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Abstract In practical situations, it is time-consuming to

conduct knowledge reduction of dynamic covering deci-

sion information systems caused by variations of attribute

values with the non-incremental approaches. In this paper,

motivated by the need for knowledge reduction of dynamic

covering decision information systems, we introduce

incremental approaches to computing the type-1 and type-2

characteristic matrices for constructing the second and

sixth lower and upper approximations of sets in dynamic

covering approximation spaces caused by revising attribute

attributes. We also employ several examples to explain

how to compute the second and sixth lower and upper

approximations of sets in dynamic covering approximation

spaces. Then we propose the incremental algorithms for

computing the second and sixth lower and upper approxi-

mations of sets and employ experimental results to illus-

trate the incremental algorithms are effective to calculate

the second and sixth lower and upper approximations of

sets in dynamic covering approximation spaces. Finally,

we give two examples to show how to conduct knowledge

reduction of dynamic covering decision information sys-

tems caused by altering attribute values.

Keywords Boolean matrix � Characteristic matrix �
Dynamic covering approximation space � Dynamic

covering decision information system � Rough set

1 Introduction

Nowadays covering approximation spaces as generalizations

of classical approximation spaces have attracted increasing

attentions, and a great deal of approximation operators [4, 16–

19, 25, 26, 32, 35, 43, 55, 56, 60–62, 64, 68, 70–75] have been

proposed for computing the lower and upper approximations

of sets in covering approximation spaces. For example,

Zakowski [64] proposed the classical lower and upper

approximation operators for covering approximation spaces

by extending Pawlak’s model. Pomykala [32] presented two

pair of dual approximation operators by modifying Zakows-

ki’s definition. Tsang et al. [43] gave the concept of the lower

and upper approximation operators using the minimal

descriptions. Zhu et al. [72, 74, 75] provided three types of

lower and upper approximation operators. They also sys-

tematically investigated these six types of approximation

operators and presented relationships among them. Subse-

quently, Chen et al. [4] presented a new covering to construct

the lower and upper approximations of an arbitrary set with

respect to the covering application background of rough sets.

Lin et al. [16, 17] investigated neighborhood-based multi-

granulation rough sets to deal with data sets with hybrid

attributes. Liu et al. [25, 26] proposed covering fuzzy rough set

based on multigranulation rough sets. Wang et al. [55] studied

the second and sixth lower and upper approximation operators

of covering approximation spaces using characteristic
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matrices. Yao [60] presented a more systematic formulation of

covering based rough sets from three aspects: the element, the

granule and the subsystem. So far covering-based rough set

theory has been applied to many fields such as data mining and

knowledge discovery, and the application fields are being

increasing with the development of computer sciences and

covering-based rough set theory.

Knowledge reduction of information systems as the

major work of rough set theory has attracted more atten-

tions in recent years, and researchers have presented dif-

ferent reducts with respect to different criterions and

proposed effective algorithms for conducting knowledge

reduction of information systems [3, 5, 6, 8–10, 27, 31, 33,

34, 41, 42, 44–50, 53, 54, 57, 63, 69]. For example, Chen

et al. [3] presented the concept of reducts for consistent and

inconsistent covering decision information systems with

covering rough sets. Qian et al. [33] gave the concepts of

the lower and upper approximation reducts of decision

information systems. Slezak et al. [42] investigated deci-

sion reduct of decision information systems. Zhang et al.

[69] proposed the concept of assignment reducts and

maximum assignment reducts for decision information

systems. Consequently, Kryszkiewicz et al. [6] provided

the notion of discernibility matrix and discernibility func-

tion for computing decision reducts. Leung et al. [10]

discussed dependence space-based attribute reduction in

inconsistent decision information systems. Miao et al. [31]

presented the generalized discernibility matrix and dis-

cernibility function of three types of relative reducts.

Skowron et al. [41] proposed the concept of the classical

discernibility matrix and discernibility function for con-

structing relative reducts of decision information systems.

In practice, information systems vary with the time due to

the dynamic characteristic of data collections, and it is

time-consuming to conduct knowledge reduction of

dynamic information systems with the non-incremental

approaches. To solve this issue, researchers [1–3, 11–15,

20–24, 28–30, 36–40, 51, 52, 58, 59, 65–67] focus on

investigating knowledge reduction of dynamic information

systems using incremental approaches. For example, when

coarsening and refining attribute values and varying sets of

attribute, Chen et al. [1–3] constructed approximations of

sets and provided an effective approach to knowledge

reduction of dynamic information systems. Lang et al. [7]

presented incremental approaches for computing approxi-

mations of sets in dynamic covering approximation spaces

caused by variations of object sets and conducted knowl-

edge reduction of dynamic covering decision information

systems with the immigration and emigration of objects. Li

et al. [14] extended rough sets for incrementally updating

decision rules which handles dynamic maintenance of

decision rules in data mining based on characteristic rela-

tions. Liu et al. [20, 21, 24] presented incremental

approaches for knowledge reduction of dynamic informa-

tion systems and dynamic incomplete information systems.

Yang et al. [58] studied the neighborhood system for

knowledge reduction of incomplete information systems

from the perspective of knowledge engineering and

neighborhood systems-based rough sets. Zhang et al. [65]

presented matrix-based approaches for computing the

approximations, positive, boundary and negative regions in

composite information systems. In practice, covering

approximation spaces vary with the time because of

variations of attribute values. For example, two special-

ists A and B decided the quality of five cars

U ¼ fA;B;C;D;Eg as follows: good ¼ fA;Cg;middle ¼
fC;Eg; bad ¼ fB;D;Eg, and obtained the covering

approximation space ðU;CÞ, where C ¼ fgood;
middle; badg. By considering time variations, the special-

ists found that the quality of C was very bad, and ðU;CÞ
should be revised into dynamic covering approximation

space ðU;C�Þ, where C� ¼ fgood�;middle�; bad�g,

good� ¼ fAg;middle� ¼ fEg; and bad� ¼ fB;C;D;Eg.

But it is time-consuming to construct the type-1 and type-2

characteristic matrices of C� with the non-incremental

approach. The experimental results have demonstrated the

incremental approaches are effective to conduct knowledge

reduction of dynamic information systems, because it

reduces the computational times greatly. Such an obser-

vation motivates us to compute approximations of sets in

dynamic covering approximation spaces and knowledge

reduction of dynamic covering decision information sys-

tems using the incremental approaches.

