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Abstract In this paper, an efficient modified Differential

Evolution algorithm, named EMDE, is proposed for solv-

ing constrained non-linear integer and mixed-integer global

optimization problems. In the proposed algorithm, new

triangular mutation rule based on the convex combination

vector of the triplet defined by the three randomly chosen

vectors and the difference vectors between the best,better

and the worst individuals among the three randomly

selected vectors is introduced. The proposed novel

approach to mutation operator is shown to enhance the

global and local search capabilities and to increase the

convergence speed of the new algorithm compared with

basic DE. EMDE uses Deb’s constraint handling technique

based on feasibility and the sum of constraints violations

without any additional parameters. In order to evaluate and

analyze the performance of EMDE, Numerical experiments

on a set of 18 test problems with different features,

including a comparison with basic DE and four state-of-

the-art evolutionary algorithms are executed. Experimental

results indicate that in terms of robustness, stability and

efficiency, EMDE is significantly better than other five

algorithms in solving these test problems. Furthermore,

EMDE exhibits good performance in solving two high-

dimensional problems, and it finds better solutions than the

known ones. Hence, EMDE is superior to the compared

algorithms.

Keywords Evolutionary computation � Global
optimization � Differential evolution � Triangular mutation �
Mixed-integer non-linear programming (MINLP)

1 Introduction

Generally, optimization is the process of finding the best

result for a given problem under certain conditions. In real

world problems, applications and different fields of science

and engineering, the optimization problems are subject to

different types of objective functions and constraints with

different type of variables [1]. Thus, most of these problems

can be formulated as mixed integer non-linear programming

problems (MINLP) that involve continuous aswell as integer

decision variables. These problems are recognized as a class

of NP complete problems plus due to their combinatorial

nature, are considered difficult problems [2, 3]. This class of

optimization problems frequently arise in various real-world

problems and application fields such as mechanical design

[4], Synthesis of chemical process flow sheets and design of

materials [5], scheduling [6], network design [7], feature

selection [8], vehicle routing [9], strategic planning [10],

data classification [11] and many more [12, 13]. There are

two types of MINLP according to the nature of the objective

function and constraints (feasible region): convex MINLP

and non-convex MINLP. The former involves minimizing a

convex objective function over a convex feasible region and

the latter involves minimizing an objective function and/or

the continuous relaxation of the feasible region that is not

convex [14]. Due to the above mentioned difficulties char-

acteristics and such diverse area, during past decades, many

attempts have been made to solve MINLP using various

types of deterministic or exact approaches and stochastic or

metaheuristic algorithms [15]. There are several
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deterministic approaches for solving convex MINLP

including Branch-and-Bound Method [16, 17], Generalized

Bender Decomposition [18], Outer-Approximation [19, 20],

LP/NLP Based Branch-and-Bound [21], Extend Cutting

Plane Method [22], Generalized Disjunctive Programming

[23] and hybrid methods [24, 25] that combine classical

techniques and it is considered most efficient methods [26].

On the other hand, for non-convexMINLPs, the methods are

mainly based on the use of exact reformulation approach [27]

or using convex envelopes or under-estimators of the non-

convex feasible Region [28]. The former one allows

obtaining an equivalent convex formulation of the non-

convex MINLP in limited cases and all the previous tech-

niques can be applied. The latter includes Piecewise Linear

Approximations and Spatial Branch-and-Bound Methods

which applies to a larger subset of non-convexMINLPs [29]

and many more [30]. More details of convex MINLPs, non-

convex MINLPs and their exact methods of solution are

referred to the survey papers [26, 29–31]. However, themain

drawbacks of these deterministic methods are such that it

requires derivatives of the objective function and assump-

tions of continuity and convexity for the objective function

and constraints. Thus, they are only applicable to problems

with well-structured problems with good analytical proper-

ties. Moreover, most methods can only tackle relatively

small-scale problemswithin a reasonable time. However, for

larger problems, the global optimization method also cannot

find a feasible solution within an acceptable time period [14]

i.e. because MINLPs are generally NP-hard; there are no

efficient exact algorithms with polynomial-time complexity

for solving them. Thus there are a lot of limitations in these

methods. Hence, there has been a need for developing gen-

eral purpose stochastic approaches that can solve all types of

MINLPs especially for handling high-dimensional, highly

combinatorial and highly nonlinear problems. Metaheuris-

tics have attracted wide attention as an alternative or hybrid

methods to the exact approaches. The main advantages of

these methods are that they do not require derivatives

information of the objective function and constraints, or

assumptions of continuity and convexity for the objective

function and constraints. Besides, although these methods

cannot guarantee a global solution, near-optimal solutions

can often be found with reasonable computational time.

However, the drawbacks of these methods are their param-

eter tunings. There are many stochastic approaches to solve

MINLPs, such as simulated annealing algorithms [32, 33],

tabu search algorithms [34], genetic algorithms [35–40],

evolutionary strategies [41], evolutionary programming [42,

43], controlled random search [44], filled function tech-

niques [45, 46], ant colony [47, 48],particle swarm opti-

mization [49, 50], and differential evolution [51–53].

Virtually, metaheuristics have been originally proposed to

overcome the challenges of global optimization problems

over continuous space such as nonlinearity, non-convexity,

non-continuity, non-differentiability, and/or multimodality,

while traditional numerical optimization techniques had

difficulties with these problems [54]. Hence, motivated by

their success, more research is essentially needed trying to

find solutions to MINLPs. However, from the literature, few

attempts have been made to develop and extend this work in

discrete space. Differential Evolution (DE) is a stochastic

population-based search method, proposed by Storn and

Price [55]. DE is considered the most recent evolutionary

algorithms (EAs) for solving real-parameter optimization

problems [56]. While DE shares similarities with other EAs,

it differs significantly in the sense that in DE, distance and

direction information is used to guide the search process

[57]. Das and Suganthan [58] made a comprehensive review

for the DE algorithm and introduced its applications to

unconstrained/constrained, combinatorial, andmulti-criteria

optimization problems in detail. Consequently, in this arti-

cle, motivated by this analysis and discussion, Constrained

MINLPs are solved using an efficient modified Differential

Evolution algorithm, named (EMDE). The proposed algo-

rithm introduces a new triangular mutation rule based on the

convex combination vector of the triangle and the difference

vector between the best and the worst individuals among the

three randomly selected vectors. The proposed novel

approach tomutation operator is shown to enhance the global

and local search capabilities and to increase the convergence

speed of the new algorithm compared with conventional DE.

