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Abstract This paper investigates the online k-taxi prob-

lem with a new feature that partial information about future

service requests is provided in advance when deciding

which taxi should be dispatched to serve the current

request, whereas none of this is known in the traditional

online k-taxi problem. Benefited by the foreknowledge,

improved covering strategies are proposed for the problem

in different scenarios with respect to the information

known in advance. Following that, the value of fore-

knowledge in the online k-taxi problem with this new

feature is quantified in the form of improved competitive

ratios. It is proved that in some special cases, the com-

petitive ratios are decreased from 1 ? k to (3 ? k)/2,
where k is a parameter determined by the metric space in

which the problem is discussed. Furthermore, it is also

shown that, in all cases, the improved covering strategies

would never perform wore than the classical position

maintaining strategy. In addition to these theoretical anal-

yses, some numerical examples are presented to illustrate

the proposed online strategies and their performances in

practice as well.

Keywords k-Taxi problem � Online problem � Value of

foreknowledge � Competitive analysis � Competitive ratio

1 Introduction

In the real world, many ongoing decision-making activities

in various areas, such as foreign currency trading [1, 2],

vehicle routing [3, 4], and inventory ordering [5, 6], must be

carried out in due course with no secure knowledge of future

situations. However, such knowledge (e.g., future exchange

rates in the foreign currency trading, service requests in the

vehicle routing, and customer demands in the inventory

ordering) often has a critical impact on the decision results.

Faced with this lack of knowledge, players of these

decision-making games often formulate them as stochastic

models based on assumptions about the future distributions

of relevant quantities. Unfortunately, they may give some

real-time solutions that are far from the relevant optimal

solutions in some scenarios. Additionally, for most non-

trivial decision making activities, it is difficult to estimate

probability distributions accurately. In this case, the

approach of probabilistic analysis is no longer suitable for

addressing this type of ongoing decision-making problems.

Another common way to deal with uncertain information in

the decision-making problems is to model it as fuzziness

(e.g., [7–9]), which also requires to make some estimations

of the future uncertain situations. Unlike these two

approaches, competitive analysis proposed by Sleator and

Tarjan [10] provides a new appropriate framework to

handle these problems, in which estimations of the uncer-

tain situations are not required.

In the competitive analysis theory [11, 12], an algorithm

is said to be online if its decisions are made in due course

with no secure knowledge of future events. In general, due

to the absence of information about the future, an online

algorithm cannot make the decision in an optimal fashion.

The performance of an online algorithm is measured

against that of the optimal offline algorithm, which knows
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all the information when making its decision and thus, the

decision can be optimized. The supremum of the ratio

between the performances of these two algorithms is called

competitive ratio. If the ratio is a constant a, then we say

the online algorithm is an a-competitive algorithm. It

implies that the cost of the online algorithm will not exceed

a times of the optimal offline cost for any inputs. It is clear

that this performance measure provides very robust state-

ments about the performance of an online solution, against

all possible future scenarios.

The online k-taxi problem [13] is a generalization of the

k-server problem introduced by Manasse et al. [14], which

has been extensively studied (see, e.g., [15–18]) as one of

the famous basic online problems discussed in competitive

analysis theory. In the k-server problem, k servers reside

and move in a metric space to supply service. When a

request is made by a point, one of the servers must be

moved to the point to satisfy this request immediately. An

algorithm which decides a server to satisfy the request at

each step is said to be online if its decisions are made

without the information about future requests. The goal is

to minimize the total cost or distance of satisfying all

requests.

In the online k-taxi problem, different from that in the k-

server problem, each request contains two points, one of

which is the start point making the request and the other is

the destination point. It implies that there is a passenger at

the start point to be picked up and taken to the destination

point. When a request is made we must move one taxi to

serve it immediately without the information about future

possible requests. Some important results concerning this

problem and its variants have been presented by Xu et al.

[13], Xin and Ma [19], and Ma et al. [20–22].

In the traditional online k-taxi problem, it is usually

assumed that the taxis are dispatched completely without

any other information about future possible requests. In this

paper, we consider the problem with a new feature that

partial information about prospective possible service

requests is provided in advance when deciding which taxi

should be dispatched to serve the current request, and

investigate the value of foreknowledge in this problem.

This feature arises from realistic application background

and also can be seen in many other online decision-making

problems. In practice, the foreknowledge (i.e., information

about future possible requests) may be provided by fore-

casting or encouraging customers to release their requests

in advance (e.g., discounted price available for

reservation).

In general, we can use the extra information, available in

advance, to make better decisions. As the performance of

an online algorithm is measured by competitive ratio in the

traditional online k-taxi problem, it is natural to quantify

the value of foreknowledge in the k-taxi problem with this

new feature in the form of improved competitive ratios

(with respect to the ratios of the traditional problem). This

idea can also be seen in the online traveling salesman

problem and traveling repairman problem with advanced

information proposed by Jaillet and Wagner [3].

The rest of this paper is organized as follows. The

problem description and formulation are presented in

Sect. 2. Improved algorithms for the problem with fore-

knowledge are proposed in Sect. 3. Then the competitive

analysis of the algorithms is given in Sect. 4. The value of

foreknowledge as improved competitive ratios is also dis-

cussed in this section. Subsequently, Sect. 5 presents some

numerical examples to illustrate the proposed algorithms as

well as their performances in practice. Finally, conclusions

are given in Sect. 6.

