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Abstract The main objective of this study is to propose a

novel algorithmic framework for the implementation of a

nonlinear controller for reducing the amount of tailpipe

hydrocarbon emissions in automotive engines over the

coldstart period. To this aim, the control problem for a

given engine is formulated in the form of the standard

Bolza problem, and then, the concepts of Euler–Lagrange

equation and Hamiltonian function are taken into account

to calculate the optimal states, co-states, and control input

signals. An extreme learning machine is also linked to an

experimentally validated nonlinear state-space representa-

tion of the engine during the coldstart to approximate the

values of exhaust gas temperature and engine-out hydro-

carbon emissions, which are two key variables for the

considered control problem. To solve the resulting system

of equations, a cellular variant of the particle swarm opti-

mization technique is implemented and the existing non-

linear system of equations is solved heuristically. In

addition, some constraints are exerted on the control sig-

nals to guarantee the smooth operation of the engine by

applying the calculated controlling commands. Finally, the

authenticity of the resulting optimal controller is validated

against a classical Pontryagin’s minimum principle-based

control system. Generally, the findings demonstrate the

effectiveness of the proposed control methodology to

reduce coldstart hydrocarbon emissions in automotive

engines.

Keywords Automotive coldstart � Hydrocarbon

emissions � Extreme learning machine � Cellular particle

swarm optimization � Euler–Lagrange equation � Optimal

control

1 Introduction

Over the past decades, an astonishing trend has emerged

towards developing effective controllers to improve the

performance of vehicles [1]. The main reason for this

phenomenon lies in the fact that enhancing the perfor-

mance of automobiles by means of designing and imple-

menting more advanced controllers is much more cost-

effective compared to devising and applying new hardware

for them. In particular, it has been demonstrated that

applying optimal controlling algorithms can significantly

decrease the fuel consumption and emissions of vehicle

systems without any additional costs for replacing or

modifying any other part of the vehicle. In this way, a

proper controller can be designed to improve different

aspects of automotive engines as one of the most important

components of the vehicle. For improving the performance

of a given engine, several operating metrics can be defined

which focus on advancing specific characteristics of the

engine, and thus, certain controllers with pre-defined goals

can be designed to enhance each of those features. To use a

new controller for improving the vehicle’s engine perfor-

mance, it is only required to implement the new control

algorithm (written in a certain programming environment)

on the related electronic control unit (ECU) and apply it to

regulate the engine functioning during a driving cycle [2].

After lots of experiments and analyses by automotive

engineers and researchers, nowadays, there is a wide con-

sensus on the above-mentioned claim about vehicle control
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systems, and there has been an increasing interest among

the automotive research community to come up with

advanced controlling strategies to be used at the hearts of

vehicle systems’ ECUs to enhance their performance [3].

By investigating the archived literature on designing con-

trollers for automobiles, it can be inferred that the main

focus of these studies has been on developing control

systems for reducing the amount of emissions [4],

decreasing fuel consumptions [5], decreasing travel times

[6], and increasing the safety of vehicle motions [7] during

the driving period. Various types of offline, online, model-

based, and heuristic controllers have been designed so far

to comply with the above-mentioned objectives. Among

the existing controllers, those implemented based on the

concept of Pontryagin’s minimum principle (PMP) [8],

model predictive control (MPC) [9], fuzzy theory [10],

linear quadratic tracking system (LQTS) [11], sliding mode

control (SMC) [12], neural controlling systems [13],

switching hybrid control system (SHCS) [14], game theo-

retic-based controllers [15], robust state feedback stabi-

lization controller [16], and dynamic programming (DP)

[17] have been proven to show the most promising results.

However, the research on designing more advanced vehicle

controllers is still an open area of investigation, and

researchers are trying very hard to take advantage from

advanced mathematics-based and computational intelli-

gence-based tools to increase the effectiveness of the cur-

rent controllers [18].

Arguably, among the above-mentioned objectives, reduc-

ing the emission rate of vehicles stands in the first place. This

is because of the existing tight governmental regulations

concerning the environmental issues and global warming

phenomenon, which have enforced industrialists to put a

considerable amount of financial and technological forces on

improving the performance of their products. In line with

such a concern, environmental agencies and governmental

authorities have exerted some provisions which oblige the

automotive industry to move towards designing green vehicle

technologies which emit a very trivial amount of pollutants

[19]. Although the ultimate goal of the automotive industry is

to replace the current gasoline-powered vehicles with elec-

trified vehicles, this choice seems not to be feasible at the

moment as there are still some technical problems for the

widespread use of them. Furthermore, the initial investiga-

tions indicate that, by the current battery technologies, the

production of fully electric vehicles is not an economical

choice for both industrialists and consumers, and the final

price as well as maintenance cost of electric drive vehicles is

much more than that of gasoline-powered vehicles in the

market. Therefore, control system designers and automotive

engineers have been forced to focus on designing more

effective controlling algorithms to decrease the emission rate

of the current gasoline-powered vehicles [20].

In general, reducing the amount of automobile emis-

sions can be considered from different perspectives with

regard to the type of pollutant and the stage of engine’s

operation. There is a fruitful literature dealing with ana-

lyzing the performance of automotive engines over a given

driving cycle, and the interested readers can refer to sem-

inal studies in this area by several active research groups

[20–22]. By a precise analysis of the related research

outcomes, one can understand that reducing the amount of

hydrocarbon (HC) emissions is of the highest priority,

because of the increasingly tight regulations concerned

with this type of pollutants [23]. Various experiments have

indicated that most of the emitted HCs are produced during

the first 1 or 2 min of the engine’s working period, which is

known as the coldstart period. This is mainly because the

catalytic converter has not reached its nominal tempera-

ture, and also, its efficiency is far below the nominal value.

Thus, for decreasing the amount of total tailpipe HC

emissions of a given engine over a driving cycle, it is

necessary to design high-performance controllers for

reducing the HC emission rate over the coldstart period

[24].

Through comprehensive experimental and theoretical

studies with a given automotive engine by the authors’

colleagues in the Vehicle Dynamics and Control Lab at the

University of California Berkeley, the following strategies

have been suggested for developing effective controllers

for reducing the HC emission rate during the coldstart

period [25]:

1. The first concept used by automotive engineers is to

design coldstart controllers for reducing the required

time for the warm-up procedure to assist the catalytic

converter to reach its nominal efficiency in a very short

period of time. This will result in a lower amount of

the tailpipe HCs over the coldstart period.

2. The second concept implies designing a controller for

reducing the raw or engine-out HC emissions (HCraw-c)

over the coldstart period, which will consequently

cause the reduction of cumulative tailpipe HC emis-

sion (HCcum).

