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Abstract Metric-space indexing abstracts various data

types into universal metric spaces and prunes data only

exploiting the triangle inequality of the distance function in

metric spaces. Since there is no coordinates in metric

space, one usually first pick a number of reference points,

pivots, and consider the distances from a data point to the

pivots as its coordinates. In this paper, we first survey and

discuss the state of the art of pivot selection for metric-

space indexing from the perspectives of importance,

objective function, number of pivots, and selection algo-

rithm. Further, we propose a new objective function, a new

method to determine the number of pivots and an incre-

mental sampling framework for pivot selection. Experi-

mental results show that the new objective function is more

consistent with the query performance, the new method to

determine the number of pivots is more efficient, and the

incremental sampling framework leads to better query

performance.

Keywords Metric-space indexing � Pivot selection �
Intrinsic dimension � Objective function � Range query

1 Introduction

Among the characteristics or challenges of big data, ‘‘va-

riety’’ is relatively less studied. To conquer ‘‘variety’’, one

can first find a universal abstraction covering various data

types, and then build data management and analysis system

based on the characteristics of the universal abstraction.

Such system works for any particular data type that is a

special case of the universal abstraction [1].

Metric space [2] has been proposed as a universal

abstraction for big data [1]. Metric space does not make

any requirement of the intrinsic structure of data, but only a

distance function, with the non-negativity, symmetry and

triangle inequality properties, of pairs of data points [2].

Since there is no coordinates in metric space, many

mathematical tools cannot be directly applied. As result, a

common first step of data management and analysis in

metric space is to impose coordinates to data. To do so, one

can pick a number of reference points, named pivots [3–6].

For an arbitrary data point, its distances to the pivots can be

calculated and these distances form the imposed coordi-

nates of this data point [7].

According to the pivot space model [7], pivot selection

in metric space is analogous to dimension reduction in

multi-dimensional space. The coordinate information

available to data processing steps that follow is determined

by pivot selection. As a result, pivot selection is of critical

importance in metric-space data management and analysis.
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There are at least three issues that need to be settled

down in pivot selection. The first issue is the objective

function of pivot selection, or the criterion in comparing

two set of pivots. The second issue is the number of pivots

to be selected. The more are the pivots, the more infor-

mation they provide, but also the more space occupied. It is

worthwhile to achieve a good balance between information

available and space occupation. The third issue is the pivot

selection algorithm. Given the objective function and the

number pivots, the importance of a pivot selection algo-

rithm determining good pivots with reasonable time and

space consumption is obvious.

Our contributions are two-folds. First, we briefly survey

the state of the art of pivot selection in metric space from

the perspectives of objective function, number of pivots

and selection algorithm. To the best of our knowledge, this

is the first paper surveying pivot selection from the above

three perspectives.

Second, we propose new ideas for all the three per-

spectives above. That is: (1) we propose a new radius-

sensitive objective function for pivot selection for metric-

space indexing. Experimental results show that the new

objective function is more consistent with query perfor-

mance than existing ones; (2) we propose a new method to

determine the number of pivots based on the eigenvalues of

the coordinate matrix. Experimental results show that this

method is of comparable performance to one of the best

existing methods, but is computationally simpler; (3) an

incremental sampling pivot selection framework is pro-

posed. Experimental results shows its superiority to exist-

ing methods.

The remainder of this paper is organized as follows: The

importance of pivot selection is discussed in Sect. 2. We

survey existing objective functions and propose a new

objective function in Sect. 3. A survey of number of pivots

determination methods and a new method to determine the

number of pivots are presented in Sect. 4, followed by a

survey of existing pivot selection algorithms and an

incremental sampling pivot selection framework in Sect. 5.

Experimental results are presented in Sect. 6, followed by

conclusions and future work in Sect. 7.

2 The importance of pivot selection

Let S = {xi | i = 1, 2,…, n} be a dataset in metric space, d

be the distance function and P = {pj | j = 1, 2, …, k} be a

set of pivots selected from S. The above notation will be

followed throughout this paper.