2 Problem description and formulation

Let G(V, E) denote a connected and edge weighted graph,

where V is the metric space consisting of n (n C 2) points,

and E is the set of all weighted edges. For any points

x, y 2 V, d(x, y) indicates the distance of the shortest path

between the points x and y. The weights of edges are

symmetric and satisfy triangle inequality, i.e., for any

x, y, z 2 V, d(x, y) = d(y, x) and d(x, z) ? d(z, y)

C d(x, y). For any points x = y 2 V, let dmax =

max d(x, y), dmin = min d(x, y), and

k ¼ dmax

dmin

: ð1Þ

It is clear that k C 1.

There are k (k C 1) taxis that reside and move on the

graph G to supply service. A service request r = (a, b) (a,

b are different points in the given graph G), implies there is

a passenger at point a that must be taken to b by a taxi. A

service request sequence R consists of a series of service

requests in turn, namely R = (r1, r2, …, rm), where

ri = (ai, bi), 1 B i B m. It is assumed that ai = bi in the

following discussion, because if ai = bi, the request ri does

not exist in fact and this case is of no significance to

discuss.

2.1 Traditional online k-taxi problem

Let us consider the following two problems:

1) Given a service request sequence R = (r1, r2, …, rm)

in advance, how to dispatch the taxis to minimize the

total distance of serving all the requests?

2) How can we deploy the taxis to reduce the relevant

moving distance when the service requests are

received one by one, and each request is to be
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served immediately after it is made without any

information about future possible requests?

Obviously, problem (1) is offline, whereas (2) is an

online problem. The difference between them lies in

whether complete information of the service request

sequence is known while serving the current request. The

latter is also known as the traditional online k-taxi problem.

Due to the absence of information about future requests, it

is hard to make the decision in an optimal fashion for

problem (2).

Following many earlier studies on the classical online

service dispatching problems (e.g. [13, 14, 23, 24]), this

paper also assumes that when a new service request occurs,

all taxis are available. In other words, when a new service

request occurs, previous service requests have been com-

pleted and all the taxis are idle and ready to serve the new

one.

For any request sequence R = (r1, r2, …, rm), let

COPT Rð Þ denote the optimal (minimum) cost (total moving

distance) required to complete the whole sequence with the

optimal offline algorithm which knows the whole request

sequence before it starts. Then, we can get that

COPT Rð Þ�
Xm

i¼1

dðai; biÞ; ð2Þ

since
Pm

i¼1 dðai; biÞ is the total distance travelled by pas-

sengers. It is the minimum cost that should be paid for

serving the sequence R. In other words, if the sequence R is

completed by taxis without the case that moving with on

passenger, the cost of serving R is
Pm

i¼1 dðai; biÞ. However,
in order to serve the requests, the taxis may should be

dispatched to the start points of these requests first via

moving with no passenger, and then the cost of serving

R would be more than
Pm

i¼1 dðai; biÞ.
Let CON Rð Þ denote the cost (total moving distance) of

completing the whole sequences with an online algorithm

which has not any knowledge about the future requests

when serving the current request. If there exist constants a
(a C 1) and b satisfying the following inequality for any

possible request sequence R,

CON Rð Þ� a � COPT Rð Þ þ b; ð3Þ

the on-line algorithm is called an a-competitive algorithm

and a is the competitive ratio. Our goal is to design some

online algorithms with competitive ratios as small as

possible.

2.2 Online k-taxi problem with foreknowledge

Now, let us consider the problem with some foreknowledge

about the future possible requests. In other words, the

online player is empowered with the ability of limited

looking ahead and knows partial information about future

requests in advance. More specifically, we consider the

following two scenarios.

1) The online player only knows the start point of next

request in advance when making the decision for

serving the current request. The start point a1 of the

first request is given before the game plays. In the

following whole process, when the i-th request ri
occurs, the end point of the i-th request and the start

point of the (i ? 1)-th request riþ1 are known by the

player. In other words, the information of the

(i ? 1)-th request is not completely released before

the i-th request is served, and only the start point is

known in advance. In the following discussion, the

online k-taxi problem in this scenario is denoted as

P1.

2) The online player knows the next request (both the

start point and the destination point) in advance when

making the decision to serve the current request. The

first request r1 = (a1, b1) is known before the game

plays. In the following whole process, when the i-th

request ri occurs, the (i ? 1)-th request riþ1 is known

by the player in advance (before ri is served). In other

words, the information of the (i ? 2)-th request is

completely released after the i-th request and all of

its previous requests are served. In this case, it is

assumed that the order of serving the adjacent two

requests can be exchanged. In the following discus-

sion, the online k-taxi problem in this scenario is

denoted as P2.

The problems are to decide which taxi is to be dis-

patched to serve the request when a new service request

occurs on the basis that no more information about future

possible requests is known. With the aid of partial infor-

mation known in advance, it is anticipated that a better

decision than that in the traditional online k-taxi problem

can be made.

In the following sections, we propose some improved

algorithms for this problem with foreknowledge, and

quantify the value of foreknowledge in the form of

improved competitive ratios with respect to the ratios of the

traditional online k-taxi problem.