The purpose of this paper is to study knowledge reduction

of dynamic covering decision information systems caused by

altering attribute values. First, we investigate structures of

the type-1 and type-2 characteristic matrices of dynamic

covering approximation spaces because of variations of

attribute values and present incremental approaches to

computing the type-1 and type-2 characteristic matrices of

dynamic coverings. We also employ several examples to

illustrate the process of calculating the type-1 and type-2

characteristic matrices can be simplified greatly by utilizing

the incremental approaches. Second, we provide incremental

algorithms for constructing the type-1 and type-2 charac-

teristic matrices-based approximations of sets in dynamic

covering approximation spaces caused by variations of

attribute values. We also compare the time complexities of

the incremental algorithms with those of non-incremental

algorithms. Third, we perform experiments on ten dynamic

covering approximation spaces generated randomly and

employ the experimental results to illustrate the incremental

approaches are effective to calculate the second and sixth

lower and upper approximations of sets in dynamic covering

approximation spaces with the variation of attribute values.

Finally, we employ two examples to show how to conduct
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knowledge reduction of dynamic covering decision infor-

mation systems with the incremental approaches.

The rest of this paper is organized as follows: Sect. 2

briefly reviews the basic concepts of covering-based rough

set theory. Section 3 introduces incremental approaches for

computing the type-1 and type-2 characteristic matrices of

dynamic coverings because of varying attribute values.

Section 4 presents non-incremental and incremental algo-

rithms for calculating the second and sixth lower and upper

approximations of sets using the type-1 and type-2 char-

acteristic matrices. Section 5 performs experiments to show

the incremental approaches are effective to compute the

second and sixth approximations of sets in dynamic cov-

ering approximation spaces. Section 6 devotes to knowl-

edge reduction of dynamic covering decision information

systems. We give the conclusions in Sect. 7.

2 Preliminaries

A brief summary of concepts related to covering-based

rough sets is given in this section.

Definition 2.1 [64] Let U be a finite universe of dis-

course, and C a family of subsets of U. If none of elements

of C is empty and
S
fCjC 2 Cg ¼ U, then C is referred to

as a covering of U. In addition, ðU;CÞ is called a covering

approximation space if C is a covering of U.

Definition 2.2 [55] Let ðU;CÞ be a covering approxi-

mation space, and NðxÞ ¼
T
fCijx 2 Ci 2 Cg. For any

X � U, the second and sixth upper and lower approxima-

tions of X with respect to C are defined as follows:

(1) SHCðXÞ¼
S
fC2C jC\X 6¼;g;SLCðXÞ¼½SHCðXcÞ�c;

(2) XHCðXÞ ¼ fx 2 U j NðxÞ \ X 6¼ ;g;XLCðXÞ ¼ fx 2
U j NðxÞ � Xg:

The second and sixth lower and upper approximation

operators are typical approximation operators for covering

approximation spaces, and they are also dual operators.

Furthermore, researchers have established the foundation

for further studying the second and sixth lower and upper

approximation operators in dynamic environment.

Definition 2.3 Let ðU;CÞ be a covering approximation

space, where U ¼ fx1; x2; . . .; xng and C ¼ fC1;C2; . . .;

Cmg. Then the representation matrix of C is defined as:

MC ¼ ðaijÞn�m, where aij ¼
1; xi 2 Cj;
0; xi 62 Cj:

�

According to Definition 2.3, a covering may induce

different representation matrices due to different positions

of blocks in C. Furthermore, the characteristic function of

X � U is defined as: XX ¼ ½a1a2 � � � an�T , where

ai ¼
1; xi 2 X;
0; xi 62 X;

i ¼ 1; 2; . . .; n:

�

Definition 2.4 Let ðU;CÞ be a covering approximation

space, and MC ¼ ðaijÞn�m a matrix representation of C,

where U ¼ fx1; x2; . . .; xng, C ¼ fC1;C2; . . .;Cmg, and

aij ¼
1; xi 2 Cj;
0; xi 62 Cj;

�

. Then

(1) CðCÞ ¼ MC �MT
C ¼ ðbijÞn�n is called the type-1

characteristic matrix of C, where bij ¼
Wm

k¼1

ðaik � ajkÞ.
(2)

Q
ðCÞ ¼ MC �MT

C ¼ ðcijÞn�n is called the type-2

characteristic matrix of C, where cij ¼
Vm

k¼1

ðajk 	 aik þ 1Þ:

By Definition 2.4, we see the type-1 and type-2

characteristic matrices are symmetric and asymmetric,

respectively. Furthermore, we show the second and sixth

lower and upper approximations of sets using the type-1

and type-2 characteristic matrices, respectively, as

follows:

Definition 2.5 [55] Let ðU;CÞ be a covering approxi-

mation space, and XX the characteristic function of X in

U. Then

(1) XSHðXÞ ¼ CðCÞ � XX ;XSLðXÞ ¼ CðCÞ � XX;

(2) XXHðXÞ ¼
Q
ðCÞ � XX ;XXLðXÞ ¼

Q
ðCÞ � XX :

By Definition 2.5, Lang et al. presented the concepts of

type-1 and type-2 reducts of covering decision information

systems as follows:

Definition 2.6 [7] Let ðU;D [ U=dÞ be a covering

decision information system, where D ¼ fCiji 2 Ig,

U=d ¼ fDiji 2 Jg, I ¼ f1; 2; . . .; n1g, J ¼ f1; 2; . . .; n2g
two integer sets, and P � D. P is called a type-1 reduct of

ðU;D [ U=dÞ if it satisfies (1) and (2) simultaneously as

follows:

(1) CðDÞ � XDi
¼ CðPÞ � XDi

and CðDÞ � XDi
¼

CðPÞ � XDi
; 8i 2 J;

(2) CðDÞ � XDi
6¼ CðP0 Þ � XDi

and CðDÞ � XDi
6¼

CðP0 Þ � XDi
; 8P0 
 P:

Definition 2.7 [7] Let ðU;D [ U=dÞ be a covering

decision information system, where D ¼ fCiji 2 Ig,

U=d ¼ fDiji 2 Jg, I ¼ f1; 2; . . .; n1g, J ¼ f1; 2; . . .; n2g
two integer sets, and P � D. P is called a type-2 reduct of

ðU;D [ U=dÞ if it satisfies (1) and (2) simultaneously as

follows:
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(1)
Q
ðDÞ � XDi

¼
Q
ðPÞ � XDi

and
Q
ðDÞ � XDi

¼
Q
ðPÞ � XDi

; 8i 2 J;

(2)
Q
ðDÞ � XDi

6¼
Q
ðP0 Þ � XDi

and
Q
ðDÞ � XDi

6¼
Q
ðP0 Þ � XDi

; 8P0 
 P:

For simplicity, we define the operators þ and 	 between

A ¼ ðaijÞn�m and B ¼ ðbijÞn�m as follows: Aþ B ¼ ðaij þ
bijÞn�m and A	 B ¼ ðaij 	 bijÞn�m. Furthermore, we define

the operators � and � between C ¼ ðcijÞn�m and D ¼
ðdjkÞm�p as follows: C � D ¼ ðeikÞn�p and C � D ¼
ðfikÞn�p, where eik ¼

Wm
j¼1ðcij � djkÞ and fik ¼

Vm
j¼1

ðdjk 	 cij þ 1Þ.

3 Incremental approaches for computing
the second and sixth approximations of sets

In this section, we present incremental approaches for

computing the second and sixth lower and upper approxi-

mations of sets.

Definition 3.1 Let ðU;CÞ and ðU;C�Þ be covering

approximation spaces, where U ¼ fx1; x2; . . .; xng, C =

fC1, C2, ..., Cmg, C� ¼ fC�
1,C�

2; . . .;C
�
mg, and C�

i 	 fxkg ¼
Ci 	 fxkgð1� i�mÞ; where xk 2 U. Then ðU;C�Þ is called

a dynamic covering approximation space of ðU;CÞ.

According to Definition 3.1, the dynamic covering approx-

imation space ðU;C�Þ is generated by revising attribute values

of xk. In practice, variations of attribute values maybe result in

jC�j\jCj, jC�j ¼ jCj or jC�j[ jCj. For example, it will result

in new blocks or combing different blocks into a block. In this

work, we only discuss the situation jC�j ¼ jCj caused by

revising attribute values of an object.

Below, we discuss the relationship between CðCÞ and

CðC�Þ. For convenience, we denote MC ¼ ðaijÞn�m,

MC� ¼ ðbijÞn�m, CðCÞ ¼ ðcijÞn�n, and CðC�Þ ¼ ðdijÞn�n.

Theorem 3.2 Let ðU;C�Þ be a dynamic covering

approximation space of ðU;CÞ, CðCÞ and CðC�Þ the type-1
characteristic matrices of C and C�, respectively. Then

CðC�Þ ¼ CðCÞ þ DCðCÞ;

where

DCðCÞ ¼

0 0 � � � d�1k . . . 0

0 0 � � � d�2k . . . 0

� � � � � � � � � � � � � � � � � �
d�k1 d�k2 � � � d�kk � � � d�kn
� � � � � � � � � � � � � � � � � �
0 0 � � � d�nk � � � 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

d�kj ¼ d�jk ¼ bk1 bk2 � � � bkm½ � � b1j b2j � � � bmj½ �T	ckj:

Proof By Definition 2.4, CðCÞ and CðC�Þ are presented

as follows:

CðCÞ ¼ MC �MT
C

¼

a11 a12 � � � a1m

a21 a22 � � � a2m

� � � � � � � � � � � �
an1 an2 � � � anm

2

6
6
6
4

3

7
7
7
5
�

a11 a12 � � � a1m

a21 a22 � � � a2m

� � � � � � � � � � � �
an1 an2 � � � anm

2

6
6
6
4

3

7
7
7
5

T

¼

c11 c12 � � � c1n

c21 c22 � � � c2n

� � � � � � � � � � � �
cn1 cn2 � � � cnn

2

6
6
6
4

3

7
7
7
5
;

CðC�Þ ¼ MC� �MT
C�

¼

b11 b12 � � � b1m

b21 b22 � � � b2m

� � � � � � � � � � � �
bn1 bn2 � � � bnm

2

6
6
6
4

3

7
7
7
5
�

b11 b12 � � � b1m

b21 b22 � � � b2m

� � � � � � � � � � � �
bn1 bn2 � � � bnm

2

6
6
6
4

3

7
7
7
5

T

¼

d11 d12 � � � d1n

d21 d22 � � � d2n

� � � � � � � � � � � �
dn1 dn2 � � � dnn

2

6
6
6
4

3

7
7
7
5
:

By Definition 2.4, since aij ¼ bij for i 6¼ k, we have cij ¼ dij
for i 6¼ k; j 6¼ k. To compute CðC�Þ on the basis of CðCÞ,
we only need to compute ðdijÞði¼k;1� j� nÞ and

ðdijÞð1� i� n;j¼kÞ. Since CðC�Þ is symmetric, we only need to

compute ðdijÞði¼k;1� j� nÞ. In other words, we need to

compute DCðCÞ, where

DCðCÞ ¼

0 0 � � � d�1k . . . 0

0 0 � � � d�2k . . . 0

� � � � � � � � � � � � � � � � � �
d�k1 d�k2 � � � d�kk � � � d�kn
� � � � � � � � � � � � � � � � � �
0 0 � � � d�nk � � � 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

d�kj ¼ d�jk ¼ bk1 bk2 � � � bkm½ � � b1j b2j � � � bmj½ �T	ckj:

Therefore, we have

CðC�Þ ¼ CðCÞ þ DCðCÞ:

h

The following example shows the process of constructing

the second lower and upper approximations of sets.

