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Abstract In this paper, a class of Caputo-type fractional-
order neural networks with mixed delay is introduced. By
employing known inequalities, such as Holder inequality,
Cauchy—Schwartz inequality and Gronwall inequality,
sufficient conditions are presented to ensure that such
neural network is quasi-uniformly stable. Finally, a
numerical example is presented to prove the theoretical
results.
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1 Introduction

Fractional calculus’s phylogeny dated back to 1695, about
300 years ago, which was used to deal with derivatives and
integrals of arbitrary. Owing to its complexity and lacking
of application background, it didn’t draw much attention
for a long time. Until recently, it has got increasing
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interests from researchers and has become a valuable tool
in modeling in various field of engineering, physics, and so
on [1-4], such as the fractional model of viscoelastic liquid
[5], the diffusion and transmission model of ware [6], the
fractional model of colored noise [7].

It has been well known that compared with classical
integer-order models, fractional-order models possesses the
heredity and memory, so that it provide an excellent
instrument to describe the behavior of system. For instance,
fractional-order models of happiness [8] and love [9] have
been developed and are claimed to give a better repre-
sentation than integer-order dynamical approaches.
Recently, some researchers apply the characteristic of
fractional calculus to neural networks to form fractional-
order neural models, which can depict the complex rela-
tionship between the signal input and signal output more
accurately and flexibly. In Ref. [10], it first introduced a
cellular neural network with fractional-order cells. In Ref.
[11], it was suggested that fractional derivatives provide
neurons with a fundamental and general computation
ability that can contribute to efficient information pro-
cessing stimulus anticipation and frequency-independent
phase shifts of oscillatory neuronal firing. Furthermore, in
Refs. [12-15], it was noted that fractional-order neural
networks might play a significant role in parameter esti-
mation, therefore, it is essential to incorporate the frac-
tional calculus into neural network models, which can said
to be an important improvement.

Currently, the analyses of fractional-order artificial
neural networks have received much attention and some
available results about fractional-order neural networks
have been obtained, especially about stability. For exam-
ple, in Ref. [16], stability of fractional-order neural net-
works of Hopfield type is proved by the way of energy-like
function analysis. Besides, employing the stability theory
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of fractional-order system, the asymptotically stability of
fractional-order neural networks of Hopfield type is ana-
lyzed in Refs. [17, 18]. The author of Ref. [19] confirm the
truth of o-stability and a-synchronization for fractional-
order neural networks. In Ref. [20], it was pointed out that
chaotic behaviors can emerge in a fractional network.
What’s more, Refs. [21-23] proposed the chaos control and
synchronization of some simple fractional networks by
mainly using laplace transformation theory and numerical
simulations. Besides, the predecessors also investigate the
discrete-time Hopfield neural networks. For example, the
stability and bifurcation for discrete-time Cohen-Grossberg
neural network is studied in Ref. [24] and the Hopf bifur-
cation and stability analysis on discrete-time Hopfield
neural network with delay is researched in Ref. [25].

To the best of our knowledge, much work has been done
about the stability of fractional-order neural networks, such
as exponential stability, Lyapunov stability, asymptotic
stability and so on. In Ref. [26], it has been demonstrated
the uniform stability of fractional-order neural networks.
Owing to the complexity of the fractional-order neural
networks, it may affected by many factors, so it is mean-
ingful to study fractional-order neural networks with mixed
delay. However, there is not exist a paper to describe the
quasi-uniform stability of fractional neural networks with
mixed delay. So to establish the sufficient criteria for such
neural networks is quite necessary and challenging. Moti-
vated by the above discussions, this paper devotes to pre-
senting sufficient criterions for quasi-uniform stability of a
class of fractional-order neural networks with mixed delay.

The rest of the paper is organized as follows. The
fractional-order network model is introduced and some
necessary definitions and lemmas are given in Sect. 2.
Sufficient conditions ensuring the finite-time stability of
the fractional-order neural networks are presented in Sect.
3. A numerical simulation is obtained in Sect. 4.

2 Model description and preliminaries

In this section we present some definitions, lemmas and
recall some well-known results about fractional differential
equations.

Definition 2.1 [I] The Riemann-Liouville fractional
integral with non-integer order § € R* of f{(s) is given as
follows:

Dylf(s) = ﬁ/os(s — 0/ (x)dr, (1)

where I'(+) is the Gamma function I'(¢) = foﬂo s<le™5ds.

Definition 2.2 [1] The Riemann-Liouville derivative
with fractional order f§ > 0 of f(s) is defined as
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=T, e
(2)

where f3 is a positive number such that n — 1<f<n € Z*.