EMDE uses Deb’s constraint handling technique [59] based

on feasibility and the sum of constraints violations without

any additional parameters. A novel triangular mutation rule

without any extra parameters is proposed to balance both

exploration capability and exploitation tendency and

enhance the convergence speed of the algorithm. The pro-

posed algorithm is tested and analyzed by solving a set of

well-known benchmark functions. The proposed algorithm

shows a superior and competitive performance to Basic DE

and other recent optimization algorithms. It is worth noting

that this work is an extension and modifications of our pre-

vious work in [54], there are significant differences as fol-

lows: (1) Previouswork in [54] is proposed for unconstrained

problems, whereas this work is proposed for constrained

problems. (2) Previous work in [54] optimizes function with

continuous variables only, but this work is proposed for

optimizing function with mixed variables continuous and

integer variables (3) The crossover rate in [54] is given by a

dynamic non-linear increased probability scheme, but in this

work, the crossover rate is fixed 0.5. (4) in [54], only one

difference vector between the best and the worst individuals

among the three randomly selected vectors with one scaling

factor, uniformly random number in (0,1), is used in the

mutation, but in this work, three difference vectors between

the tournament best, better and worst of the selected vectors
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with corresponding three scaling factors, which are inde-

pendently generated according to uniform distribution in

(0,1), are used in the mutation scheme.(5) the triangular

mutation rule is only used in this work, but in the previous

work [54], The triangularmutation strategy is embedded into

the DE algorithm and combined with the basic mutation

strategy DE/rand/1/bin through a non-linear decreasing

probability rule. (6) in previous work [54] a restart mecha-

nism based on Random Mutation and modified BGA muta-

tion is used to avoid stagnation or premature convergence,

whereas this work does not.

The rest of the paper is organized as follows. Section 2

presents the formulation of the MINLPs. Section 3 intro-

duces the DE algorithm. Section 4 the proposed EMDE is

presented in details. Section 5 reports on the computational

results of testing benchmark functions. Besides, the com-

parison with Basic DE and other techniques is discussed.

Finally, in Sect. 6, the paper is concluded and some pos-

sible future research is pointed out.

2 Problem Statement and constraint handling

In general, Mixed Integer Nonlinear Programming problem

can be expressed as follows (without loss of generality

minimization is considered here [51, 52]:

minimize f ðx~; y~Þ; x~¼ ðx1; x2; . . .; xnC Þ 2 <nC ;

y~¼ ðy1; y2; . . .; ynI Þ 2 <nI
ð1Þ

subject to:

gjðx~; y~Þ� 0 ; j ¼ 1; . . .; q ð2Þ

hj ðx~; y~Þ ¼ 0 ; j ¼ qþ 1; . . .;m ð3Þ

where ðx~; y~Þ 2 X � SnCþnI , nC is the number of continuous

variables, nIis the number of integer variables, X is the

feasible region, and Sis an (nC ? nI)-dimensional rectan-

gular space in <nC [ <nI defined by the parametric con-

straints li B xi B ui, 1 B i B nC where li and ui are lower

and upper bounds for a continuous decision variable xi,

li B yi B ui, 1 B i B nI where li and ui are lower and upper

bounds for an integer decision variable yi, respectively. For

an inequality constraint that satisfies gjðx~Þ ¼ 0 (j 2 1,

…, q)at any point ðx~; y~Þ 2 X, we say it is active at ðx~; y~Þ.
All equality constraints hj ðx~; y~Þ; ðj ¼ qþ 1; . . .;mÞ are

considered active at all points of X. Most constraint-han-

dling approaches used with EAs tend to deal only with

inequality constraints. Therefore equality constraints are

transformed into inequality constraints of the form

hjðx~; y~Þ
�
�

�
�� e� 0 where e is the tolerance allowed (a very

small value). In order to handle constraints, we use Deb’s

constraint handling procedure. Deb [59] proposed a new

efficient feasibility-based rule to handle constraint for

genetic algorithm where pair-wise solutions are compared

using the following criteria:

• Between two feasible solutions, the one with the

highest fitness values wins.

• If one solution is feasible and the other one is

infeasible, the feasible solution wins.

• If both solutions are infeasible, the one with the lowest

sum of constraint violation is preferred.

As a result, Deb [59] has introduced the superiority of

feasible solutions selection procedure based on the idea

that any individual in a constrained search space must first

comply with the constraints and then with the objective

function. Practically, Deb’s selection criterion does not

need to fine-tune any parameter. Typically, from the

problem formulation above, there are m constraints and

hence the amount of constraint violation for an individual

is represented by a vector of m dimensions. Using a tol-

erance (e) allowed for equality constraints, the constraint

violation of a decision vector or an individual ðx~; y~Þ on the

jth constraint is calculated by

cvjðx~; y~Þ ¼
max ð0; gjðx~; y~ÞÞ ; j ¼ 1; . . .; q
max ð0; hjðx~; y~Þ

�
�

�
�� eÞ; j ¼ qþ 1; . . .;m

�

ð4Þ

If a decision vector or an individual ðx~; y~Þ satisfies the

jth constraint, cvjðx~; y~Þ is set to zero, it is greater than zero.