Example 3.3 Let U ¼ fx1; x2; x3; x4g, C ¼ fC1;C2;C3g,

and C� ¼ fC�
1 ;C

�
2 ;C

�
3g, where C1 ¼ fx1; x4g, C2 ¼

fx1; x2; x4g, C3 ¼ fx3; x4g, C�
1 ¼ fx1; x3; x4g, C�

2 ¼
fx1; x2; x3; x4g, C�

3 ¼ fx4g, and X ¼ fx3; x4g. By Definition

2.4, we first obtain
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CðCÞ ¼ MC �MT
C ¼ ðcijÞ4�4

¼

1 1 0

0 1 0

0 0 1

1 1 1

2

6
6
6
4

3

7
7
7
5
�

1 0 0 1

1 1 0 1

0 0 1 1

2

6
4

3

7
5 ¼

1 1 0 1

1 1 0 1

0 0 1 1

1 1 1 1

2

6
6
6
4

3

7
7
7
5
:

According to Definition 2.3, we get

MC� ¼

1 1 0

0 1 0

1 1 0

1 1 1

2

6
6
6
4

3

7
7
7
5
:

Second, we obtain

d�31 d�32 d�33 d�34½ � ¼ 1 1 0½ � �MT
C� 	 c31 c32 c33 c34½ �

¼ 1 1 0½ � �
1 0 1 1

1 1 1 1

0 0 0 1

2

6
4

3

7
5	 0 0 1 1½ �

¼ 1 1 1 1½ � 	 0 0 1 1½ �
¼ 1 1 0 0½ �;

d�13 d�23 d�33 d�43½ � ¼ d�31 d�32 d�33 d�34½ �:

By Theorem 3.2, we have

DCðCÞ ¼

0 0 d�13 0

0 0 d�23 0

d�31 d�32 d�33 d�34

0 0 d�43 0

2

6
6
6
4

3

7
7
7
5
¼

0 0 1 0

0 0 1 0

1 1 0 0

0 0 0 0

2

6
6
6
4

3

7
7
7
5
:

Thus, we obtain

CðC�Þ ¼ CðCÞ þ DCðCÞ ¼

1 1 0 1

1 1 0 1

0 0 1 1

1 1 1 1

2

6
6
6
4

3

7
7
7
5

þ

0 0 1 0

0 0 1 0

1 1 0 0

0 0 0 0

2

6
6
6
4

3

7
7
7
5
¼

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2

6
6
6
4

3

7
7
7
5
:

By Definition 2.5, we have

XSHðXÞ ¼ CðC�Þ � XX ¼

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2

6
6
6
4

3

7
7
7
5
�

0

0

1

1

2

6
6
6
4

3

7
7
7
5
¼ 1 1 1 1½ �T ;

XSLðXÞ ¼ CðC�Þ � XX ¼

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2

6
6
6
4

3

7
7
7
5
�

0

0

1

1

2

6
6
6
4

3

7
7
7
5
¼ 0 0 0 0½ �T :

Therefore, SHðXÞ ¼ fx1; x2; x3; x4g and SLðXÞ ¼ ;.

In Example 3.3, we only need to compute DCðCÞ by

Theorem 3.2. But there is a need to compute all elements in

CðC�Þ by Definition 2.4. Therefore, the computational time

of the incremental algorithm is less than the non-incre-

mental algorithm. Subsequently, we discuss the construc-

tion of
Q
ðC�Þ based on

Q
ðCÞ. For convenience, we denote

Q
ðCÞ ¼ ðeijÞn�n and

Q
ðC�Þ ¼ ðfijÞn�n.

Theorem 3.4 Let ðU;C�Þ be a dynamic covering

approximation space of ðU;CÞ,
Q
ðCÞ and

Q
ðC�Þ the type-

2 characteristic matrices of C and C�, respectively. Then
Y

ðC�Þ ¼
Y

ðCÞ þ D
Y

ðCÞ;

where

D
Y

ðCÞ ¼

0 0 � � � f �1k � � � 0

0 0 � � � f �2k � � � 0

� � � � � � � � � � � � � � � � � �
f �k1 f �k2 � � � f �kk � � � f �kn
� � � � � � � � � � � � � � � � � �
0 0 � � � f �nk � � � 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

f �k1 f �k2 � � � f �kn½ � ¼ bk1 bk2 � � � bkm½ � �MT
C� 	 ek1 ek2 � � � ekn½ �;

f �1k f �2k � � � f �nk½ �T ¼ MC� � b1k b2k � � � bmk½ �T	 e1k e2k � � � enk½ �T :

Proof According to Definition 2.4,
Q
ðCÞ and

Q
ðC�Þ are

presented as follows:

Y
ðCÞ ¼ MC �MT

C

¼

a11 a12 � � � a1m

a21 a22 � � � a2m

� � � � � � � � � � � �
an1 an2 � � � anm

2

6
6
6
4

3

7
7
7
5
�

a11 a12 � � � a1m

a21 a22 � � � a2m

� � � � � � � � � � � �
an1 an2 � � � anm

2

6
6
6
4

3

7
7
7
5

T

¼

e11 e12 � � � e1n

e21 e22 � � � e2n

� � � � � � � � � � � �
en1 en2 � � � enn

2

6
6
6
4

3

7
7
7
5
;

Y
ðC�Þ ¼ MC� �MT

C�

¼

b11 b12 � � � b1m

b21 b22 � � � b2m

� � � � � � � � � � � �
bn1 bn2 � � � bnm

2

6
6
6
4

3

7
7
7
5
�

b11 b12 � � � b1m

b21 b22 � � � b2m

� � � � � � � � � � � �
bn1 bn2 � � � bnm

2

6
6
6
4

3

7
7
7
5

T

¼

f11 f12 � � � f1n

f21 f22 � � � f2n

� � � � � � � � � � � �
fn1 fn2 � � � fnn

2

6
6
6
4

3

7
7
7
5
:

By Definition 2.4, we have eij ¼ fij for i 6¼ k; j 6¼ k since

aij ¼ bij for i 6¼ k. To compute
Q
ðC�Þ on the basis of

Q
ðCÞ, we only need to compute ðfijÞði¼k;1� j� nÞ and

ðfijÞð1� i� n;j¼kÞ. In other words, we need to compute

D
Q
ðCÞ, where
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D
Y

ðCÞ ¼

0 0 � � � f �1k � � � 0

0 0 � � � f �2k � � � 0

� � � � � � � � � � � � � � � � � �
f �k1 fk2 � � � f �kk � � � f �kn
� � � � � � � � � � � � � � � � � �
0 0 � � � f �nk � � � 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

f �k1 f �k2 � � � f �kn½ � ¼ bk1 bk2 � � � bkm½ � �MT
C� 	 ek1 ek2 � � � ekn½ �;

f �1k f �2k � � � f �nk½ �T ¼MC� � b1k b2k � � � bmk½ �T	 e1k e2k � � � enk½ �T :

Therefore, we have
Y

ðC�Þ ¼
Y

ðCÞ þ D
Y

ðCÞ:

h

The following example is employed to show the process of

constructing the sixth lower and upper approximations of sets.