Definition 2.3 [1] The Caputo derivative of fractional
order § > 0 of f{(s) is given by

ey d" 1 s et

DY f(s) = Dy ’”ﬁ (s) ~ T F /0 (s — )" P (0)dr,

(3)

d n—f
D} ()= 2D f(s)

where n — 1<fi<neZ*.

These three definitions are in general non-equivalent.
Based on the definition of integral derivative and the
above expressions (2) and (3), it is recognized that inte-
gral derivative of a function is only related to its nearby
points, while the fractional derivative has relationship
with all of the function history information. That is, the
next state of a system not only depends upon its current
state but also upon its historical states staring from the
initial time. As a result, a model described by fractional-
order equations possess memory. It is more precise to
describe the state of neuron. On the another hand, from
the Laplace transform of fractional derivative, the main
advantage of the Caputo derivative is that it only requires
initial conditions given in terms of integer-order deriva-
tives, representing well-understood features of physical
situations and thus making it more applicable to real
world problems. So throughout this paper, we deal with
the fractional-order neural networks involving Caputo
derivative, and the notation Df is chosen as the Caputo
fractional derivative operator Dgt. The following proper-

ties of operator D” are provided.

Lemma 2.1
€ Z", then

[27] If x(s) € C"[0,00), and n — 1 <o, f<n

(1) Dfanﬁx(s) = D7<°‘+ﬁ>x(s)7 o, f>0.
(2) DD Px(s) = x(s), > 0.
n—1 m

(3) D~PDPx(s) = x(s) — Z >

_'x
m:Om.

(4)
" (0), >0.

Lemma 2.2 [28] (Holder inequality). Suppose that

prg> 1l and 1/p+1/q=1f |f() I, | h(-) | € L'(E),
then f(-)h(-) € L'(E) and

[ tseme ravs ([ 1o pa) ([ 1 par)
E E E

(5)
where L'(E) is the Banach space of all Lebesgue mea-
surable functions
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f:E— R with [, |f(x)|dx<oo. Let p,q=2, it
Converts to the Cauchy—Schwartz inequality as follow:

/ If(x)h(x)ldx§< JCIE dx);( JALCTS dx),
(6)

., X, be non-

o=

Lemma 2.3 [29] Let k € N, and let x,x,, ..
negative real numbers. Then for n > 1.

k n k
<Z> <HD A ™
i=1 i=1

Lemma 2.4 [30] (Gronwall inequality). If

w0 <50+ [ g(u)x(udut € 0.7),

where all the functions involved are continuous on [0, T),
T < oo, and g(t) >0, then x(t) satisfies

< f0+ [ tg(u)f(#)exp{ / tg(v)dv}du,t e 0, 7).
®)

If, in addition, f(t) is nondecreasing, then

s < send [ tg(u)du},t el0,7) )
3 Main results

In this section, two sufficient conditions are derived for a
class of fractional-order neural networks of mixed delay
with order 0<f<0.5 and 0.5<f<1. The dynamic
behavior of a continuous fractional-order neural network
with mixed delay can be described by the following dif-
ferential equation.

DPxi(t) = —eixi(t) + 3 afi(x;(1)) + 3 biyg(x;(t — 1))
+ Z mj; ffr_a h,(x,(u))du + I[(l),
)C,'([) = wi(t)vt € [_V;O); 1AS max{T7 O-}a
(10)
or equivalently
{Dﬂx(t) =—Gx(t) + AF(x(t)) + BG(x(t — 1)) + .4 [} H(x(u))du+I(t),
X(I) :l//(t)rte [7%0)7"/ Emax{r,cr},
(11)
where 0<ff<1,i = 1,2...,n, n corresponds to the number

of units in a neural network; x(1) = (x1 (1), x2(2), . . ., x,(£))"
corresponds to the state vector at time t; F(x(z))

R (0)).L02), . fula®)s  Gx() = (g1(n (),
£(0(),  ogba()" and  H(x(1) = (h(x (1),
hy(x2(2), . . ., hy(x,(2)))" denote the activation function of

the neurons; % = diag(c; > 0), o/ = (a;), % = (b;) and
M = (mjj) are constant matrices; ¢; denotes the rate with
which the ith unit will reset its potential to the resting state
in isolation when disconnected from the network.
of = (a;), B = (b;) and .M = (my;) are referred to the
connection of the jth neuron to the ith neuron at time t,
t — 1 and t — g, respectively, where 7 and ¢ is the trans-
mission
(I,(t), I(1), .. .,I,(t))" is an external bias vector.