3 Improved algorithms with foreknowledge

In many classical online service dispatching problems (e.g.

[13, 14, 23]), in order to play against the adversary and

reduce the costs of serving the requests in worst cases,

covering strategy has been extensively applied. In this

section, we propose improved covering strategies for the

online k-taxi problem with foreknowledge.
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To implement the covering strategies, the initial loca-

tions of the taxis are assumed such that each point in the

graph is occupied by at least one taxi if k C n, or else (i.e.,

k\ n) these k taxis are respectively located at k different

points and there is a taxi at a1 before the first service

request comes in (as described in the previous formulation,

the player with foreknowledge knows that the first request

will occur at point a1 before the service starts). Otherwise,

we can make it happen by finite number of movements, and

the moving distance will not exceed a constant ðk � 1Þdmax.

This constant makes no influence on the discussion of

competitive ratio [11]. In other words, we precondition the

taxi locations such that these taxis cover distinct points as

many as possible and the point a1 is occupied by at least

one taxi.

3.1 Improved covering strategy for problem P1

For the problem P1, in which the online player only knows

the start point of next request in advance when making the

decision to serve the current request, an online algorithm,

called Improved Covering Strategy (denoted as S1), is

designed as follows:

Improved Covering Strategy (S1):

For the i-th (i C 1) service request ri = (ai, bi):

1) If there are taxis at both ai and bi, consider the

following two cases:

i) If there are more than one taxis at ai, choose

one taxi arbitrarily and use it to take the

passenger from ai to bi. The cost of completing

this request is CS1ðriÞ ¼ dðai; biÞ. The move is

denoted as ai ? bi.

ii) If there is only one taxi at ai, the taxi at ai
takes the passenger from ai to bi. Then if aiþ1

is without a taxi and dðaiþ1; biÞ� dðai; biÞ, the
taxi moved from ai to bi continues to move to

aiþ1. The cost of completing this request is

CS1ðriÞ� 2dðai; biÞ, and the moves are denoted

as ai ! bi ! aiþ1. Otherwise, the taxi moved

from ai to bi moves back to ai. The cost of

completing this request is CS1ðriÞ ¼ 2dðai; biÞ,
and the moves are denoted as ai ? bi ? ai.

2) If there is a taxi at ai but no taxi at bi, the taxi at ai
takes the passenger from ai to bi. The cost of

completing this request is CS1ðriÞ ¼ dðai; biÞ. The

move is denoted as ai ? bi.

3) If there is a taxi at bi but no taxi at ai, the taxi at bi
moves to ai first and then takes the passenger from ai
to bi. The cost of completing this request is

CS1ðriÞ ¼ 2dðai; biÞ. The moves are denoted as

bi ? ai ? bi.

4) If neither ai nor bi has a taxi (i C 2 holds), the

following two cases concerning the relationship

between ai and ai-1 need to be considered.

i) If ai = ai-1, the taxi at bi-1 (since the (i - 1)-

th service request is ri-1 = d(ai-1, bi-1), there

must be a taxi at bi-1) moves to ai first, and

then takes the passenger from ai to bi. The cost

of completing this request is CS1ðriÞ ¼
dðai�1; bi�1Þ þ dðai; biÞ. The moves are

denoted as bi-1 ? ai ? bi.

ii) If ai = ai-1 and k C 2, schedule the nearest

taxi (suppose it locates at ci, where ci 6¼ aiþ1)

to ai and then use it to take the passenger from

ai to bi. If ai = ai-1 and k ¼ 1, schedule the

only one taxi (assume that it locates at ci) to ai
and then use it to take the passenger from ai to

bi. The cost of completing this request is

CS1ðriÞ ¼ dðci; aiÞ þ dðai; biÞ. The moves are

denoted as ci ? ai ? bi.

The main idea behind the covering strategy is to let

these k taxis always cover as many distinct points as pos-

sible in the whole game to reduce the total distance of the

moves for serving all possible requests. Similar approaches

were also proposed to obtain some good results in [13, 20,

22]. In fact, this idea is extensively applied in online

algorithms (such as position maintaining strategy and

greedy algorithm) for the k-server problem and its variants

[14].

With the foreknowledge about the next request, the

algorithm S1 considers how to serve the next request while

processing the current one [case (1-ii)] and avoids dis-

patching the taxi that may be used to serve the next request

to complete the current request [case (4-ii)]. Benefited by

the foreknowledge, we will show that the competitive ratio

of the covering strategy can be improved in the following

sections.

3.2 Improved covering strategy for problem P2

For the problem P2, in which the online player knows the

next request (both the start point and the destination point)

in advance, a similar Improved Covering Strategy (denoted

as S2) can be designed as follows. For the sake of sim-

plicity, only the moves in each case of this strategy that

have similar meaning as those in Strategy S1 are

illustrated.

Improved Covering Strategy (S2):

For the i-th (i C 1) service request ri = (ai, bi):
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1) If there are taxis at both ai and bi, consider the

following two cases:

i) If there are more than one taxis at ai, the move

is ai ? bi.

ii) If there is only one taxi at ai, and if aiþ1 is

without a taxi and dðaiþ1; biÞ� dðai; biÞ, the
moves are ai ! bi ! aiþ1, or else, the moves

are ai ? bi ? ai.