Example 3.5 Let U ¼ fx1; x2; x3; x4g, C ¼ fC1;C2;C3g,

and C� ¼ fC�
1 ;C

�
2 ;C

�
3g, where C1 ¼ fx1; x4g, C2 ¼

fx1; x2; x4g, C3 ¼ fx3; x4g, C�
1 ¼ fx1; x3; x4g, C�

2 ¼
fx1; x2; x3; x4g, C�

3 ¼ fx4g, and X ¼ fx3; x4g. By Definition

2.4, we first have
Y

ðCÞ ¼ MC �MT
C ¼ ðeijÞ4�4

¼

1 1 0

0 1 0

0 0 1

1 1 1

2

6
6
6
4

3

7
7
7
5
�

1 0 0 1

1 1 0 1

0 0 1 1

2

6
4

3

7
5 ¼

1 0 0 1

1 1 0 1

0 0 1 1

0 0 0 1

2

6
6
6
4

3

7
7
7
5
:

According to Definition 2.2, we have

MC� ¼

1 1 0

0 1 0

1 1 0

1 1 1

2

6
6
6
4

3

7
7
7
5
:

Second, we get

f �31 f �32 f �33 f �34½ � ¼ 1 1 0½ � �MT
C� 	 e31 e32 e33 e34½ �

¼ 1 1 0½ � �
1 0 1 1

1 1 1 1

0 0 0 1

2

6
4

3

7
5	 0 0 1 1½ �

¼ 1 0 1 1½ � 	 0 0 1 1½ �
¼ 1 0 0 0½ �;

f �13 f �23 f �33 f �43½ �T ¼

1 1 0

0 1 0

1 1 0

1 1 1

2

6
6
6
4

3

7
7
7
5
�

1

1

0

2

6
4

3

7
5	 e13 e23 e33 e43½ �T

¼ 1 1 1 0½ �T	 0 0 1 0½ �T

¼ 1 1 0 0½ �T :

By Theorem 3.4, we have

D
Y

ðCÞ ¼

0 0 f �13 0

0 0 f �23 0

f �31 f �32 f �33 f �34

0 0 f �43 0

2

6
6
6
4

3

7
7
7
5
¼

0 0 1 0

0 0 1 0

1 0 0 0

0 0 0 0

2

6
6
6
4

3

7
7
7
5
:

Thus, we obtain
Y

ðC�Þ ¼
Y

ðCÞ þ D
Y

ðCÞ

¼

1 0 0 1

1 1 0 1

0 0 1 1

0 0 0 1

2

6
6
6
4

3

7
7
7
5
þ

0 0 1 0

0 0 1 0

1 0 0 0

0 0 0 0

2

6
6
6
4

3

7
7
7
5
¼

1 0 1 1

1 1 1 1

1 0 1 1

0 0 0 1

2

6
6
6
4

3

7
7
7
5
:

By Definition 2.5, we have

X SHðXÞ ¼
Y

ðC�Þ � XX

¼

1 0 1 1

1 1 1 1

1 0 1 1

0 0 0 1

2

6
6
6
4

3

7
7
7
5
�

0

0

1

1

2

6
6
6
4

3

7
7
7
5
¼ 1 1 1 1½ �T ;

X SLðXÞ ¼
Y

ðC�Þ � XX

¼

1 0 1 1

1 1 1 1

1 0 1 1

0 0 0 1

2

6
6
6
4

3

7
7
7
5
�

0

0

1

1

2

6
6
6
4

3

7
7
7
5
¼ 0 0 0 1½ �T :

Therefore, we have SHðXÞ ¼ fx1; x2; x3; x4g and

SLðXÞ ¼ fx4g.

In Example 3.5, we only need to compute D
Q
ðCÞ by

Theorem 3.4. But there is a need to compute all elements in
Q
ðC�Þ by Definition 2.4. Therefore, the computational

time of the incremental algorithm is less than the non-

incremental algorithm.

4 Non-incremental and incremental algorithms
of computing approximations of sets

In this section, we present non-incremental and incremental

algorithms of computing the second and sixth lower and

upper approximations of sets.
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In Algorithm 4.1, the time complexity of step 2 is

Oðmn2Þ; the time complexity of step 3 is Oð2n2Þ. The total

time complexity is Oððmþ 2Þn2Þ. In Algorithm 4.2, the

time complexity of step 3 is O(nm); the time complexity of

step 5 is O(n); the time complexity of step 6 is O(n); the

time complexity of step 7 is Oð2n2Þ. The total time com-

plexity is Oð2n2 þ nmþ 2nÞ. Furthermore, Oððmþ 2Þn2Þ
is the time complexity of the non-incremental algorithm.

Therefore, the incremental algorithm is more effective than

the non-incremental algorithm.

In Algorithm 4.3, the time complexity of step 2 is

Oðmn2Þ; the time complexity of step 3 is Oðn2Þ. The total

time complexity is Oððmþ 2Þn2Þ. In Algorithm 4.4, the

time complexity of step 3 is O(nm); the time complexity of

step 5 is O(nm); the time complexity of step 7 is O(n); the

time complexity of step 8 is O(n); the time complexity of

step 9 is Oð2n2Þ. The total time complexity is

Oð2n2 þ 2nmþ 2nÞ. Furthermore, Oððmþ 2Þn2Þ is the

time complexity of the non-incremental algorithm. There-

fore, the incremental algorithm is more effective than the

non-incremental algorithm.

5 Experimental analysis

In this section, we perform experiments to validate the

effectiveness of Algorithms 4.2 and 4.4 for computing the

second and sixth approximations of sets in dynamic covering

approximation spaces caused by varying attribute values.