For the initial conditions associated with system (10),it
is usually assumed that v,(s) € C([-7,0],R),i € N, and
the norm of C([—7,0],R) is denoted by ||V [|=supsci_ 0]
I 9(s) Il

Suppose that x(7) and y(#) are any two solutions of (11)
with different initial functions € C and ¢ € C,
W (0) = ¢(0) =0, let x(r) — y(r) = e(t)=(e1(2), ex(t), ...,

en(t))", @ =-¢, one obtain the error system

{D«e(t>_%(,>+,9/(F<x<t)>F@(t)))%(g(x(”))G@(m)))

delay and a nonnegative constant; [ =

A [} (H(x(u)) = H(y(u)))du,
e(t)=o(t),t€[—7,0),y e max{r,0},

(12)

where ¢ € C, ¢(0) =0 is the initial function of system (11),
define the norm || @ || = supsei— 0 || @(s) |-

Definition 3.1 For any ¢ > 0, if there exists two constants
0<d<e, T >0, when || e(ty) || <, we have || e(t) || <e,
Vi € J = [t,to + T], where ty is the initial time of obser-
vation, then system (11) is said to be quasi-uniformly
stable.

In order to obtain main results, the following assump-
tions are made:

(1) Denote ||x||=2, |x| and || o/ ||= maxi<j<n
X! | |a; |, which are the Euclidean vector norm and
matrix norm, respectively ; x; and a; are the
elements of the vector x and the matrix .7,
respectively.Let C=|| €|, A=| < ||, B=| % |,
and M =|| A |.

(2) The neuron activation functions F(x), G(x) and
H(x) are Lipschitz continuous, namely, there exist
positive constants F, G and H such that

[F(u)=F) | <Flu—v|,|Gu)—GW) | <G|lu—v],

|H(u)—H®W) || <H||lu—v|,Yu,v€R.

(13)

Theorem 3.1 When 1/2<p <1, if assumption (1) and
(2) hold and

1 —e—@+W()r

L—e WOy g
P+ Qe +W(t)eWn+2e( p 0] <-, telJ,

1w W 5
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where 1 '
le@ 1< [ () || += [ (1= w)"(C+AF) | e(u) | du
_ s SMPH?T(2f—1) o r(ﬁ)/o
- Cp4 *W =BG et |
_SMPH*T(2f—1)  5SBG*T(2f—1)(1 —e™®) 1
- I—Z(ﬂ)4ﬁ Fz(ﬁ)4ﬁ ’ + / (t—u 'B (/ MH || e(s) || ds)du
_ 10028~ DI(C +AF) 4 BG*e )] _ L e(w) | du
L= T : ||<p<>||+r(ﬁ)/0<r )THC+AF) [l e(u) | d
*H? L [ —u)f! e(u—rt u
v 57, =0 BG el |
W) = L+ NPR(1 — e ), b = ([ 1 s

then system (11) is quasi-uniformly stable.

Proof Let the initial time 7, = 0,e9 = ¢(0) is the initial
condition of system (12). Depend on Lemma 2.1, the
solution of the system (12) can be expressed in the fol-
lowing form:

e(t) = ¢(0) + D~ P[~Ge() + o/ (F(x(1)) — F(y(1)))
+2(Gx(t = 1)) = Gly(t — 1))

t

v [ ) - H(y<u>>>d4

t—ao

—00) + 115 | (= 0 ()

+ o (F(x(uw)) — F(y(u)))
+A(G(x(u = 1)) = G(y(u — 7))

+ %/l )))ds}d

Trough the Assumptions (1), (2) and the properties of norm
I - |, it obtain

Fe(@) [I< 1 @(0) | +ﬁ/ot(t*’4)ﬁ_l[c le(u) | +AF || e(u) ||
+BG || e(u—1) | +/i MH || e(s) || ds}du

= L t —uﬂfl e(u U
—||<P(0)H+F(ﬁ)/0(t )" (C+AF) || e(u) || d

L t —u)P! e(lu—1 u
g =BG | elu=) |

+ﬁ/ot(t7u)ﬁ_l (/_MH le(s) | ds)du

@ Springer

b [ ([ e s )au

< 100 | +ﬁ / (= )P N(C A | ew) | du
L t —uﬁf1 e(lu—rt u
i =0 BG el |
MHt/H )l du+ MHa||(p|| /i]d.
[}

According to Cauchy—Schwartz inequality (6), one gets

le) 1< llol +ﬁ / (= w1 (C - AF) || ew) | e

+ﬁ/ot(t— W) e BG || e(u—1) || e “du

MH? [t —u
Tr(ﬂ)/oe e(u) || e "du

MHos | ¢ |
L'(p) 0

<lloll+p ( / '<r—u>2"*ze2"du>7

1

(/Ot(CJrAF)Z I e(u) |2 6*2“du>5

1

+ﬁ ( /0 t(r - u)2ﬁ_2e2“du)2
</132G2 | e(u—1) | ez"du>%
it ([ @) ([ 1ewrpea)

o[ oo [ )

(15)

t
(1 —u) e "du
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Since

t t
/ (l o u)2ﬁ72€214du — / 252 2 (t—2) dZ —¢ / Z2/372672zdZ
0 0 0

2t 2t 2 2t
¢ / W2t du < :—ﬂF(Zﬁ -1).