2) If there is a taxi at ai but no taxi at bi, the move is

ai ? bi.

3) If there is a taxi at bi but no taxi at ai, the moves are

bi ? ai ? bi.

4) If neither ai nor bi has a taxi (i C 2 holds), consider

the following four cases:

i) If ai = bi?1 and ai?1 has a taxi, move the taxi

at ai?1 to bi?1 to serve the request riþ1 first,

and then move it from bi?1 (it is also ai) to bi
to serve the request ri. The moves are

denoted as ai?1 ? bi?1(ai) ? bi. Conse-

quently, both requests ri and riþ1 are served,

and the strategy turns to serve riþ2 next.

ii) If ai = bi?1 and ai?1 does not have a taxi,

schedule the nearest (away from ai?1) taxi

(suppose it locates at ci) to ai?1 first, and then

move it from ai?1 to bi?1 and from bi?1 (ai)

to bi to serve the requests riþ1 and ri
successively. The moves are denoted as

ci ? ai?1 ? bi?1(ai) ? bi. After that, both

requests ri and riþ1 are served, and the

strategy turns to serve riþ2.

iii) If ai = ai-1, the moves for serving ri are

bi-1 ? ai ? bi, and then go on to serve the

next request riþ1.

iv) If ai = ai-1, ai = bi?1, and k C 3, schedule

the nearest taxi at point ci, where ci 6¼ aiþ1

and ci 6¼ biþ1, to ai to serve ri. If ai = ai-1,

ai = bi?1, and 1 B k B 2, schedule the

nearest taxi at anywhere to serve ri. The

moves for serving this request are denoted as

ci ? ai ? bi. Then the strategy turns to

serve riþ1.

The difference between strategies S2 and S1 lies in

the case (4). Since more foreknowledge is known in

advance, strategy S2 considers more sophisticated cases

to reduce the relevant moving distance for serving the

requests.

4 Value of foreknowledge as improved competitive
ratios

In this section, we first prove the competitive ratios of the

proposed two covering strategies, and then compare them

with those in the traditional online k-taxi problem. The

value of foreknowledge is quantified as the improved

competitive ratios.

4.1 Competitive ratio of strategy S1

For the competitive ratio of strategy S1, which is proposed

for addressing the problem P1, we have the following

theorems.

Theorem 1 For the problem P1 with k taxis, if

k C n - 1, the strategy S1 is an online algorithm with

competitive ratio 2, where n (n C 2) indicates the number

of points of graph G.

Proof Asmentioned previously, we preconditioned the taxi

locations such that these taxis cover distinct points asmany as

possible, and the point a1 has at least one taxi, before the first

service request comes. It is easy to verify that case (4) in the

strategy S1 would never happen in the whole game if

k C n - 1, because there are enough taxis to cover at least

n - 1distinct points in the graph. Particularly, if k C n, all the

points are always occupiedby at least one taxi after a request is

served by the strategy S1; whereas if k ¼ n� 1, there is only

one point unoccupied by a taxi. Consequently, the strategy

does not make full use of the foreknowledge about the next

request, and the problem degenerates to the traditional k-taxi

problem.For the cases (1), (2) and (3), we have

CS1ðriÞ� 2dðai; biÞ: ð4Þ

Therefore,

CS1 Rð Þ ¼
Xm

i¼1

CS1ðriÞ þ b

�
Xm

i¼1

2dðai; biÞ þ b

� 2COPT Rð Þ þ b;

ð5Þ

where b is a constant denoting the cost of preconditioning.

This proves Theorem 1. h

In order to prove the competitive ratio for a special case

with k = n - 2, we present some lemmas first.

Lemma 1 For the problem P1 with k (k C 2) taxis, if

k = n - 2, at least one of the following inequalities concern-

ing the cost of strategy S1 to serve the requests ri and riþ1 holds,
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CS1ðriÞ þ CS1ðriþ1Þ� 2dðai; biÞ þ dðaiþ1; biþ1Þ þ dmax; ð6Þ

or

CS1ðriÞ þ CS1ðriþ1Þ� dðai; biÞ þ 2dðaiþ1; biþ1Þ þ dmax: ð7Þ

Proof For any request ri = (ai, bi), according to the

strategy S1, we have

CS1ðriÞ� dðai; biÞ þ dmax; ð8Þ

since for any points x = y 2 V, dðx; yÞ� dmax holds.

At the beginning of the game, there must exist a taxi at

the point a1 as described in the preconditioning. According

to the cases (1) and (2) of the strategy S1, we can get that

CS1ðr1Þ� 2dða1; b1Þ: ð9Þ

Combining the inequalities (8) and (9), the following

inequality holds,

CS1ðr1Þ þ CS1ðr2Þ� 2dða1; b1Þ þ dða2; b2Þ þ dmax: ð10Þ

Therefore, for the case i = 1, Lemma 1 holds.

The following proof considers the general case of the

i-th (i C 1) service request. For ri = d(ai, bi):

I) If the strategy S1 serves the request by the moves

described in the cases (1), (2) and (3), then

CS1ðriÞ� 2dðai; biÞ holds.
Combining it with (8), we get

CS1ðriÞ þ CS1ðriþ1Þ� 2dðai; biÞ þ dðaiþ1; biþ1Þ
þ dmax:

ð11Þ

Lemma 1 holds.

