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Abstract This paper discusses a parallel machine

scheduling problem in which the processing times of jobs

and the release dates are independent uncertain variables

with known uncertainty distributions. An uncertain pro-

gramming model with multiple objectives is obtained,

whose first objective is to minimize the maximum com-

pletion time or makespan, and second objective is to

minimize the maximum tardiness time. A genetic algo-

rithm is employed to solve the proposed uncertain machine

scheduling model, and its efficiency is illustrated by some

numerical experiments.

Keywords Machine scheduling problem � Uncertain
variable � Uncertain programming � Genetic algorithm

1 Introduction

Machine scheduling problem is concerned with finding an

efficient schedule during an uninterrupted period of time

for a set of machines to process a set of jobs. Machine

scheduling problems arise in a wide field of real life and so

are important from both theoretical and practical view-

points. Since the pioneering work of Johnson [9] and

Naughton [23], theory for machine scheduling has been

greatly enlarged and improved. In 1977, Lenstra et al. [12]

studied the complexity of machine scheduling problems,

and showed that most classical machine scheduling prob-

lems were NP-complete. In 1979 Graham et al. [6] pro-

posed an expression of three parameters a j b j c where a, b
and c represented machine environment, job characteristic

and optimality criteria respectively to describe scheduling

problems.

In a machine scheduling problem, processing time and

release date are important factors that affect scheduling

plan. Originally, release dates and processing times were

assumed to be exact numbers. A great deal of models and

algorithms have been developed, such as Baker and

Scudder [2], Mokotoff [22], Lam and Xing [11], Pinedo

[27] and Xing et al. [32]. Since in real life processing times

and release dates are usually difficult to be crisp numbers,

the indeterminacy is taken into account. With the propo-

sition of probability theory by Kolmogorov in 1933, Ban-

erjee [3] was the first who investigated a single machine

scheduling problem with random processing times. Later,

different machine scheduling problems with random pro-

cessing times were researched. In 1977, Hodegson [7]

described a single machine scheduling problem with ran-

dom processing times, in which he showed that Lawler’s

efficient algorithm was optimal even when the processing

times were random. Seo et al. [29] studied the single

machine scheduling problem for the objective of mini-

mizing the expected number of tardy jobs where the jobs

had normally distributed processing times and a common

deterministic due date. Scheduling problems with random

release dates were also studied by many researchers.

Pinedo [26] studied stochastic scheduling problems in

which the processing times of jobs, the release dates and

the due dates were random variables and the objectives

were minimization of the expected weighted sum of com-

pletion times and the expected weighted number of late

jobs. Ahmadizar et al. [1] dealt with a stochastic group
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shop scheduling problem in which both the release date of

each job and the processing time of each job on each

machine were random variables with known distributions,

and the objective was to find a job schedule which mini-

mized the expected makespan.

Since the concept of fuzzy set was proposed by Zadeh in

1965, many researchers began to study machine scheduling

problems by fuzzy set theory. Prade [28] first used fuzzy

set theory to deal with a real scheduling problem in 1979.

Later, Ishibuchi et al. [8] proposed two fuzzy flowshop

scheduling problems with fuzzy due dates and provided

hybrid genetic algorithms and neighborhood search algo-

rithms. Peng and Liu [24] presented three types of parallel

machine scheduling models with fuzzy processing times in

order to satisfy the different decision requirements, and

used a revised genetic algorithm to solve the models in

2004. Petrovic and Fayad [25] described a fuzzy shifting

bottleneck procedure hybridised with genetic algorithm for

a real-world job shop scheduling problem where fuzzy sets

were used to model uncertain processing times of jobs and

their release dates and due dates. Gharehgozli et al. [5]

presented a new mixed-integer goal programming model

for a parallel-machine scheduling problem with sequence-

dependent setup times and release dates. Two objectives

were considered in the model to minimize the total

weighted flow time and the total weighted tardiness

simultaneously in 2009.

As we know, in reality, there are cases that we lack

observed data and all available are only belief degrees that

are given by experts to describe the distributions of pro-

cessing times. For example, when processing new types of

products, there are no historical data of the processing

times and the distributions of them can only be given by

domain experts’ evaluations expressed by belief degrees.