57 |
(16)
Substituting (16) into (15), one obtains
1 [2T(2f—1)e¥\?
el < o+ ()
( / (CHAFY? [ e(u) ||zez”du)2
0
L (2r(2ﬁ—1)e2f>%
7
r(p) 4 | (17)

(/ G eur) ||2€2”du)7
I (62[_1> ([ 1ewre d)
) (7).

From Lemma 2.2, let k=5 and n=2, it follows from (17)
that

— 2t pt
I < Sl P+t [ erar et e

10T (28— 1)e*

) R 2 -2
W | B°G ||e(u—1) || e " du

M2H2 2/3 o2 1 o
M [ ew e
SMZHZ 2||¢'H2r(25*1)( -1
I2(p)4b
SM2H?a’ T (2B —1)(e* —1) N
S
10T (28— 1)(CH+AF)*e®  SM2H22 (1)
L2 (p)4t 2BT(B)
[ et e a
10028 —1)e [ e o
W[132G26 2 He(u) Hze 2 du
- [5 5M2H252£g?§);ﬁ1)(e2'—1)} ol
100(28—1)(C+AF)%e¥  SM2H2 2P (2 1)
T2 ()4 2BT(B)
[ etwizea
IOF Qﬂ e 22 2t 2 o2
ABGe le(u) |2 e 2 du
0
lOF 2ﬁ‘4}: / BGPe ™ || e(u) | e 2“du

1505
SMPH2GPT(2f— 1) (¥ — 1)
e T lol?
N 10T (28— 1)[(C+AF)? +B*G2e e  SM2H21B(e%-1)
2(p)4b 2BT(B)
' o, SBPGPT(2B—1)(1— e >)e*
[ eI s ()4 lol?
B 5+5M2H2021"(2[f—1)(ez'—1) 5B2GET(2f—1)(1 —e X)X
= [ I—2(ﬁ>4/ﬁ 1—-2(!;)4/; }
lolP+ 10T (28— 1)[(C+AF)? +B*G2e e SM2H21B(e%~1)
¢ T2(p)4s 26T ()
/H ”2 2“du

{S_SMZH2 P C(2B—1)

SMPH*T(2—1)
()4 G
SB’GT(2B—1)(1—e7%),
B e o

100 (28— 1)[(C+AF)? + B2G?e™ 2]
r2(p)4b

i [ e e

5M2H2t2/3 21— 1

26T (B
let
p_s SM?H?*’T (2 — 1)
- (g
0= SMPH*PT(28 —1)  5BGT(2p — 1)(1 — e~ %)
(B4 2 (p)4b ’
, _loreg-j(c +AF)? 4+ B*G?e™ ]
- I (B)4# ’
_ 5M?H?
2BT(B)”
since
| e(®) |7 < (P+0Qe) || @ ||* +(Le* + NeF)(e* — 1)
t
[ ety e
0
which is equivalent to
le(@) [P e < (Pe™ + Q) || ¢ |I* +[(L+ Ne*)

(1— e ] / I e(w) |2 e du.

According to the Gronwall inequality (8), it obtain

le(0) ? ™

t
<P 40) 0|+ / (Pe+0)|| o
,zt)kf;(L+Nt2/f)(1—e’2’)dxdu
e el

% /[(Pe—Zu +Q)e(t—u)[(L-%—Ntz/‘)(l—e’z’)]du’
0

X [(L+NPy(1—e
<P+ Q) [l @ | +[(L+NeF) (1 -
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let L=5""E(C+AF)? + 57 'B1Gle TE,
W(t) = L+NPP(1 —e), - 57 'MiH1 N7 B
N—W, W(l)—L+Nl 5
then

le() P e < (Pe +Q) | @ | +W(1)e™ || ¢ |

t
/ (Pe™ 4+ Qe ") dy
0

=P+ Q) | P +W(D)e™ | o |?

t t
</ Pe 2“du + Q/ e_W(’>”du)
0 0

<P +0) | o |IP +W(0)e™

Pl — e~ 2wt 1 — e Wt )
( 2w W )”¢”

_ {Pe_zt + O+ W()eM®

1 — e~ 2+W)t 1 — e WO 5
P } ,
( 2w W )|¢|

SO

I e(r) I < [P+ Qe + W(n)el V02

Pl _ e 2HW) Ql _ oW Lol
2+ W(r) 70 e
therefore
e |l <
1 — e @+W)t 1 — e Wt
2t (W(n)+2)t
\/P-i-Qe + W(r)eWn+ <P W0 W >||(p||‘

(18)

It follows that when || ¢ || <9, if (3.1) is satisfied, then
|| e() || <e, from Definition 3.1, one can obtain system
(11) is quasi-uniformly stable.