As discussed [60], in order to consider all the constraints at

the same time or to treat each constraint equally, each

constraint violation is then normalized by dividing it by the

largest violation of that constraint in the population. Thus,

the maximum violation of each constraint in the population

is given by

cv j
max ¼ max

x~2s
cvjðx~; y~Þ ð5Þ

These maximum constraint violation values are used to

normalize each constraint violation. The normalized con-

straint violations are added together to produce a scalar

constraint violation cvðx~; y~Þ for that individual which takes

a value between 0 and 1

cvðx~; y~Þ ¼ 1

m

Xm

j¼1

cvjðx~; y~Þ
cv

j
max

ð6Þ

3 Differential evolution

This section provides a brief summary of the basic Dif-

ferential Evolution (DE) algorithm. In simple DE, gener-

ally known as DE/rand/1/bin [61, 62], an initial random
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population consists of NP vectors X~i,8 i = 1, 2, …, NP, is

randomly generated according to a uniform distribution

within the lower and upper boundaries (xLj ; x
U
j ). After ini-

tialization, These individuals are evolved by DE operators

(mutation and crossover) to generate a trial vector. A

comparison between the parent and its trial vector is then

done to select the vector which should survive to the next

generation [58]. DE steps are discussed below:

3.1 Initialization

In order to establish a starting point for the optimization

process, an initial population must be created. Typically,

each decision parameter in every vector of the initial

population is assigned a randomly chosen value from the

boundary constraints:

x0ij ¼ aj þ randj � ðbj � ajÞ ð7Þ

where randj denotes a uniformly distributed number

between [0, 1], generating a new value for each decision

parameter.

3.2 Mutation

At generation G, for each target vector xGi , a mutant vector

vGþ1
i is generated according to the following:

vGþ1
i ¼ xGr1 þ F � ðxGr2 � xGr3Þ; r1 6¼ r2 6¼ r3 6¼ i ð8Þ

with randomly chosen indices r1, r2, r3 2 {1, 2, …, NP}.

F is a real number to control the amplification of the dif-

ference vector ðxGr2 � xGr3Þ. According to Storn and Price

[61], the range of Fis in [0, 2]. In this work, in order to

verify the boundary constraints, If a component of a mutant

vector goes off the search space i.e. if a component of a

mutant vector violate the boundary constraints, then the

new value of this component is generated using (7).

3.3 Crossover

There are two main crossover types, binomial and expo-

nential. In the binomial crossover, the target vector is

mixed with the mutated vector, using the following

scheme, to yield the trial vectorui
G?1.

uGþ1
ij ¼ vGþ1

ij
; randðjÞ�CRorj¼randðiÞ;

xG
ij
; randðjÞ[CRandj 6¼randðiÞ;

�

ð9Þ

where j = 1, 2, …, D, rand(j) 2 [0, 1] is the jth evaluation

of a uniform random generator number. CR 2 [0, 1] is the

crossover rate, rand(i) 2 {1, 2, …, D} is a randomly

chosen index which ensures that ui
G?1 gets at least one

element from vi
G?1; otherwise no new parent vector would

be produced and the population would not alter.

In an exponential crossover, an integer value l is ran-

domly chosen within the range {1, D}. This integer value

acts as a starting point in xi
G, from where the crossover or

exchange of components with vi
G?1 starts. Another integer

value L (denotes the number of components) is also chosen

from the interval {1, D-l}. The trial vector ui
G?1 is created

by inheriting the values of variables in locations l to

l ? L from vi
G?1 and the remaining ones from the xi

G.

3.4 Selection

DE adapts a greedy selection strategy. If and only if the

trial vector ui
G?1 yields as good as or a better fitness

function value than xi
G, then ui

G?1 is set to xi
G?1. Otherwise,

the old vector xi
G is retained. The selection scheme is as

follows (for a minimization problem):

xGþ1
i ¼ uGþ1

i
; f ðuGþ1

i
Þ� f ðxGi Þ

xG
i
; otherwise

n

ð10Þ

A detailed description of standard DE algorithm is given

in Fig. 1.

1. Begin
2. G=0
3. Create a random initial population G

ix
r , 1,...,i i NP∀ =

4. Evaluate ( )G
if xr , 1,...,i i NP∀ =

5. For G=1 to GEN Do
6. For i=1 to NP Do
7. Select randomly 1 2 3 [1, ]r r r i NP≠ ≠ ≠ ∈
8. jrand= randint(1,D)
9. For j=1 to D Do
10. If (randj[0,1]< CR or j= jrand) Then 
11.

1, 2, 3,
1

, ( )G G G
r j r j r j

G
i j Fu x x x+ ⋅= + −

12. Else
13.

,
1

,
G
i j

G
i ju x+ =

14. End If              
15. End For
16. Verify Boundary constraints
17.

If( f ( 1Gui
+r

) ≤ f ( Gxi
r

))Then

18. 11 G
i

G
ix u ++ =
r r

19. Else
20. 1 G

i
G
ix x+ =
r r

21. End If
22. End For
23. G=G+1
24. End For
25. End

Fig. 1 Description of standard DE algorithm. rand (0,1) is a function

that returns a real number between 0 and 1. randint (min, max) is a

function that returns an integer number between min and max. NP,

GEN, CR and F are user-defined parameters. D is the dimensionality

of the problem
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4 The proposal: EMDE

In this section, an efficient modified DE algorithm EMDE,

the constraint-handling technique and handling of integer

variables used in this research are described and explain the

pseudo-code of the algorithm in details.

4.1 Triangular mutation scheme

DE/rand/1 is the fundamental mutation strategy developed

by Storn and Price [61, 63], and it is reported to be the most

successful and widely used scheme in the literature [58].