In line with the above-mentioned clues, several resear-

ches have been conducted to design effective controllers

for the engine coldstart problem. The utilized concepts for

designing such coldstart controllers entail those imple-

mented based on different techniques of the optimal control

theory, such as LQST, MPC, and DP, to those implemented

based on the concept of hybrid switching systems. A

comprehensive and detailed review of the existing con-

trollers for coldstart control can be found in [8]. Also, the

authors’ research group investigated the potentials of dif-

ferent variants of model predictive control (MPC) tech-

nique for the coldstart problem [48]. In spite of the
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proposition of different classical controllers for the cold-

start problem, there exist rare reports in the literature which

foster the applicability of computational intelligence (CI)

for developing real-time, robust, and high-performance

control laws. This is when it has been theoretically and

experimentally verified that CIs (in the form of both neural

and fuzzy systems) can serve as powerful techniques for

developing accurate surrogate models for the estimation of

exhaust gas temperature (Texh) and engine-out HC (HCraw-c)

based on a set of given engine input signals [26–28].

Therefore, in this study, a stride is taken to demonstrate

the high potential of CI for developing effective coldstart

controllers to calculate the optimum values of controlling

commands for automotive engines. Recently, a remarkable

attention has been given to using ELM for efficient mod-

elling and control of automotive engines [49, 50]. The

feedback of the conducted investigations indicates that

ELM can be used for accurate modeling of engine opera-

tions, classifying different features of engines [51], and

optimizing the performance of automotive engines [52,

53]. Also, the low computational complexity and high

approximation accuracy of ELM suit it to be used at the

heart of model-based adaptive controllers [54], optimal

controllers, e.g., hybrid switching controllers [55], and

predictive controllers [56] for automotive engine control

tasks.

In line with the above promising reports, in the current

investigation, it is indicated that by integrating the concepts

of Hamiltonian function [29] and a fused extreme learning

machine (ELM)-based state-space model for an engine

over the coldstart period, a high-performance controlling

technique is created which can determine the optimum

input variables for reducing the amount of tailpipe hydro-

carbon emissions. The proposed learning-based optimal

controller systematically combines several concepts to

effectively cope with the automotive coldstart control dif-

ficulties. Before proceeding with the detailed description of

the controller’s modules, an overall overview of the control

system is presented schematically to guide readers.

Figure 1 depicts a graphical illustration of the proposed

controller and clearly indicates how different concepts

(which will be scrutinized later) are combined to calculate

the optimal control commands.

The rest of the paper is organized, as follows. Section 2

is devoted to the description of the nonlinear state-space

model to represent the behavior of considered engine over

the coldstart period. In Sect. 3, the authors explain the steps

required for implementing extreme learning machine for

the approximation of the main output signals for the

coldstart control problem. In Sect. 4, an optimal controller

based on the Hamiltonian function is implemented which is

suited for decreasing the amount of tailpipe HC emission

rate. Section 5 describes the steps required for the imple-

mentation of a cellular searching algorithm for solving the

resulting system of equations derived based on the

Hamiltonian function to find the optimum values of states,

co-states, and controlling signals. Section 6 is devoted to

the description of the results and the corresponding dis-

cussions. Finally, the paper is concluded in Sect. 7.

2 Nonlinear state-space model of engine

This section is organized into two subsections. Firstly, the

experimental setup required for activation of the plant,

namely a Toyota Camry engine, is presented. Thereafter,

the mathematical formulation of the standard control-ori-

ented model proposed by the authors’ research group is

discussed.

2.1 Experimental setup

As the engine over the coldstart period has a nonlinear

dynamic behaviour and various decision parameters and

elements play a role in its performance, it is a challenge to

develop a physics-based model for the system, and thus, it

is easier to use a black-box model and tune it through the

experimental signals coming from standard design of

Fig. 1 Block diagram of the proposed optimal controller
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experiment (DoE) tests. Following such a philosophy for

developing a control-oriented model requires an experi-

mental setup which enables capturing a set of empirical

signals. To create the experimental setup, an instrumented

Toyota Camry internal combustion engine (ICE) equipped

with a number of sensors is taken into account. The

experimental bed belongs to the Vehicle Dynamics and

Control Lab (VDL) at the University of California,

Berkeley (UCB). Different components of this coldstart

experimental platform is depicted in Fig. 2. The engine has

four cylinders with multi-port fuel injectors, along with an

intake air control valve. It has also the capability of pro-

ducing up to 117 KW power at 5600 rpm. To simulate the

engine loads, the engine is coupled to a dynamometer. A

dyno-controller is used to regulate the speed and torque of

the dynamometer. To measure the important signals of the

considered ICE, for instance air/fuel ratio (AFR), a number

of sensors are taken into account. Also, an emission ana-

lyzer is utilized for measuring the rate of HC emissions.

The abovementioned setup is used to capture the required

information for developing a control-oriented model. In the

next subsection, the formulation of the control-oriented

model is presented.

2.2 Control-oriented model

Through an experimental sensitivity analysis, it was

observed that there are a limited number of variables which

remarkably affect the variations of Texh and HCraw-c for

the considered ICE over the coldstart period. These quan-

tities are the spark timing (D), AFR, and engine’s speed

(-e). The sensitivity analysis and simple regression tests

also indicated that there is a first order linear-like relation,

but with offsets and saturations, between the variations of

the input signals, i.e., u1 = D (deg. ATDC) ? 50,

u2 = AFR, and u3 = -e, and the corresponding changes

in Texh and HCraw-c. Such observations brought the

authors’ colleagues at UCB to the conclusion that a number

of ordinary differential equations (ODEs) can be coupled

altogether for creating a control-oriented model for repre-

senting the engine’s coldstart behaviour. The formulated

ODE representation of the coldstart state-space model is

given below:

_x1 ¼ u1

s1

þ� k1

s1

x1

_x2 ¼ u3

s2

þ k2

s2

x2

_x3 ¼ 16 � u2

s3

þ k3

s3

x3

_x4 ¼ u3 � 800

s4

þ k4

s4

x4

_x5 ¼ 16 � u2

s5

þ k5

s5

x5

_x6 ¼ u1 � 55j j þ u1 � 55ð Þ
2s6

þ k6

s6

x6

ð1Þ

It is worth pointing out that the above coupled system of

ODEs has been obtained based on observations in several

coldstart experiments and a related sensitivity analysis, and

it is a black-box type mathematical formulation without

any physical meaning for the considered states. This is due

to the high complexity of engine’s coldstart behaviour as

well as the effects of several sources of disturbances and

uncertainties which make the physical modeling quite

formidable [19, 57]. The values of the structural parameters

of the above control-oriented model is listed in Table 1. It

is worth mentioning that the second and fourth states are

only functions of the engine speed which is a known signal,

and thus, are not considered for the implementation of the

optimal controller.

From the above 6 state equations, the first three are used

to find the values of Texh, and the last three state equations

Fig. 2 UCB’s coldstart experimental bed
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are used to determine the values of HCraw-c. The standard

formulation used for the estimation of those output signals

are, as follows:

Texh tð Þ ¼ max x1 tð Þ þ x3 tð Þ; 0ð Þ þ x2 tð Þ ð2Þ

HCraw�c tð Þ ¼ max 4000 � x4 tð Þ; 800ð Þ
þ max x5 tð Þ þ x6 tð Þ; 0ð Þ ð3Þ

where, Texh and HCraw-c are in �C and ppm, respectively.