Theorem 3.2 When 0 < <1/2, if assumption (1) and (2)
hold and

a5 2 W(0)P(eWW+a) — 1) W(£)QeW+a)r(1 — e=W()1)
\/P+ et g+ W) W(t)
<§, teld,
(19)
where
Fowh-p+ 1)]5, p_ 501,

- [F”(ﬁ)pp"*l’+1
5971BIGIE(1 — e )
q

Q + 5c1—11‘,[c11r_141qu~7

@ Springer

p=1+p,g=1+4+1/B, then system (11) is quasi-uni-
formly stable.

Proof As the same in Theorem 3.1, we have the follow-
ing estimate form of solution of system(12).

(011 1 00) |+ [ (=0 1C elw) | 4 e

+BG |l e(u—1) | —I—/; MH || e(s) || ds]du

= L f —u)! e(u U
—\|¢(0)||+r(ﬁ)/0(t )" (C+AF) | e(u) || d

L t —u)! e(u—t u
g =BG | elu=1) 14

+ﬁ/0t(tfu)ﬂ71 (/;MHH e(s) | ds)du

Let p=1+4+pf,g=1+1/p, we can see that, p,g > 1 and
1/p+1/g=1. By using the Holder inequality (5), one
obtain

Hdﬁ”§H¢H+f%5£(FﬁNL?%C+AFMe@HkﬂWM

. t —u)f e e(u—1)|le " du
g | (=BG el e

il
ﬁ?x/"u<nw"w

MHUII@II/

H“D'Hﬁ(/o (t—u )pﬁpe””duy

( /0 (CHAFY | e(u) |"e“’”du>q
+ﬁ ( /0 t(t—u)”ﬁ_”e”“duyl

1

(/ 6 eu—) |qeq“du>q
0
MHtP v | ‘ o )
B (/0 e an( [ Ne(w e >
M( " opug, pbep )”l( o )5
+ r(p) /Oeﬂ (t—u)"Pdu /Oe au g,

ﬁ e~ du
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eI ol 4+ ([ - u>"’“’e'mdu)’l’

( / (CHAPY | efu) | d)
0
L ' — )PP gpu )'l
+ 0 </0 (t—u)"" el du
(/thGq || e(u—1) || e‘”‘du)a
0
MHtﬁept (/ | e(u) | e qudu>

MHq | ¢ | ( / 5 )
—l—— €pul‘ up pdu .
g\ @Y
Note that

t
/ (t—u)’P P e du =
0

(20)

t t
/ Zp/f—pep(t—z)dzz et / Zpﬁ—pe—pzdz

0 0

Dt pt

e _p —

= u’P=r e~ qy
prr 0

Dt

<l eh=pt). (1)

O
Substituting (21) into (20), we has

lewi=lol+(oa=tiy

(/o (C+AF)"||e(w) ||qe‘q“d”)q+ (W)
</ BIGY || e(u—1) qu—qudu)"
0

MHtﬂe i
/ﬁ’F i) (/ lle(u)||9e™ "“du)

L(pB— p+1)> '

wmtiolol (“Trigito

Then form Lemma 2.2, let k=5 and #=g, one gets

_ (" T(pp—p+1 ’
ety o5 g I 450 (R 22

/ (C+AFY | ew) [ ¢ du

0

L (@TEB—p+ 1)
+57 (“ter)

t
/ BiGY || e(u —7) || e "du
0

54~ quHqtq/fepl ” e(u) |1 e~
ﬁqrq

T(pp—p+ 1)\
e o 1) (SR

let

P [F(pﬁ—p+ 1)}{

I (B)pr-rtt

then

le()[[1< (57" +57 ' MIH g Ee”) || ¢ ||

59-1 ppa 4B ot

R

t
/ le(u) [ e da
0

+5"_11§"e‘”/ BiGY || e(u—71)||?e "du

< (57 57 MIH G Ee™) || ¢ ||
59-1MaH419P 1"