Obviously, in this strategy, the three vectors are chosen

from the population at random for mutation and the base

vector is then selected at random among the three. The

other two vectors forms the difference vector that is added

to the base vector. Consequently, it is able to maintain

population diversity and global search capability with no

bias to any specific search direction, but it slows down the

convergence speed of DE algorithms [64]. DE/rand/2

strategy, like the former scheme with extra two vectors that

forms another difference vector, which might lead to better

perturbation than one-difference-vector-based strategies

[64]. Furthermore, it can provide more various differential

trial vectors than the DE/rand/1/bin strategy which increase

its exploration ability of the search space. On the other

hand, greedy strategies like DE/best/1, DE/best/2 and DE/

current-to-best/1 incorporate the information of the best

solution found so far in the evolutionary process to increase

the local search tendency that lead to fast convergence

speed of the algorithm [64]. However, the diversity of the

population and exploration capability of the algorithm may

deteriorate or may be completely lost through a very small

number of generations i.e. at the beginning of the opti-

mization process, that cause problems such stagnation and/

or premature convergence. Consequently, in order to

overcome the shortcomings of both types of mutation

strategies, most of the recent successful algorithms utilize

the strategy candidate pool that combines different trail

vector generation strategies, that have diverse characteris-

tics and distinct optimization capabilities, with different

control parameter settings to be able to deal with a variety

of problems with different features at different stages of

evolution [64, 65, 66]. Contrarily, taking into consideration

the weakness of existing greedy strategies, [67] introduced

a new differential evolution (DE) algorithm, named JADE,

to improve optimization performance by implementing a

new mutation strategy ‘‘DE/current-to-p best’’ with

optional external archive and updating control parameters

in an adaptive manner. Consequently, proposing new

mutations strategies that can considerably improve the

search capability of DE algorithms and increase the pos-

sibility of achieving promising and successful results in

complex and large scale optimization problems is still an

open challenges for evolutionary computation research.

Therefore, this research uses a new triangular mutation rule

with a view of balancing the global exploration ability and

the local exploitation tendency and enhancing the conver-

gence rate of the algorithm. The proposed mutation strat-

egy is based on the convex combination vector of the triplet

defined by the three randomly chosen vectors and three

difference vectors between the tournament best, better and

worst of the selected vectors. The proposed mutation vector

is generated in the following manner:

mGþ1
i ¼ �xGc þ F1 � ðxGbest � xGbetterÞ þ F2 � ðxGbest � xGworstÞ

þ F3 � ðxGbetter � xGworstÞ
ð11Þ

where �xGc is a convex combination vector of the triangle

and F1, F2 and F3 are the mutation factors that are asso-

ciated with xi and are independently generated according to

uniform distribution in (0,1) and xGbest; x
G
btterand xGworst are

the tournament best, better and worst three randomly

selected vectors, respectively. The convex combination

vector �xGc of the triangle is a linear combination of the three

randomly selected vectors and is defined as follows:

�xGc ¼ w1 � xbest þ w2 � xbetter þ w3 � xworst ð12Þ

where the real weights wi satisfy wi C 0 and
P3

1¼j wi ¼ 1 .

Where the real weights wi are given by wi ¼ pi=
P3

i¼1 pi,

i = 1, 2, 3. Where p1 = 1, p2 = rand(0.75, 1) and p3 -

= rand(0.5, p(2)), rand (a,b) is a function that returns a

real number between a and b, where a and b are not

included. for constrained optimization problems at any

generation g[ 1, the tournament selection of the three

randomly selected vectors and assigning weights follow

one of the following three scenarios that may exist through

generations, Without loss of generality, we only consider

minimization problems:

Scenario 1 If the three randomly selected vectors are

feasible, then sort them in ascending

according to their objective function values

and assign w1, w2, w3 to xbest
G , xbetter

G and xworst
G ,

respectively

Scenario 2 If the three randomly selected vectors are

infeasible, then sort them in ascending order

according to their constraint violations

(CV)values and assign w1, w2,w3to xbest
G ,

xbetter
G and xworst

G , respectively
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Scenario 3 If the three randomly selected vectors are mixed

(feasible and infeasible), then the vectors are

sorted by using the three criteria: (a) Sort

feasible vectors in front of infeasible solutions

(b) Sort feasible solutions according to their

objective function values (c) Sort infeasible

solutions according to their constraint

violations. Accordingly, assign w1, w2,w3 to

xbest
G , xbetter

G and xworst
G , respectively. Obviously,

from mutation Eq. (11) and (12), it can be

observed that the incorporation of the objective

function value and constraints violation in the

mutation scheme has two benefits. Firstly, the

perturbation part of the mutation is formed by

the three sides of the triangle in the direction of

the best vector among the three randomly

selected vectors. Therefore, the directed

perturbation in the proposedmutation resembles

the concept ofgradient as the difference vector is

oriented from the worst to the best vectors [68].

Thus, it is considerably used to explore the

landscape of the objective function being

optimized in different sub-region around the

best vectors within constrained search-space

through optimization process. Secondly, the

convexcombinationvector �xGc is aweighted sum

of the three randomly selected vectors where the

best vector has the highest contribution.

Therefore, �xGc is extremely affected and biased

by the best vector more than the remaining two

vectors. Consequently, the global solution can

be easily reached if all vectors follow the

direction of the best vectors besides they also

follow the opposite direction of the worst

vectors among the randomly selected vectors.

Indeed, the new mutation process exploits the

nearby region of each �xGc in the direction of

(xbest
G - xworst

G )for each mutated vector. In a

nutshell, it concentrates the exploitation of some

sub-regions of the search space. Thus, it has

better local search tendency so it accelerates the

convergence speed of the proposed algorithm.

Besides, the global exploration ability of the

algorithm is significantly enhanced by forming

many different sizes and shapes of triangles in

the feasible region through the optimization

process. Thus, the proposed directed mutation

balances both global exploration capability and

local exploitation tendency. Illustrations of the

local exploitation and global exploration

capabilities of the new triangular mutation are

illustrated in Figs. 2 and 3, respectively.

4.2 Constraint handling

In this paper, Deb’s feasibility rules [59] are used to

handle the constraints. As aforementioned in Sect. 2, in

the constraint-handling technique, the equality constraints

are transformed to inequality constraints by a tolerance

value e. In the experiments, the tolerance value eis
adopted like [69] and used in the [70]. The parameter e
decreases from generation to generation using the fol-

lowing equation:

e gþ 1ð Þ ¼
e gð Þ

1:0168
; if e[ 10�4

10�4; otherwise :

8

<

:
ð13Þ

where g is the generation number and the initial e 0ð Þ is set
to 5. Regarding boundary-handling method, the re-initial-

ization method is used (see Eq. 7), i.e. when one of the

decision variable violates its boundary constraint, it is

generated within the uniform distribution within the

boundary, as mentioned in Sect. 3.2. The pseudo-code of

NDE is presented in Fig. 4.