Kehneman and Tversky [10] found that too much weight

was given to the chance of unlikely events. A lot of surveys

showed that human beings usually estimate a much wider

range of values than the object actually takes (Liu [17]).

For this reason, the belief degree is inappropriate to be

treated as random variable or fuzzy variable. In order to

deal with the belief degree mathematically, an uncertainty

theory was founded by Liu [13] in 2007 and refined by Liu

[16] in 2010 based on normality axiom, duality axiom,

subadditivity axiom and product axiom.

Within the framework of uncertainty theory, a concept

of uncertain variable was defined by Liu [13] as a mea-

surable function on an uncertainty space. Meanwhile, a

series of concepts such as uncertainty distribution, inde-

pendence, expected value, variance and entropy, etc, were

also proposed to describe an uncertain variable. And now,

uncertainty theory has been deeply developed in many

fields such as uncertain programming [18, 31, 33],

uncertain finance [4, 15] and uncertain differential equation

[30, 34], etc.

Uncertain programming, as a type of mathematical

programming involving uncertain variables, was first pro-

posed by Liu [14] in 2009. Machine scheduling problem

with uncertain processing times was also proposed as an

example. An uncertain machine scheduling model [16] was

built, of which the objective is to minimize the expected

makespan. Since then uncertain multi-objective program-

ming and uncertain goal programming were presented by

Liu and Chen [18], and uncertain multilevel programming

was proposed by Liu and Yao [19]. In 2013, Zhang and

Meng [35] proposed an expected-variance-entropy model

for uncertain parallel machine scheduling where the pro-

cessing times are regarded as uncertain variables with

known uncertainty distributions. Li and Liu [20] built an

uncertain goal programming model for the machine

scheduling problem and an intelligent algorithm was

introduced to solve the equivalence based on a revised

genetic algorithm.

Using uncertainty theory to solve machine scheduling

problem, less effort has been done for studying the case

where the release date of each job is indeterminate. In

reality, the release dates of jobs are not determinate. So in

many literatures, release dates are considered as random

variables [1, 26] or fuzzy variables [5, 25]. However, for

example, when there does not exist sample data for the

release date of a new job, it is advisable to regard the

release date as an uncertain variable. The domain experts

are invited to estimate the distributions of the uncertain

variables so as to be accordant with the practical situation.

And it is well-known that any machine has different pro-

cessing ability which is taken into account in this paper. So

in this paper, the highlights is that we regard processing

times and release dates as uncertain variables, meanwhile,

we consider the machines with different processing

capacity. The objective is to minimize the expected

makespan and the tardiness time of the scheduling under

the processing ability constraint.

In this paper, we further study machine scheduling

problem, and build a multi-objective programming model

for machine scheduling problem, of which the objectives

are to minimize the makespan and the maximum tardiness

time under the constraint of the capacity of a certain

machine. The rest of the paper is organized as follows. In

Sect. 2, some basic concepts and theorems about uncertain

variables are introduced. Section 3 describes the uncertain

machine scheduling problem with uncertain processing

times, uncertain release dates and a common determinate

due date. In Sect. 4, we will build an uncertain multi-

objective machine scheduling model, and transform it into

a crisp programming model. After that, we will introduce
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an intelligent algorithm to solve the crisp programming

model in Sect. 5, and illustrate the algorithm via some

numerical experiments in Sect. 6. At last, some remarks are

made in Sect. 7.

2 Preliminary

In this section, some basic concepts and theorems in

uncertainty theory are introduced, which are used

throughout this paper.