According to the pivot space model [7], pivot selection

defines a mapping from metric space to a k-dimensional

space, named the pivot space. For an arbitrary point x in S,

its image, xp, in the pivot space derived by P is:

xp ¼ d x; p1ð Þ; . . .; d x; pkð Þð Þ:

When k = n, i.e. all points in S are selected as pivots,

the derived pivot space is called the complete pivot space

[7]. It has be proved that the mapping to the complete pivot

space is isometric [7] with respect to the L? distance in

the complete pivot space, where

L1 a1; a2; . . .; anð Þ; b1; b2; . . .; bnð Þð Þ ¼ maxi jai � bijð Þ

When k\ n, pivot selection is analogous to dimension

reduction in multi-dimensional space. Since pivot selection

is usually the first step of data processing in metric space, it

determines the coordinate information available to subse-

quent data processing steps. Therefore, the importance of

pivot selection is obvious.

In the following, we present four examples to show the

different effect of different pivots.

Example 1 Let’s consider a dataset consists of three

points A, B and C with values 1, 2 and 3, respectively.

Figure 1 shows the pivot spaces with A, B or C as the

pivot, respectively. When A or C is the pivot, all three

points are distinguishable in the pivot space, while A and C

are not distinguishable in the pivot space when B is the

pivot. This example gives a heuristic that corners of data

might form good pivots. Please note that this is different

from a common heuristic in the area of clustering, where

centers are usually picked to represent the clusters.

Example 2 Let’s consider a dataset consists of three

thousand points randomly selected from unit square, and

two pivots are to be selected. According to Example 1,

corners might be good pivots. Figure 2 show the pivot

spaces with opposite corners or neighboring corners as the

pivots. Apparently, when neighboring corners are pivots,

data distribute more widely, or data is more distinguish-

able, than the case that opposite corners are pivots. This

example gives a heuristic that neighboring corners are

better than opposite corners.

Example 3 This example (Fig. 3) is similar to Example 2

except that data was randomly sampled from then unit ball.

Similar heuristic can be drawn here.

Fig. 1 Pivot spaces of three numbers
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Example 4 This example considers all the 65,536 strings

consist of only 0 or 1 of length 16 with Hamming distance.

In this example, when opposite corners, i.e. ‘‘0000 0000

0000 0000’’ and ‘‘1111 1111 1111 1111’’, are pivots

(Fig. 4a), data in the pivot space fall on a line. This is

because the Hamming distance between a ‘‘0/1’’ string and

Fig. 2 Pivot spaces of 3000 points randomly selected from the unit

square with Euclidean distance: a original data, b pivots (0,0) and

(1,1), c pivots (0,0) and (0,1)

Fig. 3 Pivot spaces of 3000 points randomly selected from the unit

ball with Euclidean distance: a original data, b pivots (0,0) and (1,1),

c pivots (0,0) and (0,1)
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‘‘0000 0000 0000 0000’’ is the number of ‘‘1’’s in the

string, and the Hamming distance between a ‘‘0/1’’ string

and ‘‘1111 1111 1111 1111’’ is the number of ‘‘0’’s in the

string. As a result, the sum of the distances is the length of

the string, 16. Consequently, the points in Fig. 4a fall on

the line x ? y=16. When neighboring corners, i.e. ‘‘0000

0000 0000 0000’’ and ‘‘0000 0000 1111 1111’’, are pivots

(Fig. 4b), data in the pivot space distribute more widely

and are more distinguishable. Again, this example indicates

that neighboring corners are better pivots than opposite

corners.

3 Objective function

Most existing work on pivot selection focus on heuristic

selection algorithm, and the objective function is less

studied. The ultimate goal of pivot selection is the query

performance of index. Therefore, the best or the real

objective function of pivot selection is the query perfor-

mance. Unfortunately, query performance is not available

during pivot selection. As a result, all existing objective

functions try to estimate the query performance. In the

following, we first introduce existing objective functions,

and then propose a radius-sensitive objective function for

metric-space similarity indexing.

3.1 The state of the art

We enumerate popular objective functions in the following.

3.1.1 Maximum variance

Vantage point tree (VPT) [8, 9] is an indexing tree for

similarity search in metric space. It only exploits one pivot

for each index node. According to the pivot space model

[7], with one pivot, data is mapped into a one-dimensional

pivot space. VPT’s objective function for pivot selection is

the variance of data in the one-dimensional pivot space.

That is, VPT selects the pivot maximizing the variance of

data in the pivot space. Venkateswaran et al. [30] adopt the

same idea, i.e.:

p ¼ argmaxtðVar d x; tð Þð Þ; x 2 S; t 2 TÞ

This objective function can be used iteratively to select

more pivots.