The above formulations have a sort of saturation function

in their structure, and because of the existence of max

commands, it is difficult to provide a straight forward

differentiable model for creating the Hamiltonian function.

The remedy suggested by the authors to tackle the men-

tioned difficulty is given in the next section.

To make sure that the above formulations work prop-

erly, a validation test was carried out to compare the output

of the abovementioned formulations against empirically

derived signals. In a previous study by the authors’

research group [25], the simulation results of both Texh and

HCraw models have been compared with the experimental

data from several coldstart runs. Considering all of the

cases, for the Texh model, the mean error was 10 C with a

standard deviation about 17 C. Also, for the HCraw model,

the mean error was around 389 ppm with a standard

deviation about 959 ppm. On the basis of our own expe-

rience with the coldstart controller design, these control-

oriented modeling errors are acceptable. The results of the

validation test are presented in Fig. 3. It can be observed

that the output signals of the model are in a good agree-

ment with the signals captured experimentally.

Initially, the authors’ colleagues at UCB reached the

conclusion that the mathematical modeling should be

continued to come up with a formulation for the calculation

of cumulative HC (HCcum) to form an objective function

for developing coldstart controllers. To do so, an equation

for the calculation of the conversion efficiency of the cat-

alyst (g) was developed, as follows:

g tð Þ ¼ 1 � e�a1
max u2 tð Þ;0ð Þ�k0

Dk

� �m1
� �

1 � e�a2
max Tcat tð Þ;Tcat0ð Þ�Tcat0

DTcat

� �m2
� �

ð4Þ

The values of the identifiable parameters for the above

equation can be found in [8]. The catalyst temperature

(Tcat) can be obtained using the following formulation:

Tcat tð Þ ¼ kcat � Texh tð Þ ð5Þ

Finally, the objective function J or HCcum (to be mini-

mized) can be defined by:

J ¼
ZT

0

1 � g tð Þð Þ _HCraw tð Þ � dt

¼
ZT

0

1 � g tð Þð Þ b1u3 tð Þ þ b2ð Þ 16

28:5
� 10�6

� �
HCraw�c tð Þ � dt

ð6Þ

The above formulation which focuses on the direct

minimization of HCcum is a little bit complicated and

makes the implementation of a real-time optimal controller

slightly demanding. Therefore, recently, Azad [47] pro-

posed the objective function below which considers a

trade-off between a fast increase of Texh and minimizing

HCraw-c to develop an optimal controller for the coldstart

problem:

J ¼
ZT

0

KHC
_HCraw tð Þ þ KTexh Texh tð Þ � Tdes tð Þð Þ2

h i
� dt ð7Þ

The above objective function is a better fit to be used for

the implementation of an optimal controller based on the

fundamental theorem of calculus of variations, in particu-

lar, the Euler–Lagrange equation by defining a Hamiltonian

function. All we need is to make sure that the two output

variables, _HCraw and Texh, are differentiable. Later, a

similar formulation is used together with the standard

procedure for developing an optimal controller based on

the Hamiltonian function for the coldstart problem.

3 Extreme learning machine for approximation
of signals

As it was mentioned previously, the implementation of an

optimal controller based on the fundamental theorem of

calculus of variations (the Euler–Lagrange equation [29])

requires a differentiable continuous mathematical formu-

lation to represent the model outputs, optimal controller’s

objective function, and also state equations. However, from

Eqs. (2) and (3), one can easily infer that there are some

max operators which result in the discontinuity of the first-

order derivative terms for the presented model at some

points, and similarly, there is an absolute value function in

the last ODE of Eq. (1) which is not again desirable for

designing a Hamiltonian/Lagrangian function-based opti-

mal controller. Thus, here, the authors propose the use of

extreme learning machine (ELM) [30] which uses the state

values to predict HCraw and Texh, and has enough

Table 1 Structural parameter values for the control-oriented model

s1 s2 s3 s4 s5 s6

2.9629 156.2661 0.1800 1.1667 0.0002 0.0150

k1 k2 k3 k4 k5 k6

0.1997 5.2708 0.8527 0.1667 0.001 0.0075
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smoothness to calculate the first-order derivative terms in

all working points within the state and control input spaces.

The designed ELM model is used at the heart of a

Hamiltonian function-based controller which is based on

the concept of calculus of variations. Such controllers are

intended to optimize a given functional objective function

(function of a function) which includes some variables,

such as states and inputs, which are functions of time and

other quantities [29].

Prior to proceeding with the exact formulation of ELM,

it is tried to present the general mathematical form of a

nonlinear differentiable model (which can be obtained by a

nonlinear mapping system) and it is indicated that the

output of the system is itself the function of a function. By

considering the state-space formulation provided in

Eq. (1), it can be easily inferred that the resulting values of

states (x) at time t are a function of the values of the

controlling signals (u) and the states at time (t-s) (where s
is a time step when discretizing the model). Based on such

a fact, the general formulation of Eq. (1) can be reformed,

as follows:

_x1 tð Þ ¼ f1 x1 tð Þ; u1 tð Þ;/1ð Þ
_x2 tð Þ ¼ f2 x2 tð Þ; u3 tð Þ;/2ð Þ
_x3 tð Þ ¼ f3 x3 tð Þ; u2 tð Þ;/3ð Þ
_x4 tð Þ ¼ f4 x4 tð Þ; u3 tð Þ;/4ð Þ
_x5 tð Þ ¼ f5 x5 tð Þ; u2 tð Þ;/5ð Þ
_x6 tð Þ ¼ f6 x6 tð Þ; u1 tð Þ;/6ð Þ

ð8Þ

where fi (i = 1, …, 6) shows the functions for the calcu-

lation of states in a time-dependent form, and /i (i = 1, …,

6) are the identifiable parameters of the function. To cal-

culate the values of HCraw and Texh, the functions }i (i = 1,

2) should be considered in the following form:

Texh tð Þ ¼ }1 f1 x1 tð Þ; u1 tð Þ;/1; tð Þ; f2 x2 tð Þ; u3 tð Þ;/2; tð Þ;ð
f3 x3 tð Þ; u2 tð Þ;/3; tð Þ;H1Þ

HCraw tð Þ ¼ }2 f4 x4 tð Þ; u3 tð Þ;/4; tð Þ; f5 x5 tð Þ; u2 tð Þ;/5; tð Þ;ð
f6 x6 tð Þ; u1 tð Þ;/6; tð Þ;H2Þ

ð9Þ

where }i(i = 1, 2) shows the function for the calculation of

HCraw and Texh, and Hi (i = 1, 2) are the identifiable

parameters of the function. It can be easily observed that, to

calculate the desired output signals, it is required to form a

function of functions, which means that the model is a

functional itself. Here, ELM is used to simultaneously

create two functionals for mapping the control signals to

the desired outputs. For the sake of simplicity, let us use the

following auxiliary notations for the state functions:

=1 tð Þ ¼ f1 x1 tð Þ; u1 tð Þ;/1ð Þ
=2 tð Þ ¼ f2 x2 tð Þ; u3 tð Þ;/2ð Þ
=3 tð Þ ¼ f3 x3 tð Þ; u2 tð Þ;/3ð Þ
=4 tð Þ ¼ f4 x4 tð Þ; u3 tð Þ;/4ð Þ
=5 tð Þ ¼ f5 x5 tð Þ; u2 tð Þ;/5ð Þ
=6 tð Þ ¼ f6 x6 tð Þ; u1 tð Þ;/6ð Þ

ð10Þ

This is clear that the defined auxiliary variables are

implicitly a function of the control signals and state signals.