4.3 Handling of integer variables

In its canonical form, the Differential Evolution algo-

rithm and EMDE algorithm are only capable of opti-

mizing unconstrained problems with continuous

variables. However, there are very few attempts to

transform the canonical DE and proposed EMDE algo-

rithms to handle integer variables [51, 53, 71, 72]. In

order to enhance the convergence speed and to avoid for

avoiding unnecessary searches in real number field,

integer variables are directly searched in the integer

space, to ensure that the vector is controlled in the

integer space in the evolution procedure of the EMDE.

In this research, only a couple of simple modifications

are required, the new generation of initial population and

boundary constraints verification, the trial vector gener-

ated after novel mutation operation and the basic muta-

tion schemes and cross over operations use rounding

operator, where the operator round(x) rounds the ele-

ments of x to the nearest integers. Therefore, the ini-

tialization and mutation are as follows:

Initialization: xij
0 = round(lj ? randj * (uj - lj)).

Boundary constraint verification: xij
G?1 = round(lj ? -

randj * (uj - lj)).

New mutation: uGþ1
ij ¼ round ð�xGc þ F1 � ðxGbest � xGbetterÞ

þF2 � ðxGbest � xGworstÞ þ F3 � ðxGbetter � xGworstÞÞ.
Basic mutation: uij

G?1 = round(xr1
G ? Fg * (xr2

G - xr3
G )).

994 Int. J. Mach. Learn. & Cyber. (2017) 8:989–1007

123



5 Experiments and discussion

To demonstrate the feasibility and efficiency of the pro-

posed EMDE algorithm, 18 integer and mixed integer

constrained optimization problems in the literature [40] are

tested. All (except problem 16) are nonlinear. The number

of unknown decision variables in these problems varies

from 2 to 100. However, based on self check, taking into

consideration that there are few differences in problems 6,

16 and 17 in Ref. [40] from the original documents. Thus,

the corrections on these problems are presented in ‘‘Ap-

pendix A’’. The three main control parameters of EMDE

algorithm, population size NP is 50, crossover rate Cr is

fixed 0.5 and the scale factors F1, F2and F3 are uniformly

random numbers in (0.1) as aforementioned. The scale

factor F of the basic DE is fixed 0.5. The maximum number

of generations is 1000. Thus, The maximum number of

function evaluations (FEs) for all benchmark problems are

set to 50,000. The experiments were executed on an Intel

Pentium core i7 processor 1.6 GHz and 4 GB-RAM.

EMDE algorithm is coded and realized in MATLAB. For

each problem, 50 independent runs are performed and

statistical results are provided including the best, median,

mean, worst results and the standard deviation. Addition-

ally, A run is considered a success if achieved value of the

objective function f(x) is within 1 % of the known best

solution or optimal value f(x*), where x* is the best solu-

tion or optimal value found i.e.(f(x)-f(x*))\ 0.01. For

each problem, the percentage of success (obtained as the

ratio of the number of successful runs to total number of

runs), the statistical results about number of function

evaluations (FEs) in the case of successful runs are pro-

vided including the best, median, mean, worst and standard

deviation used by the algorithm in achieving the optimal

solution in the case of the successful runs are also listed

[40]. In order to evaluate the benefits of the proposed

betterx

worstx

xi

1x

The difference vector 
( )better worstx x−

The target vector ix

The scaled difference vector 

2 ( )best worstF x x⋅ −

Other vectors in parametric 
space (feasible region)

bestx

The newly generated donor 
vector iv corresponding to 

the target vector ix

The scaled difference vector 

3 ( )• −better worstF x x

The difference vector ( )best worstx x−

The difference vector 
( )best betterx x−

G
Cx

The scaled difference vector 

1 ( )best betterF x x⋅ −

Local Exploitation around convex 

combination vector G
cx in the direction 

( )best worstx x− , bestx is the best 

vector and worstx is the worst vector.

The sum of the three scaled 
difference vectors

Fig. 2 An illustration of the new triangular mutation scheme in two-dimensional parametric space (Local Exploitation)
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modifications, two experiments are conducted. Firstly,

EMDE is compared with basic DE where they only differ

in mutation scheme used. Then The proposed approach is

compared against the following four state-of-the-art evo-

lutionary algorithms.

• Real Coded Genetic algorithm with Laplace crossover

and Power mutation (MI-LXPM) due to Deep et al.

[40]. MI-LXPM algorithm is an extension of LXPM

algorithm, which is efficient to solve integer and mixed

integer constrained optimization problems. In MI-

LXPM, Laplace crossover and Power mutation are

modified and extended for integer decision variables.

Moreover, a special truncation procedure for satisfac-

tion of integer restriction on decision variables and a

‘parameter free’ penalty approach for constraint han-

dling are used in MI-LXPM algorithm [40].

• The controlled random search technique incorporating

the simulated annealing concept (the RST2ANU algo-

rithm) due to Mohan and Nguyen [44]: this algorithm,

which is primarily based on the original controlled

random search approach of Price, incorporates a

simulated annealing type acceptance criterion in its

working so that not only downhill moves but also

occasional uphill moves can be accepted. In its working

it employs a special truncation procedure which not

only ensures that the integer restrictions imposed on the

decision variables are satisfied, but also creates greater

possibilities for the search leading to a global optimal

solution.

• Real Coded Genetic Algorithm with Arithmetic cross-

over and Non-uniform mutation (AXNUM) due to Li

and Gen [73]: In AXNUM, Arithmetic crossover and

Non-uniform mutation with tournament selection oper-

ator are used. It uses always rounding rule for

satisfaction of integer restrictions on decision variables.

Besides, a new adaptive penalty approach for the

evaluation function of genetic algorithm by introducing

the degree of the constraints satisfactory in order to

solve constrained optimization problems.