In practical situations, a large amount of computational

time is used to transform incomplete information systems

into covering approximation spaces, and the main objective

of this study is to illustrate the efficiency of the Algorithms

4.2 and 4.4 in computing approximations of sets, ten cov-

ering approximation spaces are generated randomly with

information shown in Table 1 to evaluate the performance

of Algorithms 4.2 and 4.4, where jUij denotes the number

of objects in Ui and jCij means the cardinality of Ci. All

experiments are run on a PC with 64-bit Windows 7,

Inter(R) Core(TM) i5-4200M CPU@2.50 GHZ and 4 GB

memory; the computational software is Matlab R2013b

64-bit.

We apply Algorithms 4.1–4.4 to the covering approxi-

mation space ðUi;CiÞ, where i ¼ 1; 2; . . .; 10, and compare

the computational times by Algorithms 4.1 and 4.3 with

those of Algorithms 4.2 and 4.4, respectively. First, we

calculate CðCiÞ and
Q
ðCiÞ by Definition 2.4, where

i ¼ 1; 2; . . .; 10. Then we obtain the dynamic covering

approximation space ðUi;C
�
i Þ because of revising attribute

values of xk, where C�
j ¼ Cj [ fxkg or Cj, C�

j 2 C�
i and

Cj 2 Ci. Subsequently, we get CðC�
i Þ and

Q
ðC�

i Þ by

Algorithms 4.1 and 4.3, respectively, where

i ¼ 1; 2; . . .; 10. Second, we calculate SH(X), SL(X),

XH(X), and XL(X) based on CðC�
i Þ and

Q
ðC�

i Þ for X � Ui,

respectively, where i ¼ 1; 2; . . .; 10. Third, we obtain

CðC�
i Þ and

Q
ðC�

i Þ by Algorithms 4.2 and 4.4, respectively.

Fourth, we calculate SH(X), SL(X), XH(X), and

XL(X) based on CðC�
i Þ and

Q
ðC�

i Þ for X � Ui, respec-

tively, where i ¼ 1; 2; . . .; 10. We conduct all experiments

ten times and show the results in Table 2 and Fig. 1. In

Table 2, the measure of time is in seconds; t indicates the

average time of ten experiments; SD indicates the standard

deviations of ten experimental results; in Fig. 1, i stands for

the experimental number in x axis; in Fig. 1, i refers to the

Table 1 Covering approximation spaces

No. Name jUij jCij

1 ðU1;C1Þ 2000 100

2 ðU2;C2Þ 4000 200

3 ðU3;C3Þ 6000 300

4 ðU4;C4Þ 8000 400

5 ðU5;C5Þ 10,000 500

6 ðU6;C6Þ 12,000 600

7 ðU7;C7Þ 14,000 700

8 ðU8;C8Þ 16,000 800

9 ðU9;C9Þ 18,000 900

10 ðU10;C10Þ 20,000 1000
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covering approximation space ðUi;CiÞ in x	axis; while

y	axes corresponds to the computational time to compute

approximations of sets in dynamic covering approximation

spaces; NIS, IS, NIX, and IX stand for the time of con-

structing the second and sixth lower and upper approxi-

mations of sets by Algorithms 4.1, 4.2, 4.3 and 4.3,

respectively.