Let us also define the vector: �= tð Þ ¼ =1 tð Þ½ =2 tð Þ
=3 tð Þ =4 tð Þ =5 tð Þ =6 tð Þ �T . In addition, let us put the

Fig. 3 Validation of the model

against experimental signals
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output signals in a vector: y ¼ HCraw�c Texh½ �. This

vector should be used to form a database for the training of

ELM. Assume that the database D ¼ �=1; y1

� �
; . . .;

�

�=n; yn
� �

g is collected for training ELM which includes

n patterns, where the dimensionality of the input vector is

shown by p (equal to 6 in our case), and the dimensionality

of the output vector y is m (equal to 2 in our case). ELM

uses N neurons in its hidden layer to create a nonlinear map

between the inputs and outputs. Then, the following for-

mulation can be used to represent the mathematical

architecture of ELM:

XN

j¼1

xo
j g aTj �=i þ bj

� �
¼ Fo �=i

� �
;

i ¼ 1; . . .; n

o ¼ 1; . . .;m

(

ð11Þ

where �F ¼ F1 F2½ �T is a vector with dimensionality of

m (equal to 2), aj ¼ aj;1; . . .; aj;p
� �T

is the synaptic weight

vector connecting the input nodes to the jth hidden

node,xi represents the weight connecting the jth hidden

node to the oth output nodes, and g represents a contin-

uous activation function (sigmoid in our case) defined

by:

g aTj �=i þ bj

� �
¼ 1

1 þ e� aT
j
�=iþbjð Þ for aTj �=i þ bj

n o
2 R;

ð12Þ

Let us define the following matrixes:

H ¼

g aT1 �=1 þ b1

� �

..

.

g aT1 �=n þ b1

� �

� � �
� � �
� � �

g aTN �=1 þ bN
� �

..

.

g aTN �=n þ bN
� �

0

BB@

1

CCA;

Yo ¼

y1;o

..

.

yn;o

0

BB@

1

CCA; wo ¼

xo
1

..

.

xo
N

0

BB@

1

CCA ð13Þ

The mechanism of extreme learning machine works in

such a way that the elements of vector a and biases b can

be chosen randomly, and also the least square method

(LSM) can be used to estimate the weight vectors wo as

given below:

min
wo

Yo � Hwok k2
2 ð14Þ

where hk k stands for the Euclidean norm of a given vector

h. If the matrix HTH is invertible, the least square solution

can be calculated by:

ŵo ¼ HTH
� ��1

HTYo ð15Þ

In most of the cases, the condition value of matrix HTH

is close to zero and the solution ŵo is not stable. To cope

with this flaw, the ridge regression or Tikhonov regular-

ization can be used to have a more numerically stable so-

lution, as follows:

min
wo

Yo � H wok k2
2þk2 wok k2

2

n o
ð16Þ

The solution to this optimization problem will be given

by:

ŵo ¼ HTH þ kT I
� ��1

HTYo ð17Þ

where the Tikhonov regularization parameter kT (a positive

value) can be optimally determined by means of Bayesian

information criterion (BIC) [31].

One of the most important issues which should be taken

into account during the training process is to make sure that

ELM captures the underlying dynamics of the automotive

engine coldstart behavior. To comply with this objective, it

will be necessary to consider proper strategies at the both

data acquisition and training levels. During the coldstart

experiments, some time-varying and rapidly changing

input profiles have been utilized to capture a fit database for

the modeling task. Also, the ELM’s structure is suited for

learning stationary systems. However, by modifying the

database, namely using the concept of auto-regressive

exogenous (ARX) data representation, each data set con-

siders a finite number of output lags, and in such a fashion,

it can capture the underlying dynamics of the system. The

same strategy has been utilized by many researchers

working on neural controllers, and also, in some recently

published papers, ELM has been subjected to this modifi-

cation to be used for dynamic learning. For more infor-

mation on modifying databases using ARX representation

for ELM, one can refer to [51, 55].

4 Implementation of optimal controller based
on Hamiltonian function

To develop an optimal controller for the coldstart problem,

it is treated as a Bolza problem and the Hamiltonian

function is formulated to derive the related coupled ordi-

nary differential equations for the system. Here, a dis-

cretized version of the Hamiltonian function is taken into

account as the model involves ELMs. By using the finite

difference approach, the ODE model presented in Eq. (1)

can be formulated, as follows:

where dt shows the time difference between two sequential

steps, and k indicates the current time step.
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Texh kð Þ ¼
XN

j¼1

x1
j g a1

j=1 kð Þ þ a2
j=2 kð Þ þ a3

j=3 kð Þ þ b1
j

� �

HC kð Þ ¼
XN

j¼1

x2
j g j1

j=4 kð Þ þ j2
j=5 kð Þ þ j3

j=6 kð Þ þ b2
j

� �

ð19Þ

Let us formulate the objective function as given below:

J ¼ KHCHC kf
� �

� KTexhTexh kf
� �	 


þ
Xkf�1

k0

KHCHC kð Þ � KTexhTexh kð Þ½ � ð20Þ

The two terms of the objective function are in conflic-

tion with each other and make a trade-off. The sign minus

before KTexhTexh implies that, for a minimization problem,

this terms should be maximized whilst the first term should

be minimized.

A schematic illustration of the considered boundary

conditions with a fixed final time step and free final states

are depicted in Fig. 4.

Given the fact that the third controlling signal and also

the second and fourth states are predefined, the Hamilto-

nian function is given by the following formulation [29]:

H X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

¼ KHC

XN

j¼1

x2
j g j1

j=4 kð Þ þ j2
j=5 kð Þ þ j3

j=6 kð Þ þ b2
j

� �

� KTexh

XN

j¼1

x1
j g a1

j=1 kð Þ þ a2
j=2 kð Þ þ a3

j=3 kð Þ þ b1
j

� �

þ k�1 k þ 1ð Þ=1 kð Þ þ k�2 k þ 1ð Þ=3 kð Þ þ k�3 k þ 1ð Þ=5 kð Þ
þ k�4 k þ 1ð Þ=6 kð Þ

ð21Þ

To calculate the optimum values of states, co-states, and

control signals, the following equations should be taken

into account [29]:

oH X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

ox�j kð Þ ¼ �k�i kð Þ;
i ¼ 1; 2; 3; 4

j ¼ 1; 3; 5; 6

(

oH X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

ok�i kð Þ ¼ x�j k þ 1ð Þ;
i ¼ 1; 2; 3; 4

j ¼ 1; 3; 5; 6

(

oH X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

ou�q kð Þ ¼ 0; q ¼ 1; 2

ð22Þ

where U� kð Þ ¼ u�1 kð Þ u�2 kð Þ½ �,�k� kð Þ ¼ k�1 kð Þ½ k�2 kð Þ
k�3 kð Þk�4 kð Þ� and X� kð Þ ¼ x�1 kð Þ x�3 kð Þ½ x�5 kð Þ x�6 kð Þ�.
The detailed formulation of difference-based system of

equations derived for the co-states, states and control inputs

are given in Appendix A.