3.1.2 Maximally separated

The LAESA [33] proposes to select pivots that are maxi-

mally separated. That is, the sum of the inter-pivots dis-

tances should be maximized:

P ¼ argmaxTð
X

d x; yð Þ; x; y 2 T ; T � S; Tj j ¼ kÞ

Traina et al. [38] propose to select pivots near the hull of

the dataset. They choose points that have the most similar

distances to the previously chosen pivots as new pivot. The

underlying objective function is very similar to this Max-

imally Separated one.
Fig. 4 Pivot spaces of 65536 binary strings of length 16 with

Hamming distance

314 Int. J. Mach. Learn. & Cyber. (2016) 7:311–323

123



3.1.3 Priority vantage point

The KVP structure [31, 32] proposes the idea of priority

vantage point. That is, pivot is better if close or distant to

query or data, and the closest is better than the furthest for

clustered data. Therefore, as an extension of LAESA, they

first select a large set of pivots by somemethods, and then, for

each data object, only store its distances to a subset (close or

distant) of the pivots. During search, the order of pivots being

used is changed according to their pruning efficiency.

Venkateswaran et al. also adopt this idea [30].

3.1.4 Maximum mean

Bustos et al. [11] concern the mean and variance of the

pair-wise L? distance of data in the k-dimensional pivot

space. Among the variations, the best objective function is

the mean. That is, the best set of pivots should be the one

maximizing the mean of pair-wise L? distance of data in

the pivot space.

P ¼ argmaxT
X

L1 FT ;d xð Þ; FT ;d yð Þ
� �

; x; y 2 T ; T � S;
�

Tj j ¼ k
�

The rationality of Bustos’s object function is explained

next. According to the pivot space model [7], the pair-wise

distance of data does not increase from metric space to

pivot space. That is, for two arbitrary points, x and y, in S,

d(x, y) ]L? (xp, yp). As a result, pivot selection, or

mapping data to pivot space, always loses distance infor-

mation. Bustos’s objective function actually try to mini-

mize the loss of distance information.

VPT’s objective function considers only one pivot.

Bustos’s objective function considers multiple pivots, and

is widely adopted. However, experimental results show that

it might not be consistent with the real goal of data pro-

cessing task. Please see Sect. 7 for details.

3.1.5 Corner selection

Shapiro [36] experimentally show that pivot should be

outside the data cluster. Further, when two pivots are

selected, neighboring corners are better than opposite

corners [36].

3.1.6 Spacing-correlation Based

Veltkamp et al. [34, 35] suggest that pivots should produce

large spacing and the correlation between them should be

small.

For spacing, they suggest that points in the one-dimen-

sional pivot space created by a pivot should have large

spacing, or small variance of the spacing, i.e.:

Var d p; xiþ1ð Þ � d p; xið Þð Þ; d p; x1ð Þ� . . .� d p; xnð Þ

The correlation between two pivots, p1 and p2, is the

correlation between their distance to other points, i.e.:

Cor d pi; x1ð Þ; . . .; d pi; xnð Þð Þ; d pj; x1
� �

; . . .; d pj; xn
� �� �� �

3.1.7 Sparse spatial selection (SSS)

Brisaboa et al. [41] propose to make pivots far to each

other. Let M be the maximal possible distance, and a be a

threshold, the distance between any two pivots should be

not less than Ma, i.e.:

P ¼ argmaxT Tj j; T � S; 8t1;t22T d t1; t2ð Þ�Mað Þ
� �

3.1.8 Maximum pruning

For a range query R(q,r), the condition that a point x can be

pruned by p for q is |d(p,q)-d(p,x)|[ r. While some

objective functions aim to increase the possibility for

which the condition holds, the condition itself can serve as

an objective function, probably the ultimate and the most

direct one. Assuming the query have the same the distri-

bution as the data base, Berman and Shapiro use this

objective function iteratively to select multiple pivots [43].