Definition 2.1 (Liu [13]) Let L be a r-algebra on a

nonempty set C. A set function M is called an uncertain

measure if it satisfies the following axioms:

Axiom 1. (Normality Axiom) MfCg ¼ 1;

Axiom 2. (Duality Axiom) MfKg þMfKcg ¼ 1 for

any K 2 L;
Axiom 3. (Subadditivity Axiom) For every countable se-

quence of fKig 2 L, we have

M
[1

i¼1

Ki

( )
�

X1

i¼1

MfKig:

The triplet ðC;L;MÞ is called an uncertainty space, and

each element K in L is called an event. In addition, in order

to obtain an uncertain measure of compound event, a

product uncertain measure is defined by Liu [15] via the

following product axiom:

Axiom 4. (Product Axiom) Let ðCk;Lk;MkÞ be uncer-

tainty spaces for k ¼ 1; 2; . . .. The product uncertain

measure M is an uncertain measure satisfying

M
Y1

k¼1

Kk

( )
¼

1̂

k¼1

MkfKkg

where Kk are arbitrarily chosen events from Lk for

k ¼ 1; 2; . . ., respectively.

Definition 2.2 (Liu [13]) An uncertain variable n is a

measurable function from an uncertainty space ðC;L;MÞ
to the set of real numbers, i.e., for any Borel set B of real

numbers, the set

fn 2 Bg ¼ fc 2 CjnðcÞ 2 Bg

is an event.

Definition 2.3 (Liu [13]) The uncertainty distribution U
of an uncertain variable n is defined by

UðxÞ ¼ M n� xf g; 8x 2 R:

Definition 2.4 (Liu [16]) An uncertainty distribution

UðxÞ is said to be regular if it is a continuous and strictly

increasing function with respect to x at which 0\UðxÞ\1,

and

lim
x!�1

UðxÞ ¼ 0; lim
x!þ1

UðxÞ ¼ 1:

In addition, the inverse function U�1ðaÞ is called the in-

verse uncertainty distribution of n.

An uncertain variable n is said to be linear if it has a

linear uncertainty distribution

UðxÞ ¼
0; if x\a

ðx� aÞ=ðb� aÞ; if a� x� b

1; if x[ b

8
><

>:

which is denoted by n�Lða; bÞ. Apparently, the linear

uncertain variable n is regular, and has an inverse uncer-

tainty distribution

U�1ðaÞ ¼ aðb� aÞ þ a:

An uncertain variable n is said to be normal if it has a

normal uncertainty distribution

UðxÞ ¼ 1þ exp
pðe� xÞffiffiffi

3
p

r

� �� ��1

; x 2 R

denoted by n�Nðe; rÞ where e and r are real numbers

with r[ 0. The normal uncertain variable is regular, and

the inverse uncertainty distribution is

U�1ðaÞ ¼ eþ r
ffiffiffi
3

p

p
ln

a
1� a

:

Definition 2.5 (Liu [15]) The uncertain variables

n1; n2; . . .; nn are said to be independent if

M
\n

i¼1

ðni 2 BiÞ
( )

¼
n̂

i¼1

M ni 2 Bif g

for any Borel sets B1;B2; . . .;Bn of real numbers.

Definition 2.6 (Liu [13]) Let n be an uncertain variable.

The expected value of n is defined by

E½n� ¼
Z þ1

0

Mfn� rgdr �
Z 0

�1
Mfn� rgdr

provided that at least one of the above two integrals is

finite.

For an uncertain variable n with an uncertainty distri-

bution U, we have

E½n� ¼
Z þ1

0

1� UðrÞð Þdr �
Z 0

�1
UðrÞdr:

If the inverse uncertainty distribution U�1 exists, then

E½n� ¼
Z 1

0

U�1ðaÞda:

Theorem 2.1 (Liu [16]) Assume n1; n2; . . .; nn are inde-

pendent uncertain variables with regular uncertainty
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distributions U1;U2; . . .;Un, respectively. If the function

f ðx1; x2; . . .; xnÞ is strictly increasing with respect to

x1; x2; . . ., xm and strictly decreasing with respect to

xmþ1; xmþ2; . . .; xn, then n ¼ f ðn1; n2; . . .; nnÞ has an inverse

uncertainty distribution

W�1ðaÞ ¼ f U�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1ð1� aÞ; . . .;U�1

n ð1� aÞ
� �

:

In addition, Liu and Ha [21] proved that the uncertain

variable n has an expected value

E½n� ¼
Z 1

0

f U�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1ð1� aÞ; . . .;U�1

n ð1� aÞ
� �

da:

Theorem 2.2 (Liu [17]) Let n1; n2; . . .; nn be independent
uncertain variables with regular uncertainty distributions

U1;U2; . . .;Un, respectively. If the function gðn1; n2; . . .; nnÞ
is strictly increasing with respect to n1; n2; . . ., nm and

strictly decreasing with respect to nmþ1; nmþ2; . . .; nn, then
Mfgðn1; n2; . . .; nnÞ� 0g� a holds if and only if

gðU�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1ð1� aÞ; . . .;U�1

n ð1� aÞÞ� 0:

3 Uncertain parallel machine scheduling problem

Parallel machine scheduling is used to schedule jobs

processed on a series of same-function machines, with

optimized objective. For example, in surgery scheduling,

we regard surgery patients as jobs, and regard the doctor,

anesthesiologist, nurse and surgical equipment taken as a

whole as a machine. If we regard the hospital operating

rooms as parallel machines, a surgery is regarded as a job

which need some machines to carry on at the same time.

Then surgery scheduling is the parallel machine

scheduling problem. Assigning the doctors and the sur-

gery who will perform to the operating room in order to

make the latest operation as early as possible which lead

to all the procedure done as soon as possible. Obviously,

in this surgery scheduling, the processing times and

release dates of jobs are indeterminate and it is more

reasonable for doctors to estimate the processing times

and release dates.

In a parallel machine scheduling problem suppose that

n independent jobs have to be processed on m machines. In

addition, the following hypotheses are considered.

H1 There is only one operation for each job and this

operation can be processed on any one of the machines

without interruption.

H2 Uncertain release dates or ready times, and a

common determinate due date D may be considered

for jobs.

H3 Each machine can process only one job at a time.

H4 The processing times are uncertain variables with

known uncertainty distributions.

H5 The release dates are uncertain variables with known

uncertainty distributions.

We utilize the representation method proposed by Liu

([16]) via two decision vectors x and y, where

x ¼ ðx1; x2; . . .; xnÞ: integer decision vector representing

n jobs with 1� xi � n and xi 6¼ xj for all i 6¼ j,

i; j ¼ 1; 2; . . .; n. That is, the sequence fx1; x2; . . .; xng is a

rearrangement of f1; 2; . . .; ng;
y ¼ ðy1; y2; . . .; ym�1Þ: integer decision vector with

y0 � 0� y1 � y2 � � � � � ym�1 � n � ym.

Note that the schedule is fully determined by the deci-

sion vectors x and y in the following way. For each

kð1� k�mÞ, if yk ¼ yk�1, then the machine k is not used,

and if yk [ yk�1, then machine k is used and processes jobs

xyk�1þ1, xyk�1þ2, . . .; xyk in turn. In other words, the schedule

of all machines are as follows:

Machine 1 : xy0þ1 ! xy0þ2 ! � � � ! xy1 ;

Machine 2 : xy1þ1 ! xy1þ2 ! � � � ! xy2 ;

� � �
Machine m : xym�1þ1 ! xym�1þ2 ! � � � ! xym :

Let gi denote the uncertain release dates of jobs i, ni;k
denote the uncertain processing times of jobs i on machines

k and Ciðx; y; nÞ denote the completion times of jobs i ,

i ¼ 1; 2; . . .; n, respectively. For each k with 1� k�m, if

the machine k is used, (i.e., yk [ yk�1), we can obtain

Cxyk�1þ1
ðx; y; nÞ ¼ gxyk�1þ1

þ nxyk�1þ1;k

and

Cxyk�1þj
ðx; y; nÞ ¼ Cxyk�1þj�1

ðx; y; nÞ _ gxyk�1þj
þ nxyk�1þj;k

for all 2� j� yk � yk�1. From the recursive formula, we

can derive the value Cxyk
ðx; y; nÞ which is the time that the

machine k finishes all the jobs assigned to it. Thus the

makespan of the schedule of ðx; yÞ is determined by

f ðx; y; nÞ ¼ max
1� k�m

Cxyk
ðx; y; nÞ:

Thus the tardiness time of the scheduling is ðf ðx; y; nÞ �
DÞþ where D is the common determinate due date of the

scheduling.