• and Modified differential evolution algorithm of con-

strained nonlinear mixed integer programming

(MIPDE) due to Gao et al. [51].: a variant of

differential evolution (the framework is based on DE/

rand/1/bin combined linearly with best solution found

so far. Thus, the positions of the variation particles are

self-adaptively adjusted so that the particles evolve in

better direction and the feasible basis rule [59] and the

betterx

worstx

iv

1x

bestx
G
cx

bestx

bestx

bestx

G
cx

G
cx

G
cx

worstx

betterx

betterx

betterx

iv

iv

iv

worstx

worstx

Fig. 3 An illustration of the new triangular mutation scheme with collection of convex combinations vectors and the newly generated donor

vectors vicorresponding to the target vectors xi in two-dimensional parametric space (Global Exploration)
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1. Begin
2. G=0      
3. Create a random initial population G

ix
r , 1,...,i i NP∀ = , CR= 0.5 .

4. Evaluate ( )G
if xr , ( )G

icv xr , , 1,...,i i NP∀ =
5. For G=1 to GEN Do
6. Compute the Factor of the tolerance value (ε ) using equation (13).
7. For i=1 to NP Do
8.

1F =rand[0,1] , 2F =rand[0,1] , 3F =rand[0,1]
9. jrand= randint(1,D)
10. Select randomly 1 2 3 [1, ]r r r i NP≠ ≠ ≠ ∈
11. For j=1 to D Do
12. If (randj[0,1]< CR or j= jrand) Then 
13. Determine the tournament G

bestx , G
betterx and G

worstx based on ( )G
if xr , ( )G

icv xr , 1, 2,3i = ,

( three  randomly selected vectors) using one of three scenarios and compute G
cx according to 

eq.(11).
14.

321 , , , , , ,
1

, , ( ) ( ) ( )G G G G G G
best j better j best j worst j better j worst j

G
i j

G
c j F F Fu x x x x x x x+ = + − + − + −

15. Else
16. 1 G

ij
G
iju x+ =

17. End If              
18. End For
19. Verify Boundary constraints
20. If ( 1G

iu +r
is better than G

ix
r

(based on Deb’s selection criteria)) Then              

21. 1G
ix +r

= 1G
iu +r

22. Else
23. 1G

ix +r
= G

ix
r

24. End If
25. Evaluate  1( )G

if x +r
and 1( )G

icv x +r
, , 1,...,i i NP∀ = .

26. End For
27. G=G+1
28. End For
29. End

Fig. 4 Description of EMDE

algorithm

Table 1 Results obtained by

EMDE in 50 runs
Problem Known optimal Best Median Mean Worst S.D

1 2 2 2 2 2 0.00E ? 00

2 2.124 2.124 2.124 2.124 2.124 0.00E ? 00

3 1.076543 1.076543 1.076543 1.076543 1.076543 0.00E ? 00

4 -6961.81381 -6961.81381 -6961.81381 -6961.81381 -6961.81381 0.00E ? 00

5 -68 -68 -68 -68 -68 0.00E ? 00

6 -6.00 -6.00 -6.00 -6.00 -6.00 0.00E ? 00

7 99.245209 99.239635 99.239635 99.239635 99.239635 0.00E ? 00

8 3.557463 3.5574612 3.5574612 3.5589360 3.57958240 5.71E - 03

9 32217.4 32217.4 32217.4 32217.4 32217.4 0.00E ? 00

10 0.94347 0.953197 0.953197 0.953197 0.953197 0.00E ? 00

11 8 8 8 8 8 0.00E ? 00

12 14 14 14 14 14 0.00E ? 00

13 -42.632 -42.63212 -42.63212 -42.63212 -42.63212 0.00E ? 00

14 0 0 0 0 0 0.00E ? 00

15 807 807 807 807 807 0.00E ? 00

16 1030361 1352439 1352439 1352439 1352439 0.00E ? 00

17 303062432 304153834 304153280 304153230.26 304152465 435.849

18 0.999955 0.99995467 0.99995467 0.99995467 0.99995467 3.83E - 12
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dynamic constraint handling technology [74] are added

to improve particles optimization’ ability.

To the best of our knowledge, It is worth noting that this

is the first study compared with [40] using the complete set

of test problems since its publication in 2009.

5.1 Comparison with basic DE algorithm

In this section, in order to investigate the effect of the

proposed mutation, EMDE algorithm is compared with

basic DE algorithm that uses DE/rand/1/bin mutation

scheme. The statistical results of the EMDE and Basic DE

Table 5 Number of FEs to achieve the fixed accuracy level (f(x)-f(x*))\ 0.01), successful rate (Ps) provided by EMDE

Problem Best Median Mean Worst Std Ps

1 50 575 570 1550 399.266569 100

2 50 100 126.666667 300 84.233236 100

3 1050 1450 1393.333333 1750 217.835674 100

4 7650 7900 7993.333333 8950 332.665999 100

5 50 450 448.333333 700 169.422617 100

6 50 50 50 50 0.0E ? 00 100

7 1500 2175 2192.857143 3100 560.170696 100

8 3400 5300 5504.166667 7650 954.954662 90

9 250 850 850 1250 263.899331 100

10 50 50 55 200 27.386128 100

11 50 250 173.333333 350 103.279556 100

12 350 800 900 1900 422.447084 100

13 50 50 50 50 0.0E ? 00 100

14 250 750 776.666667 1100 183.095083 100

15 1700 2950 3000 4450 731.681039 100

16 50 400 380 550 136.014705 100

17 150 550 565 1000 194.825298 100

18 50 100 116.666667 200 58.756965 100

Table 3 Better solutions obtained by EMDE than MI-LXPM [40]

problem Best solution x Objective function

10 (1,1,0,1,0,1,1,0) 0.953197

16 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,

99,99,99,99,99,99,99,99,99,99

1352439

17 (96,99,99,99,99,43,31,4,6,2,99,99,99,99,99,45,78,88,66,99,98,99,99,99,99,99,99,99,99,99,99,

5,99,98,99,99,0,0,99,99,98,99,2,7,82,4,1,10,2,10,99,99,99,97,98,87,62,98,61,81,91,98,96,