+ {5q*‘E(C+AF)qeq’+ FT(f)

t
/ le(u) [ du
0

t
+ Sq_'Ee‘”/ BiGle™ 1 || e(u) ||7 e " du
0

0
+5q’ll:?e‘”/ BiGTe " || e(u) |9 e "du

- 59~ 1BIGIE(1 —e 7
§<5q4+544Mquoqu4f (1= em)e” )||(p\|q

59— ppa 9P 0t
pIT(B)

u) ||7e " *"du

+ {Sq‘lé(c +AF)%e? +

+597 1 BIGIe T o] / Il e(

597 1BIGIE(1 — e

591 pMpa 9P 1t
pT(B)
t
+5q’IBque"”Eeqq/ le(w) ||? e du,
0

+ {SqflE(C +AF) et +
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let
p=5"
59 1BIGIE(1 — &™)

0= + 59 MIFIYIE,
q
L=57"E(C+AF)? +57'BiGle E,
- 59 IMIHY
N = —my )
BT (B)
one gets

I e() 1 < (P+Qe) || ¢ |17
t
+ (Let +1\~/t’1ﬁe’1’)/ | e(u) |7 e "du,
0
then
le(t) |7 e < (Pe + Q) || @ ||
t
(L + N / I e(u) || e~du.
0

Form the Gronwall inequality (8),it follows that

le(@)[|17e™" < (Pe™ +0) [ ¢ ||+

t L
« (i+th/f)/ (P~ +0) || o |9 oo LNehyds g
0

let

W(t) = L+ Nt?¥,

then

le() |7e < (Pe+0) [l @ |7 +W(1) | @ |17

t -
/ (ﬁefqu + Q)eW(t)(tﬂt)du
0

= (P + Q) [ @ |1 +W() || @ |14 ™

t t
X [/ Pe=Wugy o Q/ e_”W(’)du]
0 0

=P "+ Q) || @ |7 +W(2) || @ ||7 7O

1 — e gt _ oW
x (P A e ,

q+ W() W ()
SO
L W () P(eW a1 — 1)
q g
| e() [|7< | P+ Qe + T
W( Qe WO+ (] _ p=Wi
A0 W(tg ¢ )1 o,

@ Springer

therefore
e | <
J— W(OP(eWO+at — 1) W () OeWD+a)i (] — =Wt
[ o+ ORI 1) | 1W(1)0etW 0 ol
q+W(t) W(t)

It follows that when || ¢ || <9, if (19) is satisfied, then
|l e(?) || <e, from Definition 3.1, one can obtain system
(11) is quasi-uniformly stable.

4 An illustrative example

In this section, a numerical example is presented to illus-
trate the result. Let us consider the two-state fractional-
order mixed delay neural network model.

DP(x1(1)) = —0.1x;(£) + 0.2 (x1(r)) — 0.1f>(x2(2))
—0.5g1(x1(t— 1)) — 0.1g2(x2(t — 7))
+ / 1045, (x1 (1)) — 0. 1> (x2(a0)) e

—0

DP(xy(1)) = —0.1x2(2) + 0.1f1 (x1 (1)) — 0.2f2(x2(2))
—0.2g1(x1 (1 — 7)) = 0.1g2(x2(2 — 7))

Where the activation function is described by the function

filxi()) = gi(xi(2)) = hi(x;(¢)) = tanhx (i =1,2). So
F=G=H=1.

0.1 O 02 -0.1
€ = 5 o = )

0 0.1 0.1 —-02

-05 -0.1 04 -0.1
B = , M= .

-02 -0.1 0.1 02
Obviously, C =0.1, A =0.3, B=0.7, M = 0.5. Next is
needs to verify the quasi-uniform stability. Let #) =0,
0=0.1, e=1, 6=0.05.

On one hand, when f=0.7, through employing the
MATILAB, it could be verified that P = 4.9938, O = 0.2278,
L =2.7994, N = 0.6878, W(r) = 3.0884. By the inequality
\/p 1 Qe + W(t)eW W+ (p 1751‘2;(:%)(1)» ) 17‘;—(:;@):) <t
it could be obtained that 7 = 0.6690. On the other hand, when
B = 0.3, by means of the MATLAB, it could be noted that E =

2.4949, P = 213.7470, Q0 = 9.2269, L = 83.7659, N =
16.9440, W(r) = 84.1261, form calculating the inequality

a5 = ot W(,)[B(e(w}(z)+q)t,1) W(t)Qe(W(’H‘”’(lfe""-’(’)’)
\/P Qe+ g+W(0) + 0]