Also, the boundary condition below should be satisfied:

H X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

þ oS X� kð Þð Þ
ok

� �� �

kf

dkf

þ �k�1 kf
� �

þ oS X� kð Þð Þ
ox kf
� �

 !" #

dx kf
� �

¼ 0

!
kf is fixed

½dkf¼0�
�k�1 kf

� �
þ oS X� kð Þð Þ

ox kf
� �

 !

¼ 0 ð23Þ

The above-mentioned equations should be all solved

together to find the optimum values for

U� kð Þ ¼ u�1 kð Þ u�2 kð Þ½ �,�k� kð Þ ¼ k�1 kð Þ½ k�2 kð Þ k�3 kð Þ
k�4 kð Þ�, and X� kð Þ ¼ x�1 kð Þ x�3 kð Þ½ x�5 kð Þ x�6 kð Þ�. It is

worth pointing out that each of the states, co-states, and

controlling signals have 50 different values (from k0 = 1 to

kf = 50).

x1 k þ 1ð Þ ¼ =1 kð Þ ¼ f1 x1 kð Þ; u1 kð Þ;/1; kð Þ ¼ dt � u1 kð Þ
s1

þ 1 � dt � k1

s1

� �
x1 kð Þ

x2 k þ 1ð Þ ¼ =2 kð Þ ¼ f2 x2 kð Þ; u3 kð Þ;/2; kð Þ ¼ dt � u3 kð Þ
s2

þ 1 � dt � k2

s2

� �
x2 kð Þ

x3 k þ 1ð Þ ¼ =3 kð Þ ¼ f3 x3 kð Þ; u2 kð Þ;/3; kð Þ ¼ dt � 16 � u2 kð Þ
s3

þ 1 � dt � k3

s3

� �
x3 kð Þ

x4 k þ 1ð Þ ¼ =4 kð Þ ¼ f4 x4 kð Þ; u3 kð Þ;/4; kð Þ ¼ dt � u3 kð Þ � 800

s4

þ 1 � dt � k4

s4

� �
x4 kð Þ

x5 k þ 1ð Þ ¼ =5 kð Þ ¼ f5 x5 kð Þ; u2 kð Þ;/5; kð Þ ¼ dt � 16 � u2 kð Þ
s5

þ 1 � dt � k5

s5

� �
x5 kð Þ

x6 k þ 1ð Þ ¼ =6 kð Þ ¼ f6 x6 kð Þ; u1 kð Þ;/6; kð Þ ¼ dt � u1 kð Þ � 55j j þ u1 kð Þ � 55ð Þ
2s6

þ 1 � dt � k6

s6

� �
x6 kð Þ

ð18Þ

962 Int. J. Mach. Learn. & Cyber. (2017) 8:955–979

123



5 Cellular searching mechanism for solving
the system of equations

In this section, the algorithmic structure of the considered

optimization algorithm, namely cellular particle swarm

optimization (CPSO) [32], as well as the concept of

searching in a cellular hyperspace towards an optimal

solution are discussed in detail. It has theoretically been

demonstrated that CPSO is not only capable of finding a

near-global optimum solution, but also can show a very

good convergence after a finite number of iterative proce-

dures. CPSO is a function optimization strategy that

hybridizes the concept of cellular automata (CA) with

particle swarm optimization (PSO) [32].

The main reason behind using CPSO for the current

study is that the original model of the system contains max

operators and also an absolute value function in the last

ODE (in Eq. (1)) which result in the discontinuity of

derivative terms and nonlinearity of the system. Moreover,

the resulting objective function for the minimization of

cumulative hydrocarbon emissions is nonlinear and non-

convex. Through analysis and based on the characteristics

of the optimal controller (which calculates the control

commands beforehand in an offline fashion), it was con-

cluded that it is an appropriate choice to use metaheuristic

search to optimize the Hamiltonian-based objective func-

tion as is, instead of the piecewise linearization of the

system or performing complicated mappings and modifi-

cations to form a set control laws for different segments of

the state space domain. However, it is worth pointing out

that for designing some types of real-time optimal

controllers (for instance MPC) for which the fast calcula-

tion of controlling commands is of the highest priority, it

will be a logical choice to sacrifice the accuracy of the

obtained solution by simplifying the formulations of the

system to come up with an objective function which can be

solved by a fast and local technique in real-time.

In the rest of this section, the ideas of PSO and CA are

explained, and thereafter, the algorithmic structure of

CPSO is implemented.

5.1 Cellular automata

Cellular automata (CA) is a nature-inspired philosophy of

sharing information which uses a set of predefined com-

mands to evolve the lattice in the space. The general idea

behind CA is that each cell forming the lattice is in con-

nections with its neighboring cells, and some sort of

communication is done to optimally share the information

through the cellular space. CA works based on a limited

number of concepts, such as cell states, cell space, neigh-

borhood, and transition rule [33]. Each of these terms has

its own meaning, and their concatenation in a systemic

manner results in the formation of CA framework. The cell

state refers to the number of distinct states which can be

experienced by each cell. The cell space is a cellular lat-

tice-based space (hyper-space) that describes how the cells

are in connection to each other. The neighboring refers to

the strategy taken into account to determine the neighbor

cells of a given cell. This strategy can vary based on the

type of information sharing pattern required for specific

problems. The transition rule states how the current state of

Fig. 4 Schematic illustration of

the considered boundary

conditions

Int. J. Mach. Learn. & Cyber. (2017) 8:955–979 963

123



the selected cell as well as the neighboring cells can be

used to update the position of the selected cell. The men-

tioned concepts are depicted schematically in Fig. 5 to

provide a clear vision regarding the performance of CAs.

In spite of the advantageous traits of CAs, there have

been rare reports in the literature focusing on hybridizing

them with swarm and evolutionary methods [32, 33]. This

is while metaheuristics and CAs share several common

features with each other, which fits them to be combined

with each other to upgrade their searching capabilities. The

advantageous similarities of CAs and metaheuristics are

listed in Table 2.

Our own experiments as well as those presented in [32]

indicate that the algorithmic structure of PSO is best suited

to be combined with CAs. This will be discussed more

closely later in this section.