Venkateswaran et al. [30] consider the number of points

can be pruned as the objective function, and name this

object function Maximum Pruning. The query set and

range query radius are parameters, i.e.:

P ¼ argmaxT q; xð Þjx 2 S; q 2 Q; L1 FT ;d xð Þ;FT ;d qð Þ
� �

� r
�� ��; Tj j

¼ k; T � S

3.2 Radius-sensitive objective function

Our radius-sensitive object function is designed particu-

larly for pivot selection to support range query in metric

space. A range query R(q, r) [3] returns all data points in S

that is within distance r to q. It is usually answered by

descending an index [3–6].

Typically, each index node is defined by a few pivots

and the distances, or ranges of them, from data in the sub-

tree to the pivots. The key to speed up the query is to prune

as much data as possible. For example, given a pivot p, a

data point x in the sub-tree of p, and their distance d(p, x)

stored in the index node, if d(p, x) ? r\ d(p, q), x can be

safely pruned [3–6].

The goal of pivot selection in the construction of index

tree for range query is the average performance of range

queries, where query object q is commonly assumed to

distribute the same as the database.
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The radius-sensitive object function is an extension of

the maximum pruning one for the case of multiple pivots,

and assuming the query have the same distribution as the

data base:

P ¼ argmaxT x; yð Þjx; y 2 S; L1 FT ;d xð Þ;FT ;d yð Þ
� �

� r
�� ��; Tj j

¼ k; T � S

Experimental results show that radius-sensitive objec-

tive function is more consistent with query performance

than others.

4 Number of pivots

The number of pivots to select is important at least because

it is a parameter to pivot selection algorithms. More pivots

provide more distance information, but also take up more

space.

As discussed before, VPT [8, 9] selects one pivots while

MVPT [10] selects multiple. Brin suggests to select more

pivots for larger partitions of data to maintain tree balance

in GNAT [21].

A hypothesis is that the number of pivots should be

close, if not equal, to the intrinsic dimension of data [7, 38].

Intuitionally, the intrinsic dimension is the ‘‘real’’

dimension of data ignoring its representation. If the number

of pivots is larger than the intrinsic dimension, data is

embedded into spaces with more dimensions than its real

number of dimensions. Since the amount of information is

not increased, adding more pivots only leads to

redundancy.

The following of this section focuses on estimation of

intrinsic dimension.

4.1 The state of the art

A number of mathematical definitions and estimation

methods have been proposed for intrinsic dimension [12–

14]. Unfortunately, these definitions are usually too math-

ematically strict and the estimations methods are usually to

time costly to be applied in metric-space indexing. In the

following, we introduce estimation methods proposed for

metric-space indexing.

Method 1 Let l and r2 be the mean and variance of the

pairwise distances of data in the metric space. Chavez et al.

(2001) define the intrinsic dimension of a metric space as

q = l2/2r2.

Method 2 Let r be the radius, and n be the average

number of points within distance r to a given point. This

method assumes that n is proportional to rq, analogous to

that the volume of a q-dimensional hyper-ball is

proportional to rq. Values of n and r can be collected by

experiments, linear regression can be performed on the

logarithm of n and r, and the resulting slope coefficient is

an estimate of the intrinsic dimension [15, 16].

Methods 1 and 2 are for metric space. The pivot space

model [7] builds a bridge between metric space and multi-

dimensional space, especially the complete pivot space. As

a result, methods to estimate the intrinsic dimension of a

multi-dimensional space can be applied to the complete

pivot space to get an estimate of the intrinsic dimension of

a metric space [7].

Method 3 Let Q = {q1, q2, …, qn} be the principal

components of the data in the complete pivot space. Let

k = {k1, k2, …, kn} be the eigenvalues, k1 C k2
C … C kn C 0. The intrinsic dimension is estimated as

q ¼ argmaxi ki= kiþ1ð Þ; i ¼ 1; . . .; n� 1

[7]. Method 1 is computationally simple, and experimental

results shown that it is asymptotically accurate [7]. Similar

forms was used to determine the stability of workloads [17,

18].

Method 2 can be regarded as a variation of the Min-

kowski fractal dimension [12, 19], and was also shown to

be asymptotically accurate. It is limited by the assumption

of uniform distribution and is sensitive to the values of

radius.

Method 3 was also shown to be quantitatively accurate

for data whose intrinsic dimension are known [7].

All the three methods are computationally very costly,

with O(n3) original time complexity or similar. Since

Method 3 is for multi-dimensional space, some mathe-

matical technique, such as the EM method [20], can be

applied to reduce the time complexity.