II) If the strategy S1 serves the request by the moves

described in the case (4-i), the cost of completing

this request is CS1ðriÞ ¼ dðai�1; bi�1Þ þ dðai; biÞ.
By using (8), we get

CS1ðri�1Þ þ CS1ðriÞ� 2dðai�1; bi�1Þ þ dðai; biÞ
þ dmax:

ð12Þ

Lemma 1 holds.

III) If the strategy S1 serves the request by the moves

described in the case (4-ii), it implies that neither ai
nor bi has a taxi. The moves and status of the

related points are illustrated in Fig. 1, in which the

circle filled in black indicates that it is occupied by

a taxi while the empty circle denotes the point

without a taxi. Since there are n - 2 taxis in total,

after serving the request ri = d(ai, bi), neither ai
nor ci has a taxi, whereas bi and all the other points

(not shown in Fig. 1) are with a taxi. The cost of

completing request ri satisfies the formula that

CS1ðriÞ� dðai; biÞ þ dmax. For the cost of serving

next request ri?1 = d(ai?1, bi?1), we need to

consider the following three cases.

a) ai?1 = ai and ai?1 = bi.

Under this condition there must be a taxi at ai?1,

because after serving the last request ri, neither ai
nor ci has a taxi, and all the other points are with a

taxi, as shown in Fig. 1. Thus, to serve the request

ri?1, only the cases (1) or (2) in the strategy S1

could occur and the cost satisfies the formula that

CS1ðriþ1Þ� 2dðaiþ1; biþ1Þ. Then we have

CS1ðriÞ þ CS1ðriþ1Þ� dðai; biÞ þ 2dðaiþ1; biþ1Þ
þ dmax:

ð13Þ

Lemma 1 holds.

b) ai?1 = ai.

(i) bi?1 = ci. As shown in Fig. 1, after serving

the last request ri, neither ai nor ci has a

taxi. So the strategy S1 moves the taxi at bi
to ai?1 to serve the request ri?1. The cost is

CS1ðriþ1Þ ¼ dðai; biÞ þ dðaiþ1; biþ1Þ. Then

Lemma 1 holds.

(ii) bi?1 = ci. After serving ri, there must be a

taxi at bi?1, since only these two points ai
and ci are without a taxi. Then we have

CS1ðriþ1Þ ¼ 2dðaiþ1; biþ1Þ. Lemma 1 holds.

c) ai?1 = bi.

Under this condition, there must be a taxi at ai?1 as

shown in Fig. 1. Similarly to the analysis in case

(a), it is easy to verify that Lemma 1 holds.

The proof is completed. h

Lemma 2 For the problem P1 with k (k C 2) taxis, if

k = n - 2, the following inequality concerning the cost

of strategy S1 to serve the requests ri and riþ1 holds,

CS1ðriÞ þ CS1ðriþ1Þ�
3þ k
2

dðai; biÞ þ dðaiþ1; biþ1Þ½ �: ð14Þ

ci (not ai+1)

ai

bi

ai

bi

ci (not ai+1)

before serving ri after serving ri

Fig. 1 Illustration of the moves for serving ri by the strategy S1 in

the case (4-ii)
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Proof For any requests ri = (ai, bi) and ri?1 = d(ai?1,

bi?1), we can prove Lemma 2 in two cases following from

Lemma 1.

I) If CS1ðriÞ þ CS1ðriþ1Þ� 2dðai; biÞ þ dðaiþ1; biþ1Þþ
dmax holds, we have

CS1ðriÞ þ CS1ðriþ1Þ
dðai; biÞ þ dðaiþ1; biþ1Þ

� 2dðai; biÞ þ dðaiþ1; biþ1Þ þ dmax

dðai; biÞ þ dðaiþ1; biþ1Þ

¼ 2þ dmax � dðaiþ1; biþ1Þ
dðai; biÞ þ dðaiþ1; biþ1Þ

:

ð15Þ

Since dmin � dðai; biÞ; dðaiþ1; biþ1Þ� dmax, we get

that

dmax � dðaiþ1; biþ1Þ
dðai; biÞ þ dðaiþ1; biþ1Þ

� dmax � dmin

dmin þ dmin

¼ k� 1

2
: ð16Þ

By taking (16) into (15), (14) is verified.

II) If CS1ðriÞ þ CS1ðriþ1Þ� dðai; biÞ þ 2dðaiþ1; biþ1Þ
þdmax holds, similarly, we have

CS1ðriÞ þ CS1ðriþ1Þ
dðai; biÞ þ dðaiþ1; biþ1Þ

� dðai; biÞ þ 2dðaiþ1; biþ1Þ þ dmax

dðai; biÞ þ dðaiþ1; biþ1Þ

¼ 2þ dmax � dðai; biÞ
dðai; biÞ þ dðaiþ1; biþ1Þ

� 2þ dmax � dmin

2dmin

¼ 3þ k
2

: ð17Þ

Lemma 2 is proved. h

Following from Lemma 2, we obtain the following

theorem for the competitive ratio of strategy S1.