5.2 Particle swarm optimization

PSO, which emulates the flocking of birds or the schooling of

fishes, is a simple yet very effective metaheuristic which can

reliably search complicated solution spaces to find global or

near-global optimum solutions. There is a tremendously large

literature on the both theoretical and practical implications of

Fig. 5 Schematic illustration of

different concepts used for

developing a cellular optimizer

Table 2 Similarities of cellular automata and nature-inspired metaheuristics

# Detailed description

1 Both CA and metaheuristics use the concept of computing with a set of individuals to evolve themselves and share information. In CAs, each

individual is known as a cell and in metaheuristics, each of these individuals are known as heuristic agents

2 Both CA and metaheuristics focus on the notion of communication among their individuals to evolve themselves. For CAs, the evolution of

the state of each cell is performed using the current state of the cell and those of the neighbor cells. For metaheuristics, the position

updating is performed by means of the communication among heuristic agents

3 Both CA and metaheuristics use a set of operators to evolve themselves. For CA, the evolution of cellular lattice is performed using the

transition rules, and for metaheuristics a set of evolutionary operators are defined which enable the interactions among heuristic agents

4 Both CA and metaheuristics work iteratively, which means that they are discrete-time algorithms
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PSO, and the interested readers can refer to some seminal

works published in [34]. Let us assume that PSO tries to solve

an optimization problem with d decision variables. In this

case, Si ¼ si;1 si;2½ . . . si;d� represents the position of ith

particle, Vi ¼ vi;1 vi;2 . . .½ vi;d� represents the velocity

vector of ith particle, Pi ¼ pi;1 pi;2½ . . .pi;d� denotes the

local best vector obtained so far for the ith particle, and G ¼
g1 g2 . . . gd½ � shows the position of the most qualified

solution obtained so far. To update the position of any particle

at each iteration k, the both velocity and position vectors

should be updated, as follows:

Vkþ1
i ¼ lkVk

i þ c1r1 Pk
i � Ski

� �
þ c2r2 Gk � Ski

� �

Skþ1
i ¼ Ski þ Vk

i i ¼ 1; . . .;A

(

ð24Þ

where c1 and c2 are the cognitive and social parameters

both equal to 1.4, r1 and r2 are two random variables within

the range of unity [0, 1], l is the inertia weight, and A is

the number of heuristic agents used in PSO. It is recom-

mended that an adaptive formulation, in the form of linear

decaying, is used for the inertia value [34]:

lk ¼ l0 �
k

K
l0 ð25Þ

where k is the current iteration number, and K is the

maximum number of iterations. Note that the initial inertia

weight is selected to be 0.8.

5.3 Cellular particle swarm optimization

In this section, the required concepts for the integration

of CA and PSO as well as the algorithmic structure of the

resulting CPSO is presented. In CPSO, each cell is

equivalent to the selected candidate solutions. The cell

space represents the set of all cells in the space. The cell

state is a memory for saving the main information

obtained from the population of heuristic agents, and it is

mathematically expressed as: Ck
i ¼ Vk

i ;P
k
i ; S

k
i ;G

k
	 


. The

neighboring cells are some cells in the lattice space

which are selected based on a predefined topology. In

this way, the index of the neighbor cells of ith cell can be

defined as NC (i), which can be calculated by NC

(i) = [i ? d1, i ? d2,…, i ? dl] for the case that

l neighbor cells are considered. The transition rule can be

considered as one or a set of nonlinear operators (X)

which operate on the selected and neighboring cells and

can be mathematically indicated as: Ckþ1
i ¼ X Ck

i ;C
k
iþd1

;
�

Ck
iþd2

; . . .;Ck
iþdlÞ. The discrete time step is the same as the

iteration k in PSO.

For the implementation of CPSO, it should be assumed

that the solution landscape is divided into an infinite

number of cells and the resulting solution space is a lattice

cube. After the initialization of particles in the solution

space, the resulting particles inevitably lay in some of the

cells. Let us assume that the cells with particles are known

as smart-cells. Then, those without any particle are known

as cells. Through the evolution by means of the velocity

and position adaption, the particles can move from one cell

to the other cells. For each of the smart-cells, the following

neighborhood function is used to determine the neighbor

cells:

where �n is a matrix with d elements which are uniformly

sampled within the range of [-1, 1], and ‘‘�’’ stands for the

Hadamard operator.

It is also possible to select l neighbors (cells) for the ith

smart-cell using l different vectors �n. After the calculation

of nearby cells, the following transition rule is applied to

the ith smart-cell:

NC ið Þ ¼

Ski þ lVk
i þ

fitness Gk
� �

fitness Ski
� � �n � Vk

i fitness Ski
� �

6¼ 0; fitness Gk
� �

� 0

Ski þ lVk
i þ

fitness Ski
� �

fitness Gk
� �

�����

�����
�n � Vk

i fitness Ski
� �

6¼ 0; fitness Gk
� �

\0

Ski þ lVk
i þ

efitness Gkð Þ

efitness Skið Þ

 !2

�n � Vk
i fitness Ski

� �
¼ 0; fitness Gk

� �
� 0

Ski þ lVk
i þ

efitness Gkð Þ

efitness Skið Þ

 !2

�n � Vk
i fitness Ski

� �
¼ 0; fitness Gk

� �
\0

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð26Þ
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fitness �hð Þ ¼ min fitness NC ið Þð Þ; fitness NC iþ d1ð Þð Þ;ð
fitness iþ d2ð Þ; . . .; fitness iþ dlð ÞÞ

ð31Þ

where �h ¼ i if fitness �hð Þ ¼ fitness
�

NC ið Þð Þiþ
dx if fitness �hð Þ ¼ fitness NC iþ dxð Þð Þ:, and the result-

ing smart-cell after applying the transition rule will be

Skþ1
i ¼ Sk�h. Such a procedure should be repeated for all of

the smart cells at each iteration until the stopping criterion

is satisfied. A schematic illustration of the transition pro-

cedure of CPSO is presented in Fig. 6.

The following advantages have been reported for such a

hybridization of CA and PSO, which are beneficial for

solving the system’s Euler–Lagrange equations and

developing the proposed controller:

1. Based on the versatility of n vectors. A very rich

exploitation can be carried out within the solution

space which will result in qualified solutions. Further-

more, the range of transition radius can change, which

means that, at the same time, a smart-cell can perform

either explorative or exploitative search. This guaran-

tees an appropriate balance between the intensification

and diversification over the searching period [32].

2. Numerical analyses have demonstrated that CPSO can

effectively search non-convex, nonlinear, and multi-

modal solution landscapes to find an optimum solution.

Such a trait is best suited for our case where there is a

need for solving a system of nonlinear equations with

high multi-modality [32].

5.4 CPSO with chaos

In spite of the computational potentials of CPSO, here, the

authors intend to continue the algorithmic design to find out

whether further computational improvements can be

achieved. One of the open issues of investigation within the

realm of metaheuristic computing refers to embedding

chaotic maps into the algorithmic structure of metaheuris-

tics. In fact, there exist an immense number of investigations

which clearly demonstrate the advantages of combining

chaos and metaheuristics [35–39]. A very throughout liter-

ature review on combining chaos with metaheuristics can be

found in [40]. In this study, CPSO is combined with chaotic

maps to find out whether further improvements on its per-

formance can be obtained. To embed the effect of a given

chaotic map into the algorithmic functioning of CPSO, a

simple yet effective strategy is taken into account. Here, the

random elements of vector �n are replaced with the outputs of

chaotic maps. Let us assume that a given nonlinear chaotic

map is noted by W, then, the discrete-time outputs of the

chaotic map can be indicated by:

b k þ 1ð Þ ¼ W b kð Þð Þ ð27Þ

For a d-dimensional optimization problem, a vector with

d variables obtained from chaotic maps is considered. As

the trajectory of a chaotic map is deterministic at each

point and only depends on initial condition, to have d dif-

ferent values, d different initial points are considered for

each map to create d particular trajectories.