PR
< > 1t

gets T = 0.0522.
Then with fixed order 5, show the trajectories of x; with
different initial values. Here choose 7=0.1,0=
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0.05, 8 = 0.7, give the time evolution of state with x; () = o8 B=0.3
0.8,0.5,0.1,—0.1,—-0.5,—0.8 (see Fig. 1), and under the ' ‘
same conditions show the trajectories of x, with different 061 1
initial values. Chosen to be x(f) =0.8,0.5,0.1,—0.1, 04l )
—0.5,—0.8 (see Fig. 2). o
On the other hand, with fixed order =0.3, show the “ |
trajectories of x; and x, with the same conditions as above x 0
(see Figs. 3, 4). o2l ]
Furthermore, with fixed delay ¢ = 0.1, confirmed order
B =0.7, unchangeable initial values x;(f) =0.5, 04T |
x(t) = 0.5, give the trajectories of x; and x, with different -06} g
the other delay 7 = 0.1,0.5,0.8 (see Figs. 5, 6). 08 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Following, with fixed delay t =1, confirmed order 0 5 10 15 210 25 30 35 40
$=0.7, unchangeable initial values x; () = 0.5, x,(r) = 0.5,
show the trajectories of x; and x, with different the other ~ Fig. 3 The trajectories of x;  with  initial  values
delay o = 0.05,0.1,0.2 (see Figs. 7, 8). x1(r) = 0.8,0.5,0.1, 0.1, nbsp; ~0.5, nbsp; —0.8
From the above numerical results, we could note that the
neural network in this example is quasi-uniformly stable,
p=0.3
0.8 T
B=0.7
0.8 T 0.6 - b
06 g 04k i
0.4 g 02l i
0.2 L g C>\<l 0 L
‘>_< 0 [ = _02 Fr <
-0.2 1 Bl _04+ 4
-04 Bl ~06} 4
oer | 08 5 10 15 20 25 30 * 40
-0.8 ‘ ‘ ‘ ‘ ‘ ‘ ‘ t
0 5 10 15 20 25 30 35 40

Fig. 1 The trajectories of x; with initial values x;(#) = 0.8,0.5,0.1,
~0.1,-0.5,—0.8

B=0.7
0.8 T

1 |

5 10 15 20 25 30 35 40
t

x2
o

Fig. 2 The trajectories of x, with initial values x,(#) = 0.8,0.5,0.1,
~0.1,-0.5,-0.8

Fig. 4 The trajectories of x, with initial values x,(#) = 0.8,0.5,0.1,
—0.1,nbsp; —0.5, nbsp; —0.8

0=0.1
0.6 T

0.5

04t 1

x1

0.2 4

0.1 1

Fig. 5 The trajectories of x; with the same ¢ = 0.1, the different
t=20.1,0.5,0.8
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0=0.1
0.5 T

1=0.1
0.45 - 1=0.5
1=0.8
0.4 B

0.35 | 1
0.3 1
Y025 B
0.2 1
0.15 1
0.1 1

0.05 1

0 10 20 30 40 50 60 70 80
t

Fig. 6 The trajectories of x, with the same ¢ = 0.1, the different
1=0.1,0.5,0.8

=1
0.6 T T T T T T T

05|

04 b

0.3 b

x1

0.2 b

0 10 20 30 40 50 60 70 80

Fig. 7 The trajectories of x; with the same t =1, the different
g =0.05,0.1,0.2

=1
0.5 T T

0=0.05
0.45 - 0=0.1 |

6=02 |

04
0.35 1
0.3 1
Yo.25
0.2
0.15

0.1

50 60 70 80

Fig. 8 The trajectories of x, with the same t =1, the different
o =0.05,0.1,0.2
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and also the influence on quasi-uniform property with
varying initial values and delays.

5 Conclusions

In this paper, quasi-uniform stability problems of a class of
fractional-order neural networks with mixed delay is
investigated. Not as in the integer-order delayed systems, it
is very difficult to construct Lyapunov functions for frac-
tional-order case. So by using only the inequality scaling
skills in this paper, sufficient conditions ensuring quasi-
uniform stability are derived. Finally, it can obtain that the
fractional-order neural networks with mixed delay con-
sidered in this paper is quasi-uniformly stable through the

numerical example and corresponding numerical
simulation.
Acknowledgments The authors are extremely grateful to anony-

mous reviewers for their careful reading of the manuscript and
insightful comments, which help to enrich the content. We would also
like to acknowledge the valuable comments and suggestions from the
editors, which vastly contributed to improve the presentation of this

paper.