4.2 A distance matrix eigenvalue method

In Method 3, to perform PCA, one first compute the

covariance matrix of the complete pivot space, and then

compute the eigenvalues of the covariance matrix. The step

to compute the covariance matrix is very costly, with O(n3)

original time complexity. To reduce the computation cost,

we propose the distance matrix eigenvalue method, which

is only different from Method 3 in that the computation of

the covariance matrix is skipped, and eigenvalues are

computed directly from the complete pivot space, or the

distance matrix. The eigenvalues computed this way might

be negative, in which case their absolute values are used

instead.

There are three variations of this method:

1. q = argmaxi (|ki|/|ki?1|);

2. q = argmaxi (|ki| - |ki?1|); and
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3. q = argmini (
Pi

j¼1

kj
�� ��=

Pn

j¼1

kj
�� �� C 0.7), i = 1, …, n-1.

Experimental results comparing this method and

Method 3 are presented in Sect. 6.2.

5 Pivot selection algorithm

In this section, we first survey existing pivot selection

algorithms, and then propose the incremental sampling

pivot selection framework.

5.1 The state of the art

The Metric Tree (M-tree) selects pivots randomly Ciaccia

[22].

The spatial approximation tree (SA-tree) selects the

centers of cells of a Voronoi diagram as pivots [23].

Other popular pivot selection algorithms are introduced

next.

5.1.1 Corners as pivots

Using corners as pivots is a widely adopted heuristic.

Example 1 gives an illustration when data is one-dimen-

sional. Yianilos further analyzed this heuristic in VPT [9].

The data under concern are points uniformly distributed in

the unit square. VPT selects on pivot and then draw a

circle, centered at the pivot, to divide the data equally into

two parts. Natural choices of pivots are center of the

square, pm, middle point of an edge, pe, or a corner, pc
(Fig. 5 [9]). In the context of range query, it can be

deduced that the length of the circle is an indicator of the

performance of the pivot, the shorter the better [9]. It can

be geometrically proved that pc has the shortest curve

among the three candidates, with the radii and lengths of

circles marked in Fig. 5 [9]. As a result, the eligibility of

selecting corners as pivots is established. Bustos et al. [11]

also concluded that good pivots are usually corners, while

the reverse might not true.

5.1.2 Farthest-first-traversal

The farthest-first-traversal (FFT) k-center clustering algo-

rithm [24, 25] is usually applied to find corners, because of

its linear time and space complexity. FFT runs iteratively.

The first pivot is selected at random, and the next pivot is

the point whose smallest distance to existing pivots is the

maximum:

c1 ¼ random or other selection

ck ¼ argmaxxðmink�1
i¼1 d x; cið ÞÞ; x 2 S; k� 2

FFT minimizes the maximum cluster diameter and gives

a result at most twice the optimal diameter [25].

Vleugels and Veltkamp [34], in an AESA-alike structure,

uses FFT, which is named MaxMin by Hennig and Latecki

[40]. Mao et al. [39] use FFT in an extension of M-tree.

Berman and Shapiro also use FFT, which is named Cluster

[43], while the first two pivots is the pair furthest apart.

5.1.3 Sparse spatial selection (SSS)

Brisaboa et al. [41] propose to make pivots far to each other.

LetMbe themaximal possible distance, anda be a threshold,
the distance between any two pivots should be not less than

Ma. The selection algorithm is an iterative greedy one. A

point is selected as pivot if its minimal distance to previously

selected pivots is not less than Ma. They experimentally

show that 0.35 B aB0.4 is better, but use 0.5 in their own

experiments. This algorithm does not need a number of

pivots as input, and works for dynamic data set.

Bustos et al. [42] combine SSS with their previous work

on incremental sampling method [11]. In dynamic case, it

adds every new point selected by SSS as pivot. If the

pivot’s contribution is larger than an existing pivot, remove

the least contribution pivot. The contribution of a pivot is

summed over all evaluation pairs. If it is not the best pivot

for a pair, the contribution for that pair is 0. If it is, let the

second best pivot be p2, then the contribution is: |d(p,x)-

d(p,y)|- |d(p2,x)-d(p2,y)|

5.1.4 Maximum pruning

Venkateswaran et al. [30] consider the number of points

can be pruned as the objective function. The query set and

Fig. 5 Choices of pivot to divide the unit square [9]
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range query radius are parameters. They use sampling

based on statistical gain to speed up the greedy algorithm.