4 Uncertain multi-objective machine scheduling
model

There is a common situation in real applications where

there are parallel machines with different capabilities. For

simplicity, assume that the machine k0 is supposed to stop

working before time T0 with a confidence level a0. Then
we have the constraint
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MfCxyk0
ðx; y; nÞ� T0g� a0:

In order to minimize the expected makespan and the

tardiness time of the scheduling under the above constraint,

we construct the following uncertain multi-objective

machine scheduling model,

min
x;y

; E½f ðx; y; nÞ�;E½ðf ðx; y; nÞ � DÞþ�
� �

subject to :

MfCxyk0
ðx; y; nÞ� T0g� a0

1� xi � n; xi 6¼ yj; i 6¼ j; i; j ¼ 1; 2; . . .; n

0� y1 � y2 � � � � � ym�1 � n

xi; yj; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m� 1; integers

8
>>>>>>>>>><

>>>>>>>>>>:

ð1Þ

where a0 2 ½0; 1� is a predetermined confidence level.

Let Ui;k denote the uncertainty distribution of ni;k and Wi

denote the uncertainty distribution of gi. In the premise of

using the machine k, (i.e., yk [ yk�1), Cxyk�1þ1
ðx; y; nÞ ¼

gxyk�1þ1
þ nxyk�1þ1;k

which is the completion time of job

xyk�1þ1, is an increasing function with respect to gxyk�1þ1
and

nxyk�1þ1;k
. By Theorem 2.1, it has an inverse uncertainty

distribution H�1
xyk�1þ1

ðx; y; aÞ via

H�1
xyk�1þ1

ðx; y; aÞ ¼ W�1
xyk�1þ1

ðx; y; aÞ þ U�1
xyk�1þ1;k

ðx; y; aÞ:

Similarly, Cxyk�1þj
ðx; y; nÞ ¼ Cxyk�1þj�1

ðx; y; nÞ _ gxyk�1þj
þ

nxyk�1þj;k
, the completion time of job xyk�1þj, has an inverse

uncertainty distribution

H�1
xyk�1þj

ðx; y; aÞ ¼ H�1
xyk�1þj�1

ðx; y; aÞ _W�1
xyk�1þj

ðx; y; aÞ

þ U�1
xyk�1þj;k

ðx; y; aÞ

for all 2� j� yk � yk�1. In fact, we can derive the inverse

uncertainty distribution !�1ðx; y; aÞ of the makespan

f ðx; y; nÞ via

!�1ðx; y; aÞ ¼ max
1� k�m

H�1
xyk
ðx; y; aÞ:

It follows from Liu and Ha [21] that

E½f ðx; y; nÞ� ¼
Z 1

0

!�1ðx; y; aÞda

and

E½ðf ðx; y; nÞ � DÞþ� ¼
Z 1

0

½!�1ðx; y; aÞ � D�þda:

Besides, by Theorem 2.2, the constraint

MfCxyk0
ðx; y; nÞ� T0g� a0 is equivalent to

H�1
xyk0

ðx; y; a0Þ� T0:

So the uncertain multi-objective machine scheduling model

(1) is equivalent to

min
x;y

Z 1

0

!�1ðx; y; aÞda;
Z 1

0

½!�1ðx; y; aÞ � D�þda
� �

subject to :

H�1
xyk0

ðx; y; a0Þ� T0

1� xi � n; xi 6¼ yj; i 6¼ j; i; j ¼ 1; 2; . . .; n

0� y1 � y2 � � � � � ym�1 � n

xi; yj; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m� 1; integers:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð2Þ

In order to solve the crisp model (2), we employ the

weighted sum method, and solve the following program-

ming model

min
x;y

x1

Z 1

0

!�1ðx; y; aÞdaþ x2

Z 1

0

½!�1ðx; y; aÞ � D�þda
� �

subject to :

H�1
xyk0

ðx; y; a0Þ� T0

1� xi � n; xi 6¼ yj; i 6¼ j; i; j ¼ 1; 2; . . .; n

0� y1 � y2 � � � � � ym�1 � n

xi; yj; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m� 1; integers

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð3Þ

where x1 and x2 are the weights of the first and second

objectives, respectively.