References

1. Chua LO (1971) Memristor—the missing circut element. IEEE
Trans Circuit Theory 18:507-519

2. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The
missing memristor found. Nature 453:80-83

3. Tour JM, He T (2008) Electronics: the fourth element. Nature
453:42-43

4. Podlubny I (1999) Fractional differential equations. Academic,
New York

5. Butzer PL, Westphal U (2000) An introduction to fractional
calculus. World Scientific, Singapore

6. Hilfer R (2001) Applications of fractional calculus in physics.
World Scientific, Hackensack

7. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and
application of fractional differential equations. Elsevier,
Amsterdam

8. Song L, Xu SY, Yang JY (2010) Dynamical models of happiness
with fractional order. Commun Nonlinear Sci Numer Simul
15(3):616-628

9. R.C. Gu, Y. Xu (2011) Chaos in a fractional-order dynamical
model of love and its control. In: Li SM, Wang X, Okazaki Y,
Kawabe J, Murofushi T, Li G (eds) Nonlinear mathematics for
uncertainty and its applications. AISC, Springer, pp 349-356,
881-886

10. Arena P, Caponetto R, Fortuna L, Porto D (1998) Bifurcation and
chaos in noninteger order cellular neural networks. Int J Bifurc
Chaos 8(7):1527-1539

11. Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Frac-
tional differentiation by neocortical pyramidal neurons. Nat
Neurosci 11(11):1335-1342

12. Chon KH, Hoyer D, Armoundas AA (1999) Robust nonlinear
autoregressive moving average model parameter estimation using
stochastic recurrent artificial neural networks. Ann Biomed Eng
27(4):538-547



Int

. J. Mach. Learn. & Cyber. (2017) 8:1501-1511

1511

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Raol JR (1995) Parameter estimation of state space models by
recurrent neural networks. IET Control Theory A 142(2):114-118
Beer RD (2006) Parameter space structure of continuous-time
recurrent neural networks. Neural Comput 18(12):3009-3051
Huang H, Huang TW, Chen XP (2013) A mode-dependent
approach to state estimation of recurrent neural networks with
Markovian jumping parameters and mixed delays. Neural Netw
46:50-61

Wu A, Zhang J, Zeng Z (2011) Dynamic behaviors of a class of
memristor-based Hopfield networks. Phys Lett A 375:1661-1665
Wen S, Zeng Z, Huang T Dynamic behaviors of memristor based
delayed recurrent networks. Neural Comput Appl. doi:10.1007/
$00521-012-0998-y

Zhang G, Shen Y (2013) Global exponential periodicity and
stability of a class of memristor-based recurrent neural networks
with multiple delays. Inform Sci 232:386-396

Wu H, Zhang L (2013) Almost periodic solution for memristive
neural networks with time-varying delays. J Appl Math, V,
Article ID 716172, p 12. http://dx.doi.org/10.1155/2013/716172
Zhang R, Qi D, Wang Y (2010) Dynamics analysis of fractional
order three-dimensional Hopfield neural network. In: Interna-
tional conference on natural computation, pp 3037-3039

Zhou S, Li H, Zhu Z (2008) Chaos control and synchronization in
a fractional neuron network system. Chaos Solitons Fractals
36:973-984

Zhu H, Zhou S, Zhang W (2008) Chaos and synchronization of
time-delayed fractional neuron network system. In: The 9th

23.

24.

25.

26.

217.

28.

29.

30.

international conference for
pp 2937-2941

Zhou S, Lin X, Zhang L, Li Y (2010) Chaotic synchronization of
a fractional neurons network system with two neurons. In:
International conference on communications, circuits and sys-
tems, pp 773-776

Zhao HY, Wang L, Ma CX (2008) Hopf bifurcation and stability
analysis on discrete-time Hopfield neural network with delay.
Nonlinear Anal Real World Appl 9:103-113

Zhao HY, Wang L (2006) Stability and bifurcation for discrete-
time CohenCGrossberg neural network. Appl Math Comput
179:787-798

Chen L, Chai Y, Wu R, Ma T, Zhai H (2013) Dynamic analysis
of a class of fractional-order neural networks with delay. Neu-
rocomputing 111:190-194

Li CP, Deng WH (2007) Remarks on fractional derivatives. Appl
Math Comput 187:777-784

Mitrinovic DS (1970) Analytic inequalities. Springer, New York
Kuczma M (2009) An introduction to the theory of functional
equations and inequalities: Cauchy’s equation and Jensen’s
inequality. Birkhauser, Switzerland

Corduneanu C (1971) Principles of differential and intergral
equations. Allyn and Bacon, USA

Young computer scientists,

@ Springer


http://dx.doi.org/10.1007/s00521-012-0998-y
http://dx.doi.org/10.1007/s00521-012-0998-y
http://dx.doi.org/10.1155/2013/716172

	Quasi-uniform stability of Caputo-type fractional-order neural networks with mixed delay
	Abstract
	Introduction
	Model description and preliminaries
	Main results
	An illustrative example
	Conclusions
	Acknowledgments
	References