Theorem 2 For the problem P1 with k (k C 2) taxis, if

k¼ n� 2, the strategy S1 is an online algorithm with

competitive ratio (3 ? k)/2, where n (n C 2) indicates the

number of points of graph G and k ¼ dmax=dmin.

Proof For any request sequence R = (r1, r2, …, rm), if

m is an even number, following from Lemma 2, we can

easily get that

CS1ðRÞ ¼
Xm

i¼ 1

CS1ðriÞ½ � þ b

¼ CS1ðr1Þ þ CS1ðr2Þ½ � þ CS1ðr3Þ þ CS1ðr4Þ½ � þ � � �
þ CS1ðrm�1Þ þ CS1ðrmÞ½ � þ b

� 3þ k
2

dða1; b1Þ þ dða2; b2Þ þ � � � dðam; bmÞ½ � þ b

¼ 3þ k
2

Xm

i¼ 1

dðai; biÞ þ b

� 3þ k
2

COPTðRÞ þ b; ð18Þ

where b is a constant denoting the cost of preconditioning.

For the sequence R = (r1, r2, …, rm), if m is an odd

number, we have the following similar result.

CS1ðRÞ ¼
Xm

i¼ 1

CS1ðriÞ½ � þ b

¼ CS1ðr1Þ þ CS1ðr2Þ½ � þ � � � þ CS1ðrm�2Þ þ CS1ðrm�1Þ½ �
þ CS1ðrmÞ þ b

� 3þ k
2

dða1; b1Þ þ dða2; b2Þ þ � � � dðam�1; bm�1Þ½ �

þ CS1ðrmÞ þ b

¼ 3þ k
2

Xm

i¼ 1

dðai; biÞ �
3þ k
2

dðam; bmÞ þ CS1ðrmÞ þ b

� 3þ k
2

COPTðRÞ þ b0;

ð19Þ

where b
0
is a constant such that

b0 ¼ � 3þ k
2

dðam; bmÞ þ CS1ðrmÞ þ b

� � 3þ k
2

dmin þ dmax þ b:
ð20Þ

Formula (19) just has a different constant term comparing

to (18), which makes no influence to the discussion of

competitive ratio while m ? ?. The proof is completed.h

Theorem 3 For the problem P1 with k taxis, if

1 B k B n - 3, the strategy S1 is an online algorithm with

competitive ratio 1þk, where n (n C 2) indicates the

number of points of graph G and k ¼ dmax=dmin.

Proof Since for any request ri = (ai, bi),

CS1ðriÞ� dðai; biÞ þ dmax holds, we have

CS1 Rð Þ ¼
Xm

i¼1

CS1ðriÞ þ b

�
Xm

i¼1

dðai; biÞ þ dmax½ � þ b

� 1þ kð Þ
Xm

i¼ 1

dðai; biÞ þ b

� 1þ kð ÞCOPT Rð Þ þ b:

ð21Þ

Theorem 3 is proved. h

In summary, for the problem P1 with k (k C 1) taxis on

a graph with n (n C 2) points, the competitive ratio of the

improved covering strategy S1 is

aS1 ¼
2; if k� n� 1
3þ k
2

; if k� 2 and k ¼ n� 2

1þ k; if 1� k� n� 3:

8
><

>:
ð22Þ
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4.2 Competitive ratio of strategy S2

Similarly, concerning the competitive ratio of strategy S2

for the problem P2, we have the following theorems.

Theorem 4 For the problem P2 with k taxis, if

k C n - 1, the strategy S2 is an online algorithm with

competitive ratio 2, where n (n C 2) indicates the number

of points of graph G.

Proof Following from the proof of Theorem 1, Theo-

rem 4 can be similarly proved. h

Theorem 5 For the problem P2 with k taxis, if

1 B k B n - 4, the strategy S2 is an online algorithm with

competitive ratio 1þk, where n (n C 2) indicates the

number of points of graph G and k ¼ dmax=dmin.

Proof Following from the proof of Theorem 3, Theo-

rem 5 can also be similarly proved. h

Theorem 6 For the problem P2 with k (k C 3) taxis, if

k¼ n� 2 or k¼ n� 3, the strategy S2 is an online algo-

rithm with competitive ratio (3 ? k)/2, where n (n C 2)

indicates the number of points of graph G and

k ¼ dmax=dmin.

Proof Similarly to the proof of Theorem 2, we just need

to prove that Lemmas 1 and 2 are also true for the strategy

S2 when k¼ n� 2 or k¼ n� 3, and then Theorem 6 can be

easily verified.

Now, we prove that for the problem P2 with k taxis, if

k = n - 2 or k¼ n� 3, at least one of the following

inequalities concerning the cost of strategy S2 to serve the

requests ri and riþ1 holds,

CS2ðriÞ þ CS2ðriþ1Þ� 2dðai; biÞ þ dðaiþ1; biþ1Þ þ dmax;

ð23Þ

or

CS2ðriÞ þ CS2ðriþ1Þ� dðai; biÞ þ 2dðaiþ1; biþ1Þ þ dmax:

ð24Þ

Since the difference between strategies S2 and S1 only

lies in the case (4), we just need to verify that the above

proposition [namely, at least one of (23) or (24) is true]

also holds in this case for k¼ n� 2 or k¼ n� 3.