Here, the following chaotic maps (based on repetitive

recommendations in the literature [40]) are considered to

introduce chaos to the transition rule of CPSO:

1. Burger’s map: this map can be mathematically

expressed, as follows:

b1 k þ 1ð Þ ¼ a:b1 kð Þ � b2 kð Þð Þ2

b2 k þ 1ð Þ ¼ b:b2 kð Þ þ b1 kð Þb2 kð Þ
ð28Þ

where the operating parameters a and b are equal to

0.75 and 1.75, respectively. Figure 7a–c indicate the

attractor and time series of Burger’s map for an initial

condition: b1 (0) = 0.1 and b2 (0) = 0.1.

2. Lozi map: this map can be mathematically expressed

by:

b1 k þ 1ð Þ ¼ 1 � a:b1 kð Þ þ b:b2 kð Þ
b2 k þ 1ð Þ ¼ b1 kð Þ

ð29Þ

where the operating parameters a and b are equal to 1.7

and 0.5, respectively. Figure 7d–f indicate the attractor

and time series of Lozi map for an initial condition b1

(0) = 0.1 and b2 (0) = 0.1.

3. Logistic map: this map can be mathematically indi-

cated by:

b1 k þ 1ð Þ ¼ A:b1 kð Þ 1 � b2 kð Þð Þ
b2 k þ 1ð Þ ¼ b1 kð Þ

ð30Þ

Fig. 6 Transition procedure of CPSO in a 3D space
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where the operating parameter A is equal to 2.27.

Figure 7g–i indicate the attractor and time series of

Logistic map for an initial condition b1 (0) = 0.001

and b2 (0) = 0.001.

The pseudo-code of CPSO with chaos is also depicted in

Fig. 8.

6 Results and discussion

This section is given into two subsections. In the first

subsection, the steps required for fine tunings of the con-

sidered rival solvers and optimal controllers are discussed.

The adopted performance evaluation metrics as well as the

computational facilities used for the simulations are also

presented. In the second subsection, the results of the

numerical simulations are provided, and the obtained

optimal controlling signals are used to regulate the per-

formance of the considered engine over the coldstart per-

iod. Based on the presented results, it is demonstrated that

the proposed intelligent optimal controller can cope with

the nonlinearities associated with the operation of engine

over the coldstart period.

6.1 Parameter settings and encoding procedure

For proceeding with the simulations, some parameter set-

tings and setups should be done for both optimization and

modeling modules. To ensure the efficient performance of

ELM algorithm, a set of parametric studies is carried out.

Through several trial-and-error efforts, the number of

hidden nodes of 30 is used to form the hidden layer of

ELM. Also, for the calculation of Tikhonov parameter, 10

different values are considered in the log-scale, and the

BIC criterion suggests the use of the kT of 0.001 for this

case study. The training process is conducted based on

tenfold cross-validations in which the database is divided

into 10 subgroups, and the experiments for each group are

performed for 10 independent runs and then the average

values are calculated. The average values of each of the

Fig. 7 Time-series and attractors of different chaotic maps: (a-c) Burger map, (d-f) Lozi map, and (g-i) Logistic map
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tenfolds are again averaged and the final values are

reported. To tune the parameters of ELM, 3 different

experimentally collected signals are used for the estima-

tions of Texh and HCraw which result in 6 different data-

bases. The number of data points in each of the databases

are 5001, 5001, 5001, 49209, 12001, and 12001, respec-

tively, from which 80 % of the data points are used for the

training/validation and the remaining 20 % data points are

used for the testing phase. To evaluate the identification

efficiency of ELM, the mean square error (MSE) metric is

used. To evaluate the performance of the proposed opti-

mization method as well as the solving algorithms, a

number of rival techniques are taken into account. To

demonstrate the computational power of CPSO with chaos

(CPSO-C) for solving the system of equations resulting

from the Hamiltonian function, a set of rival heuristic

algorithms are considered. The rival optimization algo-

rithms are PSO with inertia weight (PSO-w) [41], PSO

with constriction factor (PSO-cf) [42], local version of PSO

with inertia weight (PSO-w-local) [41], local version of

PSO with constriction factor (PSO-cf-local) [42], unified

PSO (UPSO) [43], fully informed PSO (FIPSO) [44], fit-

ness distance ratio based PSO (FDPSO) [45], hybrid

cooperative approach to PSO (CPSO-H) [46], and the

standard cellular PSO (CPSO) [32]. Also, hereafter, CPSO

with Lozi map, CPSO with Burger map, and CPSO with

Logistic map are shown with CPSO-C-Loz, CPSO-C-Log,

and CPSO-C-Burg, respectively. To mitigate the effects of

the stochastic nature and randomness of the considered

optimizers, and also, increase the reliability of the obtained

results, the numerical experiments are executed for 30

independent runs with random initial seeds (based on the

Monte-Carlo simulation). All of the algorithms transact the

optimization procedure for 100,000 times of function

evaluations (relatively equal to 1000 iteration). Also, to

evaluate the exploration and exploitation capabilities and

the power of the rival nature-inspired algorithms to con-

verge to a unique solution, the convergence rate (CR) [33]

metric is taken into account. The mathematical formulation

of the CR is given below:

fitness ðObjValÞ ¼

1

ObjValþ 1
ObjVal[ 0

1 þ ObjValj j ObjVal\0

8
>>><

>>>:

ð31Þ

Fig. 8 Algorithmic structure of

the proposed solver
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Mean fitness ¼

PPopSize

i¼1

fitnessðObjValðiÞÞ

PopSize
ð32Þ

Best fitness ¼ max fitnessðObjValðiÞÞj i ¼ 1; . . .;PopSizef g
ð33Þ

CR ¼ Mean fitness

Best fitness
ð34Þ

Just like any other random procedure, it is necessary to

find an expectation for the final value of CR with some

initial conditions (for our case, the same initial seeding of

the agents, which means an initial value of CR0). The sim-

ulations are done for 30 runs, and E (CR|CR0) is reported.

In general, the CR metric can take values within the

range of unity [0, 1]. The CR value of 0 implies that the

agents are completely diffused and there is a pure diver-

gence, while the CR value of 1 indicates that the agents are

converged to a unique solution state and the optimizer can

neatly guide all of the agents towards the optimal solution.

There is no doubt that the algorithmic functioning of

standard PSO (and also most of its variants) forces the

heuristic agents to converge to the same region with an

increasing value of CR over the optimization procedure.

We need to find out the speed of the convergence as well as

the final CR value. Such elements are tested through the

simulations to evaluate the performance of the rival

methods.