Berman and Shapiro [43] propose the Greedy Separation

algorithm which selects pivot one at a time. When count

the number of pairs that can be pruned by a candidate

pivot, the pairs already pruned by previous pivots are

discounted.

5.1.5 Maximum variance

Venkateswaran et al. [30] consider the variance of data in

one-dimensional pivot space as the objective function. The

pivots are selected iteratively. Each time, the point with the

largest variance is picked, and those points that can be

pruned by this pivot is removed from the candidate set.

Berman and Shapiro [43], in their heuristics Variance,

just simply pick the pivots of the largest variances on a

sample without considering the correlation among pivots.

5.1.6 Maximally separated and hull of foci

The LAESA [33] proposes to select pivots that are maxi-

mally separated. That is, the sum of the inter-pivots dis-

tances should be maximized. Their selection algorithm is

an iterative one. The first pivot is randomly selected. The

next pivot is the one whose sum of distances to previously

selected pivots is the largest.

p1 ¼ random selection

pi ¼ argmaxx
Xi�1

j¼1

dx; pj

 !
; x 2 S� PÞ; i ¼ 2; ::; k

Obviously, the time cost of this algorithm is O(kn).

Traina et al. [38] propose to select pivots near the hull of

the dataset. Their HF (Hull of Foci) algorithm chooses

points that have the most similar distances to the previously

chosen pivots as new pivots:

p1 = argmaxyd(x,y), x: a random point

p2 = argmaxyd(p1,y), edge = d(p1, p2)

pi ¼ argminy
Xi�1

j¼1

edge� d pj; y
� ��� ��; y 2 S� P

 !
; i[ 2

Since edge is normally large, these two selection algo-

rithm are almost equivalent.

5.1.7 Spacing-correlation based

Veltkamp et al. [34, 35] suggest that pivots should produce

large spacing and the correlation between them should be

small. The selection is a greedy one, which takes a random

set of pivots and two thresholds for variance and correla-

tion as inputs. It scans the data and replaces a pivot with a

new random one if its variance or correlation go beyond the

thresholds.

5.1.8 Principal component analysis

Ramasubramanian and Paliwal [37] use PCA in the origi-

nal multi-dimensional data space for pivot selection, i.e.

one at the original, then one for each PC.

The pivot space model makes it possible to study the

pivot selection problem in a multi-dimensional space, the

complete pivot space [7]. Mao et al. [7] propose to apply

dimension reduction techniques in multi-dimensional

space for pivot selection. That is, first run dimension

reduction in the complete pivot space to generate new

dimensions, and then find points close to the new

dimensions as pivots. As a demonstration, they apply

PCA and experimentally show that this method outper-

forms others [7].

5.1.9 Incremental sampling

Bustos et al. [11] exploit sampling and seek to choose a set

of pivots maximize the objective function discussed in

Sect. 4, which is the mean of the pair-wise L? distances of

data in the pivot space.

Let SetA be a set of A pairs of points to calculate

objective function, the evaluation set. Let SetN be a set of

N pivots, the candidate set. SetN is randomly selected for

the selection of each pivot.

p1 ¼ argmaxt Var d t; xð Þð Þ; x 2 Sð Þ; t 2 S

pi ¼ argmaxt
X

x;yð Þ2SetA
L1 FP[ tf g xð Þ;FP[ tf g yð Þ
� �

0
@

1
A;

t 2 SetN; i ¼ 2; . . .; k

The authors suggest to use larger value of A and smaller

value of N, e.g. large evaluation set and small candidate

set.

Experimental results on synthetic vector data sets, with

dimension 8 and 14, show that Maximally Separated pivots

slightly outperforms Bustos’s incremental sampling.

However, on real world data set, NASA and color images,

Bustos’s pivots are better, especially when the number of

pivots is small.

The incremental sampling pivot selection framework we

propose next is based on Bustos et al.’s work.

318 Int. J. Mach. Learn. & Cyber. (2016) 7:311–323

123



5.2 An incremental sampling pivot selection

framework

The basic idea of the incremental sampling framework for

pivot selection is:

1. Incrementally select pivots one at a time;

2. In each iteration, each point of a pre-determined

candidate set is combined with pivots selected by

previous iterations, and then a value of a pre-defined

objective functions over a pre-determined evaluation

set of pairs of points is computed. Finally the point

with the best value of the objective function is selected

as the next pivot.