What is more, if k = n - 2, case (4-ii) in the strategy S2

would never happen, since there are only two points that

are not covered by a taxi in the whole game. Therefore, in

the case (4-ii), we only should consider the situation that

k¼ n� 3.

For the case (4-i), the cost of serving ri and riþ1 is

CS2ðriÞ þ CS2ðriþ1Þ ¼ dðai; biÞ þ dðaiþ1; biþ1Þ: ð25Þ

Both (23) and (24) hold.

For the case (4-ii) and k¼ n� 3, the cost of serving ri
and riþ1 is

CS2ðriÞ þ CS2ðriþ1Þ ¼ dðci; aiþ1Þ þ dðai; biÞ
þ dðaiþ1; biþ1Þ: ð26Þ

(23) and (24) also hold.

Figure 2 shows the moves and status of the related

points in the case (4-ii) of strategy S2. The circle filled in

black indicates that it is occupied by a taxi, while the empty

circle denotes a point without a taxi. Since there are n - 3

taxis in total, all the other points not shown in Fig. 2 are

occupied by a taxi.

For the cases (4-iii) and (4-iv), the above proposition

that at least one of (23) or (24) is true can be verified

similarly to the proof of Lemma 1.

Consequently, we can get a similar result with Lemma 2

as follows. For the problem P2, if k = n - 2 or k¼ n� 3,

the following inequality concerning the cost of strategy S2

to serve the requests ri and riþ1 holds,

CS2ðriÞ þ CS2ðriþ1Þ�
3þ k
2

dðai; biÞ þ dðaiþ1; biþ1Þ½ �:

ð27Þ

Following from (27), Theorem 6 holds. h

In summary, for the problem P2 with k (k C 1) taxis on

a graph with n (n C 2) points, the competitive ratio of the

improved covering strategy S2 is

aS2 ¼
2; if k� n� 1
3þ k
2

; if k� 3 and k ¼ n� 2 or n� 3ð Þ
1þ k; if 1� k� n� 4:

8
><

>:

ð28Þ

4.3 Improved competitive ratios

The performance of an online algorithm is measured by

competitive ratio in the competitive analysis theory. In

[13], a competitive algorithm, called position maintaining

strategy (PMS), is proposed to handle the traditional online

k-taxi problem by Xu et al. It is proved that the competitive

ratio of PMS is

Fig. 2 Illustration of the moves for serving ri and riþ1 by the strategy

S2 in the case (4-ii)

1192 Int. J. Mach. Learn. & Cyber. (2017) 8:1185–1195

123



aPMS ¼
2; if k ¼ n or n� 1

1þ k; if 1� k� n� 2:

(
ð29Þ

Comparing (29) with (22) and (28), it can be seen that

with the foreknowledge, the competitive ratios of the

strategies S1 and S2 are improved.

To quantify the value of foreknowledge in the form of

improved competitive ratios with respect to the ratios of the

traditional online k-taxi problem, we can show that the

improvements for the case of k ¼ n� 2 in problem P1

(k C 2) and the case of k ¼ n� 2 or n - 3 in problem P2

(k C 3) are

1þ k� 3þ k
2

¼ k� 1

2
� 0: ð30Þ

In other words, the competitive ratios are decreased

from 1 ? k to (3 ? k)/2 for some special cases of the

online k-taxi problem by introducing the new feature of

foreknowledge into it. The improvements, i.e., the value of

foreknowledge in the sense of competitive analysis, are

(k - 1)/2, where k is the parameter determined by the

metric space in which the problem is discussed.

Furthermore, it also can be seen that, in all cases, the

improved covering strategies would never perform wore, in

the sense of competitive analysis, than the classical PMS

for the traditional online k-taxi problem.

5 Performances in practice

In the above section, the performances of the proposed

improved covering strategies are analyzed in a theoretical

way. In this section, we give some numerical examples to

illustrate the proposed online algorithms as well as their

performances in practice.

Now, consider the graph consisting of 12 points and 17

weighted edges as shown in Fig. 3, which can be seen as a

realistic representation of a little town with 6 blocks. All the

edge weights are randomly generated following a normal dis-

tribution with mean value of 100 and standard deviation of 10.

For this graph, it is easy to get that dmin =

d(G, K) = 84.10 and dmax = d(I, D) = 465.69, and thus

k = 5.54. Then the competitive ratios of the improved

covering strategies and the PMS are compared in Table 1.

It is also illustrated that the improved covering strategies

S1 and S2 would never perform wore than the classical

PMS based on theoretical analysis.

Then, these online algorithms as well as their practical

performances are illustrated on the graph shown in Fig. 3,

on the basis of some randomly generated service requests.

In order to compare the performance of different algo-

rithms in an appropriate way, the precondition cost is not

taken into account, and it is assumed that the online

algorithms are launched with the same initial state. In other

words, the taxi locations are preconditioned to be same.

In the following, we take a service request sequence

R1 = ((K, H), (E, G), (J, B), (K, J), (C, D), (A, F)) for

instance, and assume that there are 10 taxis moving on the

graph to supply service.