In Table 2, we see that Algorithms 4.1–4.4 are stable to

compute approximations of sets in all experiments. That is,

the computational times of each algorithm are almost the

same. Moreover, the computational times of approxima-

tions of sets using incremental algorithms are much smaller

than those of the non-incremental algorithms. In other

words, the computational times of Algorithms 4.2 and 4.4

Table 2 Computational times using Algorithms 4.1–4.4 in ðUi;CiÞ

No Algo. 1 2 3 4 5 6 7 8 9 10 t SD

1 NIS 0.4578 0.4213 0.4279 0.4223 0.4271 0.4236 0.4235 0.4263 0.4236 0.4273 0.4281 0.0107

NIX 0.4681 0.4671 0.4636 0.4646 0.4668 0.4651 0.4651 0.4681 0.4668 0.4720 0.4667 0.0024

IS 0.0044 0.0026 0.0033 0.0040 0.0029 0.0028 0.0031 0.0030 0.0028 0.0028 0.0032 0.0006

IX 0.0351 0.0339 0.0333 0.0339 0.0340 0.0334 0.0340 0.0335 0.0338 0.0333 0.0338 0.0005

2 NIS 1.8902 1.8452 1.8610 1.8203 1.8179 1.8257 1.8223 1.8224 1.8294 1.8189 1.8353 0.0237

NIX 2.0389 2.0437 2.0314 2.0237 2.0378 2.0331 2.0531 2.0565 2.0583 2.0641 2.0440 0.0134

IS 0.0091 0.0118 0.0102 0.0100 0.0098 0.0127 0.0110 0.0099 0.0099 0.0096 0.0104 0.0011

IX 0.2035 0.2018 0.2013 0.2018 0.2034 0.1992 0.2018 0.2006 0.1987 0.2035 0.2016 0.0017

3 NIS 4.2030 4.1889 4.1905 4.1457 4.1446 4.1681 4.1518 4.1765 4.2310 4.1604 4.1760 0.0277

NIX 4.6993 4.7126 4.6838 4.6895 4.6941 4.7000 4.7025 4.6711 4.7039 4.6939 4.6951 0.0116

IS 0.0177 0.0210 0.0211 0.0199 0.0199 0.0199 0.0199 0.0205 0.0200 0.0197 0.0200 0.0009

IX 0.5259 0.5059 0.5076 0.5056 0.5089 0.5055 0.5106 0.5080 0.5059 0.5078 0.5092 0.0061

4 NIS 7.5968 7.5550 7.7428 7.6536 7.6756 7.7031 7.6304 7.6051 7.6118 7.7013 7.6475 0.0581

NIX 8.6892 8.7967 8.8918 9.0384 8.7810 8.7764 8.6300 9.2821 8.6324 8.6121 8.8130 0.2112

IS 0.0428 0.0338 0.0350 0.0394 0.0378 0.0386 0.0345 0.0345 0.0346 0.0348 0.0366 0.0029

IX 0.9813 0.9681 0.9694 0.9677 0.9669 0.9731 0.9654 0.9683 0.9648 0.9685 0.9694 0.0048

5 NIS 12.0856 11.9662 11.9944 11.9200 11.9992 11.9683 11.9321 11.9008 11.8811 11.8839 11.9532 0.0633

NIX 13.8290 13.6560 13.7430 13.7308 13.6831 13.6816 13.7970 13.6794 13.8141 13.7338 13.7348 0.0614

IS 0.0675 0.0530 0.0549 0.0537 0.0551 0.0537 0.0536 0.0523 0.0535 0.0540 0.0551 0.0044

IX 1.6266 1.6193 1.6163 1.6138 1.6189 1.6057 1.6230 1.6213 1.6172 1.6211 1.6183 0.0057

6 NIS 17.8842 17.8858 18.0800 17.6753 17.5945 17.5710 17.7019 18.2036 17.5415 17.9582 17.8096 0.2277

NIX 20.1684 20.1404 20.0242 20.0022 20.0277 20.0598 20.0897 20.2560 21.6223 22.1194 20.4510 0.7613

IS 0.0977 0.0748 0.0746 0.0744 0.0803 0.0727 0.0753 0.0735 0.0738 0.0723 0.0770 0.0076

IX 2.4011 2.3671 2.4204 2.3771 2.3679 2.3662 2.3737 2.3644 2.3614 2.3692 2.3769 0.0189

7 NIS 24.2936 24.3201 24.4603 25.2946 24.4922 24.5153 24.3296 25.0792 24.6210 24.2059 24.5612 0.3554

NIX 27.9154 28.2049 28.2523 28.2664 28.7698 28.2559 28.1121 28.4234 28.6467 29.2779 28.4125 0.3921

IS 0.1071 0.1014 0.1017 0.0996 0.1015 0.1018 0.1025 0.1007 0.1020 0.1009 0.1019 0.0020

IX 3.4572 3.3194 3.3070 3.3030 3.2899 3.3109 3.2777 3.2753 3.2790 3.2758 3.3095 0.0544

8 NIS 33.2714 33.3024 33.2390 33.2370 33.3127 33.3602 33.3527 33.2599 33.4496 33.3485 33.3133 0.0664

NIX 39.0763 39.0729 39.1256 39.1677 39.1382 39.5114 39.2732 38.9632 39.1487 38.8493 39.1327 0.1765

IS 0.1267 0.1243 0.1293 0.1242 0.1248 0.1239 0.1259 0.1234 0.1226 0.1284 0.1254 0.0022

IX 6.1013 5.3888 5.3412 5.3710 5.2641 5.3158 5.3229 5.3422 5.2858 5.4398 5.4173 0.2456

9 NIS 44.2060 43.5990 43.2590 44.3375 43.9165 43.6185 44.3864 44.4667 44.2301 45.2159 44.1236 0.5542

NIX 50.1711 50.8559 50.4446 49.7286 50.6871 50.3282 50.5291 49.5770 50.0544 50.3550 50.2731 0.4021

IS 0.2048 0.1611 0.1628 0.1620 0.1607 0.1607 0.1605 0.1612 0.1615 0.1615 0.1657 0.0138

IX 6.1794 5.8323 5.8586 5.7428 5.8902 5.8318 5.8949 5.7688 5.7606 5.8051 5.8564 0.1249

10 NIS 55.6793 55.8107 55.6728 55.9174 55.5917 58.1981 59.1824 56.0537 55.7757 55.5664 56.3448 1.2663

NIX 64.8043 65.7104 65.2075 64.5169 64.7856 64.7118 65.0349 64.4148 64.7802 64.3155 64.8282 0.4101

IS 0.2716 0.1941 0.1944 0.1924 0.1938 0.1956 0.1936 0.1917 0.1947 0.1948 0.2017 0.0246

IX 8.3148 7.6287 7.3082 7.9581 7.2058 7.4084 7.1585 7.2874 7.1620 7.2413 7.4673 0.3879
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Fig. 1 Computational times using Algorithms 4.1–4.4 in ðUi;CiÞ
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are far less than those of Algorithms 4.1 and 4.3, respec-

tively. Therefore, the incremental algorithms are effective

to construct approximations of sets in the dynamic cover-

ing approximation space ðUi;C
�
i Þ, where i ¼ 1; 2; . . .; 10.

In Fig. 1, we observe that the average times of the

incremental and non-incremental algorithms rise

monotonically with the increasing cardinalities of

object sets and coverings. The incremental algorithms

perform always faster than the non-incremental algo-

rithms in all experiments, and the average times of the

incremental algorithms are much smaller than those of

the non-incremental algorithms. Moreover, the speed-up

ratios of times using the non-incremental algorithms are

higher than the incremental algorithms with the

increasing cardinalities of object sets and coverings.

Especially, there exists little influence of the cardinal-

ities of object sets and coverings on computing the

second and sixth lower and upper approximations of

sets using Algorithm 4.2 and 4.4. In other words, the

incremental algorithms are effective to construct the

second and sixth lower and upper approximations of

sets in dynamic covering approximation spaces when

varying attribute values. All experimental results

demonstrate Algorithms 4.2 and 4.4 are effective to

compute the second and sixth lower and upper

approximations of sets in dynamic covering approxi-

mation spaces with varying attribute values.

6 Knowledge reduction of dynamic covering
decision information systems caused
by variations of attribute values

In this section, we employ examples to illustrate how to

compute the type-1 and type-2 reducts of dynamic covering

decision information systems caused by variations of

attribute values.

Example 6.1 Let ðU;D [ U=dÞ be a covering decision

information system, where D ¼ fC1;C2;C3;C4g,

C1 ¼ ffx1; x2; x3; x4g; fx5gg, C2 ¼ ffx1; x2g; fx3; x4; x5gg,

C3 ¼ ffx1; x2; x5g; fx3; x4gg, C4 ¼ ffx1; x2g; fx3; x4g;
fx5gg, and U=d ¼ fD1;D2g, where D1 ¼ fx1; x2g
and D2 ¼ fx3; x4; x5g. According to Definition 2.3, we

have

MD ¼

1 0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 0

1 0 0 1 0 1 0 1 0

1 0 0 1 0 1 0 1 0

0 1 0 1 1 0 0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

By Definition 2.4, we obtain

CðDÞ ¼ MD �MT
D ¼

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

According to Definition 2.5, we get

X SHðD1Þ ¼ CðDÞ � XD1
¼ 1 1 1 1 1½ �T ;

X SLðD1Þ ¼ CðDÞ � XD1
¼ 0 0 0 0 0½ �T ;

X SHðD2Þ ¼ CðDÞ � XD2
¼ 1 1 1 1 1½ �T ;

X SLðD2Þ ¼ CðDÞ � XD2
¼ 0 0 0 0 0½ �T :

By Definition 2.4, we obtain

CðD=C4Þ ¼

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

CðD=fC2;C4gÞ ¼

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

CðD=fC1;C2;C4gÞ ¼

1 1 0 0 1

1 1 0 0 1

0 0 1 1 0

0 0 1 1 0

1 1 0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

CðD=fC2;C3;C4gÞ ¼

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

0 0 0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

According to Definition 2.5, we have
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By Definition 2.6, we get fC1;C3g is a type-1 reduct of

ðU;D [ U=dÞ. Similarly, we can obtain a type-2 reduct of

ðU;D [ U=dÞ.