5 Hybrid intelligent algorithm

In this section, we employ a genetic algorithm to solve the

crisp programming model (3), which is performed in the

following steps.

Step 1: Representation

In an uncertain machine scheduling problem, we use a

vector V ¼ ðx; yÞ ¼ ðx1; x2; . . .; xn; y1; y2; . . .; ym�1Þ as a

chromosome to represent a solution, where

x ¼ ðx1; x2; . . .; xnÞ, representing n jobs, is a rearrangement

of f1; 2; . . .; ng, and y ¼ ðy1; y2; . . .; ym�1Þ satisfying

0� y1 � y2 � � � � � ym�1 � n represents an assignment of

n jobs on m machines.

Step 2: Initialization

Give the population size of one generation pop size and

the confidence level a0 in advance. Generate ðx; yÞ ran-

domly, and obtain a vector ðx; yÞ ¼ ðx1; x2; . . .; xn; y1;
y2; . . .; ym�1Þ. Calculate H�1

xyk0
ðx; y; a0Þ and verify whether it

is less than T0 or not. If so, the vector ðx; yÞ is feasible, and
we get a chromosome. Otherwise, regenerate another

vector ðx; yÞ. Repeat this process for pop size times, and

we get pop size chromosomes ðx1; y1Þ; ðx2; y2Þ; � � � ;
ðxpop size; ypop sizeÞ.
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Step 3: Evaluation

Give the weights x1 and x2 in advance. For each

chromosome ðx; yÞ, calculate the objective values

x1

Z 1

0

!�1ðx; y; aÞdaþ x2

Z 1

0

½!�1ðx; y; aÞ � D�þda:

Rearrange ðx1; y1Þ; ðx2; y2Þ; . . .; ðxpop size; ypop sizeÞ accord-
ing to their objective values in an ascending order, and

denote them by ðx01; y01Þ; ðx02; y02Þ; . . .; ðx0pop size; y
0
pop sizeÞ.

Then the fitness of the chromosome ðx0i; y0iÞ is fi ¼ að1�
aÞi�1

for i ¼ 1; 2; . . .; pop size, where a 2 ½0; 1� is a given

parameter. Calculate the total fitness F ¼
Ppop size

i¼1 fi and

further the evaluation function is Evalðx0i; y0iÞ ¼
fi
F
.

Step 4: Selection

Calculate the cumulative probability qk for the kth

chromosomes ðx0k; y0kÞ by qk ¼
Pk

i¼1 Evalðx0i; y0iÞ; k ¼
1; 2; . . .; pop size; and set q0 ¼ 0. Generate a random

number u 2 ð0; 1� and select the chromosome ðx0k; y0kÞ if

qk�1\u� qk. Repeat the process for pop size times to get

a new generation of the chromosomes.

Step 5: Crossover

Give a crossover probability Pc in advance. For each

chromosome ðxi; yiÞ, generate a random number

ui 2 ½0; 1�; i ¼ 1; 2; . . .; pop size. If ui �Pc, then ðxi; yiÞ is

selected as a parent for crossover operation. Divide all the

selected chromosomes into some groups such that each

group contains only two chromosomes and perform cross-

over operations on these groups. Without loss of generality,

suppose two chromosomes V1 ¼ ðx1; y1Þ and V2 ¼ ðx2; y2Þ.
And their children chromosomes are V