For the optimal offline algorithms, since it knows the

sequence beforemaking decision and the precondition cost is

not taken into account, it is easy to see that these six requests

can be served respectively by one particular taxi being dis-

patched to the start point of the request in advance. There-

fore, the optimal offline cost is d K;Hð Þ þ d E;Gð Þþ
d J;Bð Þ þ d K; Jð Þ þ d C;Dð Þ þ d A; Fð Þ ¼ 1000:48.

For the online algorithms, the initial locations of the

taxis can be randomly selected such that these 10 taxis are

respectively located at 10 different points and there is a taxi

at the start point of the first request. For instance, supposing

that the points B and J are not occupied by a taxi, the

moves of the three online algorithms to complete these

service requests are listed in Table 2. The costs of the PMS

and strategies S1 and S2 are 1850.76, 1768.46, and

1658.85, respectively, and their ratios to the optimal offline

cost are 1.85, 1.77 and 1.66, respectively.

In this case, the reduction of the costs of S1 and S2, with

regard to PMS which does not have any foreknowledge, are

respectively 82.3 and 191.91. Meanwhile, as for the ratios

of the online solutions to the optimal offline solution, the

improvements of S1 and S2 are 0.08 and 0.19, respectively.

A B C D

E F G H

I J K L

Fig. 3 A graph for numerical examples

Table 1 Competitive ratios of the online algorithms

Online algorithms Competitive ratios

k C 11 k¼ 10 k¼ 9 1 B k B 8

PMS 2 6.54 6.54 6.54

S1 2 4.27 6.54 6.54

S2 2 4.27 4.27 6.54
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Similarly, more experiments can be made based on

some randomly generated service requests. Table 3 illus-

trates the performances of these online algorithms for

serving different request sequences on the graph shown in

Fig. 3 with 10 taxis.

From Table 1, we know the competitive ratios of the

online algorithms PMS, S1 and S2 for the online k-taxi

problem with k = 10 are 6.54, 4.27 and 4.27, respectively.

Comparing this conclusion with the results shown in

Table 3, it can be seen that the practical performances of

these online algorithms are much better than the theoretical

competitive ratios. In other words, the ratios of the prac-

tical online solutions to the optimal offline solutions are

much less than the competitive ratios derived by theoretical

analysis.

It is easy to understand that these results are consistent

with the conclusions previously given in the theoretical

analysis, since the approach of competitive analysis is

based on worst-case analysis, and consequently, the com-

petitive ratio is actually a worst-case measure, which pro-

vides very robust statement about the performance of an

online solution.

Moreover, it can also be seen that the proposed

improved covering strategies perform better than the tra-

ditional PMS in some special cases, not only with regard to

theoretical analysis, but also in practice.

6 Conclusions

In this paper, the online k-taxi problem was revisited

by introducing a new feature into it, which empowers

the online player to have foreknowledge. Two different

scenarios concerning how partial information of future

possible service requests is released in advanced were

discussed, and improved covering strategies with lower

competitive ratios, with respect to the traditional online

k-taxi problem, were proposed to address them. The

competitive ratios are improved due to the utilizing of

foreknowledge. Therefore, the improvements are

regarded as the value of foreknowledge in this online

k-taxi problem within the framework of competitive

analysis.

However, concerning the topic that how to effectively

dispatch taxis in an online fashion as well as the impact

of foreknowledge on the online solutions, although some

preliminary results have been presented in this paper,

there still are some important issues to be further stud-

ied, which will be considered in our future work. For

example, firstly, how to design better algorithms for the

problem in more general cases? Secondly, it is clear that

the more foreknowledge gained, the better decisions may

be made. Then how to measure the value of fore-

knowledge compared to the amount of information

known in advance? For this purpose, the notion of

entropy [25, 26] may be introduced into this problem.

Furthermore, it would also be interesting to consider

how to gain more foreknowledge to improve the deci-

sions in the real applications (e.g. learning from big data

of the customers’ behaviors [27]).
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Table 2 Moves and performances for serving the sequence R1

Online algorithms Moves Online costs Ratios

PMS K ! H, H ! K; E ! G, G ! E; K ! J ! B; G ! K ! J; C ! D, D ! C; A ! F, F ! A 1850.76 1.85

S1 K ! H, H ! K; E ! G, G ! E; I ! J ! B; K ! J; C ! D, D ! C; A ! F, F ! A 1768.46 1.77

S2 K ! H, H ! K; E ! G, G ! E; K ! J ! B; C ! D, D ! C; A ! F, F ! A 1658.85 1.66

* In the initial state, points B and J are without a taxi. Ratio = online cost/optimal offline cost

Table 3 Performances for serving different request sequences

Service request sequence Optimal offline costs Online solutions (the ratio to optimal offline cost)

PMS S1 S2

(K, H), (E, G), (J, B), (K, J), (C, D), (A, F) 1000.48 1.85 1.77 1.66

(C, A), (G, L), (D, J), (E, I), (K, F), (G, D) 1221.91 1.55 1.55 1.55

(E, F), (G, J), (K, C), (E, B), (G, A), (H, D) 1046.06 1.63 1.63 1.63

(G, C), (H, L), (E, J), (H, C), (B, E), (K, B) 1083.74 1.46 1.46 1.37

* In the initial state, points B and J are without a taxi
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