3. The algorithms to determine the objective function, the

candidate set, and the evaluation set are configurable.

The steps of the incremental sampling pivot selection

algorithm is illustrated in Fig. 6.

Two objective functions are tested in our implementa-

tion, i.e. Bustos’s objective function and the radius-sensi-

tive objective function proposed in Sect. 3.

Two heuristics to determine the candidate set are tested:

1. Random sampling;

2. Corners found by FFT.

Please note that the idea to use corners as candidate set

is supported by Bustos’s observation that good pivots are

usually corners [11]. The same idea is exploited by Mao

et al. [7] to speed up the computation of PCA for pivot

selection.

Two heuristics to determine the evaluation set are

tested:

1. Random sampling;

2. For each point, randomly sample a number of points to

form pairs with it.

Please note that Bustos et al.’s incremental pivot

selection algorithm is a special case under this framework

with objective function (1), candidate set (1) and evalua-

tion set (1).

Experimental results show that for objective function

(2), candidate set (2) and evaluation set (2) form the best

combination among the four possible ones. It steadily

outperforms Bustos et al.’s algorithm.

6 Experiment results

In this section, we present experimental results on objective

function, estimation of intrinsic dimension, and pivot

selection algorithm.

The test datasets consist of uniformly distributed vectors

of up to 20 dimensions, US cartographic boundary data (2-

dimensional coordinates) of Texas and Hawaii, and protein

sequence fragments of length 6, all from the test suite of

the UMAD (Universal Management and Analysis of Data)

project [26]. For uniform vector and boundary data, the

distance function is the Euclidean distance. The protein

sequence is represented as a string, and the distance

function is global alignment [27], a form of weighted edit

distance, with mPAM [28] as the substitution matrix. These

datasets are summarized in Table 1.

6.1 Objective function

The objective functions are compared by range query

performance on vector, DNA and protein data. That is, for

each data set, indexes are built for the two objective

functions, a number of range queries with various radii are

executed, and the average number of distance calculations,

which is independent to implementation and hard-

ware/software environment, and computed as the perfor-

mance metric.

To focus on the performance of objective functions of

pivot selection, and avoid the influence of data partitioning,

the index structure is Pivot Table [29], for which parti-

tioning is not involved and data is sequentially scanned and

pruned by their distance to pivots. Further, to avoid

heuristic pivot selection algorithms, brutal force method is

employed to select pivots based their value of objective

functions. Due to the high computational cost, the

Fig. 6 The incremental sampling pivot selection algorithm
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experiments are based on data sets of size 1000. To make

the experiments accurate, all the data points in the data sets

are used as query objects.

The experimental results show that the performances of

the two objective functions are very close. To show the

difference, in Table 2 we show the difference obtained by

subtracting the average number of distance calculations to

answer range queries with the radius-sensitive objective

function from that of Bustos’s. Although the differences

are tiny, there are all non-negative and mostly positive.

That is, the radius-sensitive objective function outperforms

Bustos’s for most of the cases, and is never outperformed

by it.

6.2 Estimation of intrinsic dimension

The distance matrix eigenvalue method proposed in

Sect. 4.2 with its three variations is compared with Method

3 surveyed in Sect. 4.1, which has been shown to outper-

form Methods 1 and 2.

For uniform vector data, dimensions from 1 to 10 are

used. For every dataset, the estimates of intrinsic dimen-

sion of the 3 criteria of our method and Method 3 are listed

in Table 3. It is obvious that all the 3 variations of the

proposed method yield comparable accuracy to Method 3.

Since this distance matrix eigenvalue method skips the

computation of the covariance matrix, its superiority to

Method 3 is conspicuous

6.3 Pivot selection algorithm

Under the incremental pivot selection framework, there are

three components to configure, i.e. the objective function,

the choice of the candidate set, and the choice of evaluation

set. For each of the three components, we have presented

two choices, thus there are 8 combinations. Preliminary

experimental results show that the combination with the

radius-sensitive objective function, option (2) for candidate

set, and option (2) for evaluation set (see Sect. 5.2) yields

out the best performance. Therefore, we compare this

combination with Bustos et al.’s incremental sampling

algorithm next, in terms of similarity query performance.