We employ the following example to illustrate how to

compute a type-1 reduct of dynamic covering decision

information system.

Example 6.2 (Continued from Example 6.1) Let ðU;D� [
U=dÞ be a dynamic covering decision information system,

where D� ¼ fC�
1;C

�
2;C

�
3;C

�
4g, C�

1 ¼ ffx1; x2; x3; x4g;
fx5gg, C�

2 ¼ ffx1; x2g; fx3; x4; x5gg, C�
3 ¼ ffx1; x2; x3; x5g;

fx4gg, and C�
4 ¼ ffx1; x2g; fx3; x4g; fx5gg. According to

Definition 2.3, we have

MD� ¼

1 0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 0

1 0 0 1 1 0 0 1 0

1 0 0 1 0 1 0 1 0

0 1 0 1 1 0 0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

Furthermore, we obtain

DCðDÞ ¼

0 0 d�13 0 0

0 0 d�23 0 0

d�31 d�32 d�33 d�34 d�35

0 0 d�43 0 0

0 0 d�53 0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

By Theorem 3.2, we have

CðD�Þ ¼ CðDÞ þ DCðDÞ ¼

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

By Definition 2.5, we get

X SHðD1Þ ¼ CðD�Þ � XD1
¼ 1 1 1 1 1½ �T ;

X SLðD1Þ ¼ CðD�Þ � XD1
¼ 0 0 0 0 0½ �T ;

X SHðD2Þ ¼ CðD�Þ � XD2
¼ 1 1 1 1 1½ �T ;

X SLðD2Þ ¼ CðD�Þ � XD2
¼ 0 0 0 0 0½ �T :

Moreover, we obtain

CðD�=C�
4Þ ¼ CðD=C4Þ þ DCðD=C4Þ ¼

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

CðD�=fC�
2;C

�
4gÞ ¼ CðD=C4Þ þ DCðD=C4Þ ¼

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

CðD�=fC�
1;C

�
2;C

�
4gÞ ¼ CðD=fC1;C2;C4gÞ þ DCðD=fC1;C2;C4gÞ

¼

1 1 1 0 1

1 1 1 0 1

1 1 1 0 1

0 0 0 1 0

1 1 1 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

CðD�=fC�
2;C

�
3;C

�
4gÞ ¼ CðD=fC2;C3;C4gÞ þ DCðD=fC2;C3;C4gÞ

¼

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

0 0 0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

According to Definition 2.5, we have

CðD=C4Þ � XD1
¼ XSHðD1Þ;CðD=C4Þ � XD1

¼ X SLðD1Þ;

CðD=C4Þ � XD2
¼ XSHðD2Þ;CðD=C4Þ � XD2

¼ X SLðD2Þ;

CðD=fC2;C4gÞ � XD1
¼ XSHðD1Þ;CðD=fC2;C4gÞ � XD1

¼ X SLðD1Þ;

CðD=fC2;C4gÞ � XD2
¼ XSHðD2Þ;CðD=fC2;C4gÞ � XD2

¼ X SLðD2Þ;

CðD=fC1;C2;C4gÞ � XD1
6¼ XSHðD1Þ;CðD=fC1;C2;C4gÞ � XD1

¼ X SLðD1Þ;

CðD=fC1;C2;C4gÞ � XD2
¼ XSHðD2Þ;CðD=fC1;C2;C4gÞ � XD2

6¼ X SLðD2Þ;

CðD=fC2;C3;C4gÞ � XD1
6¼ XSHðD1Þ;CðD=fC2;C3;C4gÞ � XD1

¼ X SLðD1Þ;

CðD=fC2;C3;C4gÞ � XD2
¼ XSHðD2Þ;CðD=fC2;C3;C4gÞ � XD2

6¼ X SLðD2Þ:
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By Definition 2.6, we have fC�
1;C

�
3g is the type-1 reduct of

ðU;D� [ U=dÞ.

In Example 6.2, there is no need to compute all elements

in the type-1 characteristic matrices using the incremental

approach, and it illustrates the incremental approach is

effective to compute the type-1 reducts of dynamic cov-

ering decision information systems caused by variations of

attribute values. Similarly, we can obtain a type-2 reduct of

dynamic covering decision information systems caused by

variations of attribute values.

7 Conclusions

In this paper, we have introduced the incremental approa-

ches for computing the type-1 and type-2 characteristic

matrices in dynamic covering approximation spaces caused

by revising attribute values. We have presented the non-

incremental and incremental algorithms for computing the

second and sixth lower and upper approximations of sets

and compared the computational complexities of the non-

incremental algorithms with those of incremental algo-

rithms. We have applied the incremental algorithms to

compute the second and sixth lower and upper approxi-

mations of sets in dynamic covering approximation spaces.

Experimental results have illustrated the incremental

approaches are effective to compute the second and sixth

lower and upper approximations of sets in dynamic cov-

ering approximation spaces. We have demonstrated how to

conduct knowledge reduction of dynamic covering deci-

sion information systems with the incremental approaches.

In the future, we will improve the effectiveness of

Algorithms 4.2 and 4.4 and test them in large-scale

dynamic covering approximation spaces. Furthermore, we

will present incremental approaches to computing the

second and sixth lower and upper approximations of sets in

complex dynamic covering approximation spaces and

reducts of dynamic covering decision information systems

caused by variation attribute values.
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