81,80,98,99,43,95,80,99,98,98,65,90,32,96,97,95,92,92,91,98,95,99,88,99,91,62,21,97,64,92,0,12,

96,92,72,12,70)

304153834

Table 4 Better solutions obtained by basic-DE than MI-LXPM [40]

problem Best solution x Objective function

10 1,1,0,1,0,1,1,0 0.953197

16 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,

99,99,99,99,99,99,99,99,99,99,99,99

1352439

17 (94,99,94,98,97,4,7,70,7,13,98,90,99,99,97,35,82,80,91,90,89,99,97,98,88,96,99,99,98,

78,99,6,99,96,99,99,4,21,97,99,94,99,2,41,92,15,9,16,8,3,99,96,95,45,97,63,14,28,69,

90,95,38,50,61,20,58,77,95,61,71,80,89,22,75,67,56,87,94,86,96,82,57,82,94,91,42,

85,90,64,33,85,62,92,7,34,83,40,47,45,53)

304139472
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Table 6 Number of FEs to achieve the fixed accuracy level (f(x) - f(x*))\ 0.01), Successful rate (Ps) provided by Basic DE

Problem Best Median Mean Worst Std Ps

1 100 650 620 1100 283.976860 96.67

2 50 150 226.666667 650 200.772318 100

3 1400 2100 1996.153846 2400 267.286939 86.67

4 7350 8900 8856.666667 10900 893.401739 100

5 150 475 538.333333 950 238.053650 100

6 50 50 50 50 0.00E ? 00 100

7 1800 3250 3553.333333 7000 1414.398745 86.67

8 7950 14975 16692.5 23950 4335.601549 66.67

9 850 1550 2165 2750 220.950143 100

10 250 1450 1958.333333 2950 656.805662 100

11 50 475 448.333333 950 296.672155 100

12 1000 2500 3117.857143 4750 1113.485025 46.67

13 50 50 50 50 0.0E ? 00 100

14 100 800 773.333333 1350 275.660127 100

15 3350 4850 5768.333333 10150 1425.233395 100

16 300 500 511.666667 800 110.393757 100

17 200 750 753.333333 1100 212.104940 100

18 50 100 141.666667 450 102.623629 100

Fig. 5 the performance of EMDE and Basic DE algorithms in terms of mean FEs in all test functions
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on the benchmarks are summarized in Tables 1 and 2. It

includes the known optimal solution or best solution found

for each test problem and the obtained best, median, mean,

worst values and the standard deviations. As shown in

Table 1, EMDE is able to find the global optimal solution

consistently over 50 runs with the exception of test func-

tion 8. With respect to this test function, although the

optimal solutions are not consistently found, the best result

achieved is very close to the global optimal solution which

can be verified by the very small standard deviation.

Additionally, it is able to provide the competitive results.

Regarding basic DE, from Table 2, basic DE is able to find

the global optimal solution consistently in the majority test

functions over 30 runs with the exception of test functions

1, 7, 8, 12 and 16). EMDE and basic DE are also able to

find new solution to test functions 10, 16 and 17 which is

better than the best known solutions from [40]. Actually,

EMDE was able to reach the new global solutions con-

sistently for problems 10 and 16. The Better solutions

obtained by EMDE and Basic DE than MI-LXPM [40] are

listed in Tables 3 and 4, respectively. It is noteworthy to

mentioning that problems 16 and 17 are 40 and 100

dimensions, respectively. Hence, it can be concluded that

EMDE can globally optimize MINLPs with high

dimensions.

Thus, from Table 3, it can be clearly observed that

EMDE and basic DE find the global optimal value 1352439

in Problem 16. Actually, the known optimal value 1030361

is a local one. Also, a better objective function value

304153834 and 304139472 (the known one is 303062432)
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Int. J. Mach. Learn. & Cyber. (2017) 8:989–1007 1001

123



are found by EMDE and Basic DE, respectively, in Prob-

lem 17. However, EMDE produces better solutions than

basic DE algorithm.

The computational results of EMDE and basic DE

algorithm are measured by using the following two per-

formance measures [53]:

• The success rate (SR), i.e. the proportion of conver-

gence to the known optimal solution, which can be used

to evaluate the stability and robustness of proposed

algorithm.

• The mean number of fitness evaluations (FES), which

can be used to assess the computational cost or

efficiency of the proposed algorithm.

The statistical results about number of function evalu-

ations (FEs) in the case of successful runs are provided

including the best, median, mean, worst and standard

deviation used by EMDE and basic DE algorithms in

achieving the optimal solution in the case of the successful

runs and the percentage of success are also listed in

Tables 5 and 6, respectively. It can be obviously seen from

Tables 5 and 6 that The success rate of EMDE algorithm

reaches 100 % except problem 8 which is 90 %. However,

the success rate of basic DE reaches 100 % with exception

to problems 1,3,7,8 and 12. Besides, in terms of Number of

FEs, Fig. 5 show the performance of EMDE and Basic DE

algorithms in terms of Mean FEs for 18 test functions.

From Fig. 5, it is clearly that mean FEs provided by EMDE
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is better than mean FEs provided by Basic DE in almost

test problems.

Thus, in order to measure the efficiency of EMDE in

solving all test problems, the sum of the mean FEs pro-

vided by Basic DE is 48221.51099 while the sum of the

mean FEs produced by EMDE is 25145.36714. Therefore,

on average, the improvement percentage of EMDE in terms

of FEs in comparison to Basic DE is 47.85 %. Therefore,

EMDE is considered the most efficient with the smallest

total mean (FEs) which prove the searching ability of the

proposed triangular mutation in balancing both exploration

capability and exploitation tendency and enhance the

convergence speed of the algorithm. Additionally, Fig. 6

show the convergence graphs of f(x)) over FEs at the

median run of EMDE and Basic DE algorithms for each

test problem with 50,000 FEs. From Fig. 6, it can be

obviously seen that a fast convergence of both EMDE and

basic DE but it shows that EMDE algorithms converge to

better or global solution faster than basic DE in all cases,

for function 12 the basic DE is easily trapped into local

optimum, and functions can jump out of local optima with

EMDE to find the global optimum, indicating that EMDE

has strong searching ability and its stability is very good.