0
1 ¼ ðx1; y2Þ and

V
0
2 ¼ ðx2; y1Þ. If these two children are feasible, then we

replace the parents with them. Otherwise, we use the original

chromosomes V1 ¼ ðx1; y1Þ and V2 ¼ ðx2; y2Þ.
Step 6: Mutation

Give a mutation probability Pm in advance. For each

chromosome ðxi; yiÞ, generate a random number ui 2 ½0; 1�,
i ¼ 1; 2; . . .; pop size. If ui �Pm, then (xi; yiÞ is selected for
mutation operation. For a chosen chromosome V ¼ ðx; yÞ,
as for the gene x, generate two different integers n1 and n2
between 0 and n randomly. Replace n1 and n2 and obtain a

new gene. As for the gene y, generate two integers k1 and

k2 between 1 and m� 1 randomly, Without loss of gen-

erality, suppose k1\k2. Generate randomly k2 � k1 þ 1

integers, sort the sequence in ascending order, get

y0k1 ; y
0
k1þ1; . . .; y

0
k2

replacing yk1 ; yk1þ1; . . .; yk2 and obtain a

new gene. If it is feasible, then replace the chromosome

with the new one. Otherwise, regenerate n1, n2, k1 and k2
until the new one is feasible.

Step 7: Repetition

Repeat Steps 3–6 for a number of cycles, and select the

best chromosome as the optimal solution for model (3).

6 Experimental illustration

A numerical example is covered in this section to illustrate

the feasibility and effectiveness of the designed hybrid

algorithm. The numerical experiments are performed on a

personal computer, and the parameters of genetic algorithm

include the population size pop size, the probability of

crossover Pc, the probability of mutation Pm and the

parameter a in the evaluation function. Assume 12 jobs

will be processed on 4 machines with corresponding

parameters of the programming model (3) are shown in

Table 1.

In addition, assume machine k0 ¼ 2 tends to stop

working before T0 ¼ 20 with a confidence level a0 ¼ 0:9.

The common determinate due date is D ¼ 30 and the

weights of the objectives are x1 ¼ 1, x2 ¼ 100 which

indicate that more attention is paid to minimize the tardi-

ness time. Then the crisp model (3) is

min
x;y

Z 1

0

!�1ðx;y;aÞdaþ100

Z 1

0

½!�1ðx;y;aÞ�30�þda
� �

subject to :

H�1
xy2
ðx;y;0:9Þ�20

1�xi�n;xi 6¼ yj;i 6¼ j; i; j¼1;2; . . .;n

0�y1�y2� ��� �ym�1�n

xi;yj; i¼1;2; . . .;n; j¼1;2; . . .;m�1; integers:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð4Þ

In view of identification of parameters’s influence on

solution quality, we compare solution by careful variation

of parameters of genetic algorithm with the same genera-

tion as a stopping rule. The computational results are col-

lected in Table 2, where the parameters of genetic

algorithm are given in table from the first column to the

fourth column. ‘gen’ in fifth column is the generation in

Table 1 Jobs, uncertain processing times and uncertain release dates

Job i Ui;1 Ui;2 Ui;3 Ui;4 Wi

Job 1 L(2,3) L(3,5) L(2,4) L(3,4) N (2,1)

Job 2 L(4,6) L(4,8) L(5,8) L(6,8) N (3,1)

Job 3 L(6,9) L(7,9) L(7,8) L(6,8) N (2,0.5)

Job 4 L(3,5) L(5,7) L(4,6) L(2,5) N (4,1)

Job 5 L(7,11) L(10,13) L(9,12) L(8,12) N (3,0.5)

Job 6 L(5,8) L(6,9) L(6,7) L(6,8) N (4,1)

Job 7 L(1,5) L(3,4) L(2,4) L(3,5) N (2,1)

Job 8 L(5,7) L(4,7) L(5,8) L(6,8) N (2,0.5)

Job 9 L(8,11) L(8,12) L(9,12) L(10,13) N (1,0.5)

Job 10 L(3,7) L(4,8) L(5,7) L(4,7) N (5,1)

Job 11 L(2,6) L(4,6) L(3,5) L(3,6) N (1,1)

Job 12 L(4,8) L(5,9) L(4,7) L(5,8) N (6,1)
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genetic algorithm, and ‘objective schedule’, ‘objective

value’ are provided in the sixth column and seventh col-

umn respectively. In addition, the parameter ‘relative

error’ in the last column is defined as

(objective value � optimal value) = optimal value 	 100%

where the optimal value is the least one of the six objective

values in the seventh column.

