinear clustering. In addition, the initial labels of the

data points in kPPC are computed efficiently by a Lapla-

cian graph. Preliminary experiments confirm the merits of

our kPPC. Our kPPC Matlab codes can be downloaded

from: http://www.optimal-group.org/Resource/kPPC.html.

For the future work, it seems worth to find the way to

explore the localized representations of the plane such as

[50, 51], and use other methods to construct the graph such

Table 9 The time of the manifold clustering methods on the benchmark datasets

Data k-meansr, Time (s) k-meansl, Time (s) kPCr, Time (s) kPCl, Time (s) DBSCAN,Time (s) kPPCr, Time (s) kPPCl, Time (s)

(a) 0.06 3.44 1.24 6.67 0.14 1.35 1.60

(b) 0.04 0.76 0.33 2.72 0.99 7.52 16.18

(c) 0.03 0.77 3.96 4.00 0.92 10.89 104.95

(d) 0.05 2.51 0.52 9.59 0.75 12.25 17.21

(e) 0.08 3.00 1.17 8.57 0.76 4.01 3.17

(f) 0.06 1.05 1.93 2.60 0.81 0.64 0.68

(g) 0.02 0.06 0.01 0.42 0.04 0.28 0.56

(h) 0.02 0.06 0.01 0.42 0.02 0.28 0.56

ð�Þr denotes random initialization and ð�Þl denotes the Laplace graph based initialization

Fastest one in each row is in bold

Table 8 The F-measure of the manifold clustering methods on the benchmark datasets

Data k-meansr k-meansl kPCr kPCl DBSCAN kPPCr kPPCl

F-measure (%) F-measure (%) F-measure (%) F-measure (%) F-measure (%) F-measure (%) F-measure (%)

p value p value p value p value p value p value p value

(a) 73.66 ± 0.00 73.66 67.90 ± 1.78 77.56 88.24 71.71 ± 8.41 78.13

0.0000 0.0000 0.0000 0.0000 0.0000 0.0390 –

(b) 89.15 ± 0.25 90.45 83.98 ± 8.50 86.78 50.00 83.15 ± 0.73 83.38

0.0000 0.0000 0.8289 0.0000 0.0000 0.3434 –

(c) 46.89 ± 2.91 52.20 50.22 ± 5.39 52.41 52.30 51.5 ± 0.59 52.41

0.0000 0.0000 0.2300 NAN 0.0000 0.0155 –

(d) 43.40 ± 11.30 71.27 51.01 ± 3.97 100.00 100.00 44.38 ± 4.02 100.00

0.0000 0.0000 0.0000 NAN NAN 0.0000 –

(e) 77.45 ± 1.29 73.75 77.75 ± 4.35 92.01 85.05 85.05 ± 0.00 90.00

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

(f) 94.96 ± 5.33 97.47 90.12 ± 8.57 97.47 78.26 92.70 ± 1.57 97.48

0.1687 0.0000 0.0237 0.0000 0.0000 0.0000 –

(g) 64.63 ± 2.38 89.16 53.50 ± 7.90 60.22 60.98 58.83 ± 3.70 61.51

0.0025 0.0000 0.0107 0.0000 0.0000 0.0477 –

(h) 72.66 ± 0.00 72.54 76.86 ± 6.79 73.05 85.22 70.66 ± 4.65 89.16

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

ð�Þr denotes random initialization and ð�Þl denotes the Laplace graph based initialization

Highest values in each row are in bold
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Fig. 7 Relationship of parameters c, P, and clustering accuracy for linear cases
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Fig. 8 Relationship of

parameters c, p, P, and

clustering accuracy for

nonlinear cases on Seeds:(a)-(e),

Glass:(f)-(j), Spiral:(k)-(o),

Jain:(p)-(t)
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as [52]. Also, extending kPPC by using other plane-based

classifiers such as [53, 54] and by considering fuzzy clus-

tering algorithm such as fuzzy linear c-means [55], fuzzy

c-lines [56], and fuzzy c-varieties [57] are also interesting.
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