From the above analysis, it can be concluded that EMDE

has a fast convergence speed for these 18 test functions.

Accordingly, the main benefits of the new triangular

mutation are the fast convergence speed and the extreme

robustness which are the weak points of all evolutionary

algorithms. Therefore, the proposed EMDE algorithm is

proven to be an effective and powerful approach to solve
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constrained mixed integer nonlinear programming

problems.

5.2 Comparison with other algorithms

in the literature

To further verify the performance of EMDE, comparisons

are carried out with aforementioned four competitive state-

of-the-art evolutionary algorithms. Experimental results

obtained by five algorithms are given in Table 7, where

(ps) is success rate representing percentage of the suc-

cessful runs to total runs for the algorithm, and (mean FEs)

represents average number of objective function evalua-

tions used by the algorithm in successful runs. The results

provided by MI-LXPM, RST2ANU and AXNUM

approaches were directly taken from Ref. [40] while for

MIPDE was directly taken from Ref. [51]. Note that

MIPDE algorithm solved only 14 benchmark problems

with exception to problems 14, 16,17 and 18. According to

the results shown in Table 7, it can be obviously seen that

that EMDE algorithm can obtain the optimal solution for

different kinds of linear or nonlinear mixed integer pro-

gramming problems with a success rate of 100 % for all

test function except problem 8 with 90 %, which verifies

the stability and robustness of EMDE again, in fact, with

no need for parameters to be fine-tuned. Furthermore,

regarding mean FEs, it can be observed that EMDE pro-

duces 11, 14, 16 and 10 significantly better and 7, 4,2 and 4

slightly worse than MI-LXPM, RST2ANU, AXNUM and

MIPDE algorithms for test problems, respectively. Thus, in

order to measure the efficiency of EMDE in solving all test

problems, the sum of the mean FEs provided by MI-

LXPM, RST2ANU, AXNUM and MIPDE algorithms are

346575, 1913761, 804127 and 59369 while the sum of the

mean FEs produced by EMDE is 25145.36714. Therefore,

EMDE is considered the most efficient with the remarkable

smallest total mean (FEs). Figure 7 show the performance

of EMDE and MI-LXPM, RST2ANU, AXNUM and

MIPDE algorithms in terms of total Mean FEs for all test

functions. All in all, EMDE is superior to all compared

EAs algorithms in terms of both measures success rate and

efficiency.

6 Conclusion

In this paper, an efficient modified Differential Evolution

algorithm EMDE is proposed for solution of constrained,

integer and mixed integer optimization problems which are

considered difficult optimization problems. In this algo-

rithm new triangular mutation rule based on the convex

combination vector of the triplet defined by the three ran-

domly chosen vectors and the difference vectors between

the best,better and the worst individuals among the three

randomly selected vectors is introduced. The proposed

novel approach to mutation operator is shown to enhance

Table 7 Results obtained by using EMDE, MI-LXPM, RST2ANU, AXNUM and MIPDE algorithms

Problem Dim EMDE MI-LXPM [40] RST2ANU [40] AXNUM [40] MIPDE [51]

Mean FEs ps Mean FEs ps Mean FEs ps Mean FEs ps Mean FEs ps

1 2 570 100 172 84 173 47 1728 86 9493 100

2 2 126.667 100 64 85 657 57 82 67 1683 100

3 3 1393.33 100 18608 43 221129 4 65303 35 9828 100

4 2 7993.33 100 10933 95 1489713 2 45228 82 10644 97

5 3 448.333 100 671 100 2673 75 13820 95 565 100

6 4 50 100 84 100 108 100 432 100 36 100

7 3 2192.85 100 7447 59 – – 16077 45 1265 100

8 7 5504.16 90 3571 41 180859 15 1950 3 13310 95

9 5 850 100 100 100 189 100 4946 100 451 100

10 8 55 100 258 93 545 100 700 33 1375 100

11 5 173.333 100 171 100 2500 100 863 97 204 100

12 7 900 100 299979 71 6445 29 380115 19 6293 84

13 2 50 100 77 99 35 100 456 91 27 100

14 3 776.667 100 78 100 214 100 1444 100 – –

15 5 3000 100 2437 92 3337 19 267177 9 4195 97

16 40 380 100 1075 100 1114 100 2950 100 – –

17 100 565 100 600 100 2804 100 600 100 – –

18 8 116.667 100 250 100 697 100 256 102 – –

Total mean FEs 25,145.36714 346575 1913761 804127 59369
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the global and local search capabilities and to increase the

convergence speed of the new algorithm compared with

basic DE. EMDE uses ‘‘parameter free’’ Deb’s constraint

handling technique based on feasibility and the sum of

constraints violations. Integer variables are directly sear-

ched in the integer space by using round operator, to ensure

that the vector is controlled in the integer space in the

evolution procedure of the EMDE. The performance of the

proposed EMDE is compared with basic DE, MI-LXPM,

RST2ANU, AXNUM and MIPDE algorithms on a set of 18

test problems. Our results show that the proposed EMDE

algorithm outperforms remarkably other compared algo-

rithms in terms of stability, robustness and efficiency.

Accordingly, Firstly, Current research effort focuses on

how to control the crossover rate by self-adaptive mecha-

nism. Additionally, future research will investigate the

performance of the EMDE algorithm in solving uncon-

strained and constrained multi-objective optimization

problems. In future the proposed EMDE algorithm may be

compared with other stochastic approaches like harmony

search and particle swarm optimization, artificial bee col-

ony, bees algorithm and ant colony optimization. Addi-

tionally, it is also worth trying to apply the present

approach to the solution of real-world optimization

problems.

Appendix

Corrections on problems 6, 16 and 17.

Based on self check, there are few differences in prob-

lems 6, 16 and 17 in Ref. [40] from the original documents.

Thus, the corrections on these problems are as follows.
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