From Table 2, we can see that the relative error does not

exceed 4.15 % when various parameters of genetic algo-

rithm are selected, which implies the hybrid algorithm is

effective to solve model (4). We can obtain the optimal

value in the fifth line of Table 2, and optimal schedule is

displayed in Table 3.

Since there are two parameters x1, x2 in objective

function in model (3), we had better analysis the relation-

ship between the objective value and the two parameters.

In the following, we fix pop size ¼ 40, Pc ¼ 0:4, Pm ¼ 0:2

and a ¼ 0:05. We consider one case as under different

weights and fix other parameters as in the model (4) and the

result of the objective value is displayed in Table 4.It can

be seen from Table 4 that different weights affect the

objective values. In the experimental environment, the

objective values are not monotone.

In real life, once attention is paid only to reduce the

losses caused by tardiness, we assume x1 ¼ 0 and x2 ¼ 1.

Then the model (3) is changed into

min
x;y

Z 1

0

½!�1ðx; y; aÞ � D�þda

subject to :

H�1
xyk0

ðx; y; a0Þ� T0

1� xi � n; xi 6¼ yj; i 6¼ j; i; j ¼ 1; 2; . . .; n

0� y1 � y2 � � � � � ym�1 � n

xi; yj; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m� 1; integers:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð5Þ

In the model (5), we still employ the processing times

and release dates showed in Table 1 and set k0 ¼ 2,

T0 ¼ 20, and D ¼ 30. Examine the sensitivity of confi-

dence level a0 in the constraint H�1
xy2
ðx; y; a0Þ� 20 and the

result is displayed in Table 5.As is seen from Table 5, the

objective values are increasing with respect to the confi-

dence level a0.

7 Conclusions

This paper proposed an uncertain machine scheduling

problem, of which the release dates and processing times

were described as uncertain variables with known uncer-

tainty distributions. An uncertain multi-objective pro-

gramming model was built for the problem, where the

objectives are to minimize the makespan and the tardiness

time of the scheduling simultaneously. The proposed

uncertain machine scheduling model was transformed into

a crisp equivalence by assigning different weights. An

intelligent algorithm was designed to solve the crisp

Table 2 Compare solutions

pop size Pc Pm a gen Objective schedule Objective value Relative error (%)

30 0.4 0.1 0.05 500 (8,12,9,11,10,7,6,2,4,5,1,3; 3,5,9) 23.8725 1.68

30 0.5 0.05 0.06 500 (3,5,1,9,8,2,12,4,7,6,10,11; 3,5,8) 24.0551 2.46

30 0.5 0.1 0.07 500 (3,5,10,11,9,7,8,1,6,12,2,4; 3,5,9) 23.9404 1.97

40 0.4 0.1 0.06 500 (9,2,12,1,11,8,5,3,7,10,4,6; 4,6,8) 24.4399 4.10

40 0.4 0.2 0.05 500 (9,4,5,2,8,1,11,6,12,10,7,3; 3,5,9) 23.4765 0

40 0.5 0.1 0.07 500 (8,2,4,11,5,1,7,3,6,9,12,10; 4,5,9) 24.4514 4.15

Table 3 Optimal schedule

Machines Schedule

Machine 1 9 ! 4 ! 5

Machine 2 2 ! 8

Machine 3 1 ! 11 ! 6 ! 12

Machine 4 10 ! 7 ! 3

Table 4 The objective values under different weights

x1 x2 Optimal schedule Objective value

0 100 (5,3,2,9,10,6,1,7,8,12,11,4; 3,4,8) 1.050

1 100 (9,4,5,2,8,1,11,6,12,10,7,3; 3,5,9) 23.4765

50 50 (11,5,9,4,8,10,1,3,7,6,12,3; 3,5,9) 1232.2

100 1 (5,1,11,7,3,8,4,2,12,9,10,6; 4,6,9) 2497.5

100 0 (1,3,7,2,8,4,9,10,12,11,5,6; 4,6,9) 2130

Table 5 The objective values under different a0 in model (5)

a0 0.6 0.7 0.8 0.85 0.9 0.95

Objective value 0 0 0.0014 0.0048 0.0105 0.0439
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equivalence, and was illustrated via some numerical

experiments.
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