For each dataset, 100 thousand points from the begin-

ning of the data file are picked on which an index tree is

built for our best combination and Bustos’s algorithm,

respectively. For each index tree, 5000 points from the

beginning of the data file are picked as range query objects,

with a series of radii. To focus on the algorithmic aspect,

the average number of distance calculations to answer a

range query, which is independent of implementation and

hardware/software environment, is used as the performance

metric. Results on all the datasets show similar trend, thus

only results on 20-dimensional vectors and protein

sequences are plotted in Fig. 7. It shows clearly that our

best combination always outperforms Bustos et al.’s

algorithm.

7 Conclusion, discussion and future work

Metric space can serve as a universal abstraction of a wide

range of data types, and building system for metric space is

an effective approach to conquer the ‘‘variety’’ challenge of

big data. Pivot selection imposes coordinates to data in

metric space and is usually the first step of metric-space

data management and analysis.

In this paper, we first show the importance of pivot

selection, then survey the state of the art of pivot selection

from the perspectives of objective function, number of

pivots, and selection algorithm, and finally make new

proposals for pivot selection from each of the perspectives

above.

Bustos et al.’s objective function generally performs

well. The radius-sensitive object function is particularly for

Table 1 Summary of test suite
Workload Total size Distance function Domain dimension

Uniform vector 1 M Euclidean distance 1-20

Hawaii 9 k 2

Texas 190 k 2

Protein 100 k Global alignment 6

Table 2 The performance difference of pivot selection objective

functions

Radius 2d vector 3d vector Radius DNA Protein

0.02 0.038 0.242 1 4.269 0

0.04 0.094 0.556 2 3.801 0

0.06 0.026 0.918 3 0 0

0.08 0.04 1.594 4 0 0

0.1 0.046 1.696 5 0 0

0.12 0.09 1.424 6 0.501 0

0.14 0.028 1.522 7 2.302 0

0.16 0.004 1.102 8 5.475 0.216

0.18 0.078 0.64 9 5.865 0.666

0.2 0.02 0.206 10 3.809 0.874

Bustos’s—radius-sensitive
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range query indexing. For other data management of

analysis tasks, such as clustering, classification, more

specific objective functions can be studied.

The intrinsic dimension of data is commonly accepted as

a choice of the number of pivots. We propose a new esti-

mation method that is faster than one of the best existing

methods with comparable accuracy.

The pivot space model makes it possible to estimate

intrinsic dimension a metric space with dimension reduc-

tion method for multi-dimensional space. More work is

expected alone this direction. Intrinsic dimensions esti-

mated this way is the dimension of a multi-dimensional

space into which a metric space is embedded. Other

properties, such as degree of freedom and manifold, of a

metric space also deserve investigation.

The incremental sampling pivot selection framework is

generalized from Bustos et al.’s algorithm. We proposed

new heuristics for candidate set and evaluation set, which

are experimentally shown to outperform Bustos et al.’s

algorithm. More objective function, candidate set heuristic

and evaluation set heuristic can be defined and easily

plugged into this framework for the study of pivot selection

algorithms.

The pivot space model also makes it possible to exploit

dimension reduction for multi-dimensional space for pivot

selection for metric space. More work is expected alone

this direction, especially non-linear methods.

Further, it is of interesting to see how good the pivot

selection algorithms work. That is, how far the objective

function values of pivots selected by those algorithms are

from that of the brutal force method.

Table 3 Estimate of intrinsic

dimension
Data Domain dim. Intrinsic dimension

Distance matrix eigenvalue method Method 3

(1) (2) (3)

Uniform vector 1 2 2 2 2

2 3 3 3 3

3 4 4 4 4

4 5 5 5 5

5 6 6 6 6

6 7 7 7 7

7 8 8 8 8

8 9 9 9 9

9 10 10 10 10

10 11 11 11 11

Protein 6 7 7 7 7

Hawaii 2 3 2 3 3

Texas 2 3 2 4 2

Fig. 7 Comparison of pivot selection algorithms
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In conclusion, this paper surveys the state of the art of

pivot selection, and makes new proposals. More work is

expected for pivot selection, an important component to

conquer the ‘‘variety’’ challenge of big data problems.
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