It is necessary to present the encoding style required for

solving the system of equations pertaining to the states, co-

states, and controlling signals. As it was mentioned, there

are 4 states, 4 co-states, and 2 controlling signals which

should be optimally determined. These signals are

discretized over 50 s, and by considering a time step of 1 s,

each of these signals is divided and 500 nodal points are

created which should be determined:

S ¼ U� k0ð Þ � � � U� kf
� �

X� k0ð Þ � � � X� kf
� �

�k� k0ð Þ � � � �k� kf
� �	 


ð35Þ

Consider the system of equations obtained for the states,

co-states, and controlling signals in Eqs. (A.1), (A.2), and

(A.3), or in the compact form as stated in Eq. (22). Then,

the decision variables should be obtained such that the

functions below are minimized:

min

oH X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

ox�j kð Þ þ k�i kð Þ þ
oH X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

ok�i kð Þ � x�j kð Þ

þ
oH X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

ou�q kð Þ

0

BBBB@

1

CCCCA

ð36Þ

where i = 1, 2, 3, 4, j = 1, 3, 5, 6, and q = 1, 2. The

system should be solved for k0 = 50 to kf = 50. A solver

should try to minimize the above overall objective func-

tion. The following constraints also should be taken into

account for the controlling signals (for each step-point

during the control process):

40
� 	 u1 kð Þ	 60

�

10	 u2 kð Þ	 16

(

ð37Þ

Furthermore, for assessing the performance of the pro-

posed controller, which is, in fact, a CPSO based on funda-

mental theorem of calculus of variations optimal controller

(CPSO-FT-OC), from now on, a classical optimal controller

based on the Pontryagin’s minimum principle (PMP) [29] is

also implemented for the same coldstart problem.

Fig. 9 Considered engine

speed profiles
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For the current simulations, three different pre-defined

engine speed profiles (u3) are considered, which are

depicted in Fig. 9.

All of the encodings, simulations, and numerical

experiments are carried out in the Matlab software with

Microsoft Windows 7 operating system on a PC with a

Pentium IV, Intel core i7 CPU, and 4 GBs RAM.

6.2 Simulation results

Before proceeding with the control performance simula-

tions, it is necessary to train the ELM to have a differen-

tiable state-space representation of the system. Table 3 lists

the training and testing errors for all of the six different

cases. By comparing the obtained results with those from

the model proposed in [8] versus the values obtained from

a high-fidelity model developed at VDL lab, it can be

easily inferred that the proposed differentiable neural

model has an acceptable accuracy. It can be seen that for

some of the cases, the estimation error is even less than the

rival model. Figure 10 depicts the correlation results

obtained using ELM. As can be seen, the estimation results

and the measured ones are in a good agreement.

The trained model is now used to derive the system of

equations, which should be solved using the nature-in-

spired solvers. Here, the authors present the results of

simulations regarding the calculation of optimal profiles

using the rival optimization approaches. To capture the

undesired effects of randomness and uncertainty, the sim-

ulations are repeated for 30 runs and the statistical results

are presented in Tables 4, 5, and 6. By checking the

obtained results, it can be seen that the cellular variants of

PSO show much better results as compared to the other

variants of PSO. Besides, the findings indicate that equip-

ping the cellular transition rule with the chaos theory can

further boost the performance. All in all, the obtained

Table 3 Estimation error of

ELM compared to the model

developed in [8] for 3 different

data sets versus values

measured from a high-fidelity

model

Estimators HC1 HC2 HC3 Texh1 Texh2 Texh3

Training error

ELM 0.0265 0.0273 0.0269 0.0291 0.0287 0.0285

Azad et al. [8] model – – – – – –

Testing error

ELM 0.0351 0.0354 0.0369 0.0516 0.0531 0.0544

Azad et al. [8] model 0.0362 0.0341 0.0321 0.0523 0.0526 0.0563

Fig. 10 Correlation plots obtained for the three different cases using ELM and those obtained from high fidelity model
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results demonstrate that CPSO-C-Burg and CPSO-C-Log

can outperform the other rival methods. The std. values of

all of the rival methods are relatively the same, which

shows that all of the methods have an approximately

similar robustness. The similar results are obtained for

Cases 2 and 3; however, the difference pertains to the std.

values of the rival methods. It is clear that the std. values of

cellular variants of PSO are less than the other rival

methods for the last two cases. Such observations bring the

authors to the conclusion that, generally, the robustness of

cellular PSO algorithms is more than the other rival

methods. For the last two cases, the performance of CPSO-

C-Burg is much better than the other rival methods, which

suggests using this specific version of CPSO for the cal-

culation of optimum controlling profiles. Figure 11 indi-

cates the real-time evolution of the objective function,

which results in a decrease of HCcum. It can be seen that the

final value for each case is different. In fact, the results

show that, by increasing the engine speed, the value of

HCcum decreases. Such an observation is in a good agree-

ment with the results of physical analysis reported in [47].

It is also necessary to evaluate the exploration/ex-

ploitation balance of the rival methods to find out whether

the algorithms converge to a unique region with an

acceptable quality. For this purpose, the performances of

the rival methods are compared in terms of the conver-

gence rate (CR) index. It is well-known that the standard

PSO and most of its variants adaptively turn the explo-

ration to an exploitation search. However, the key point is

to find out whether a complete convergence occurs, and

also, whether the method can optimally balance the

exploration and exploitation capabilities to reach the CR

value of 1 in a logical period of time. The speed of con-

vergence is desirable if an algorithm can also converge to a

solution with acceptable quality. Hence, the results of CR

tests should be considered in tandem to the results of

optimization performance. Figure 12a–c) indicates the

real-time CR profiles for different optimization cases. To

avoid any prejudice, all of the methods start the opti-

mization with the same distribution of the agents corre-

sponding to CR0 of 0.1. As expected, all of the rival PSO

variants have an increasing CR profile. However, it can be

seen that CPSO and all of its variants can reach the CR

value of 1 in a very short period of time. It can be also seen

that FDPSO and PSO-w have acceptable convergence

behavior over the optimization procedure. Figure 12d

Table 4 Optimization results for the rival swam-based solvers for

Case 1 for 30 independent runs

Methods Min Max Mean Std. Time

PSO-w 0.1690 0.1712 0.1705 0.0011 5:17

PSO-cf 0.1689 0.1703 0.1699 0.0007 4:53

PSO-w-local 0.1682 0.1699 0.1692 0.0009 5:31

PSO-cf-local 0.1691 0.1710 0.1710 0.0009 5:21

UPSO 0.1683 0.1699 0.1694 0.0008 4:45

FIPSO 0.1693 0.1705 0.1701 0.0005 4:52

FDPSO 0.1698 0.1707 0.1704 0.0004 4:36

CPSO-H 0.1703 0.1709 0.1709 0.0003 5:20

CPSO 0.1679 0.1694 0.1689 0.0008 5:13

CPSO-C-Loz 0.1676 0.1699 0.1699 0.0012 5:16

CPSO-C-Log 0.1676 0.1690 0.1685 0.0007 5:19

CPSO-C-Burg 0.1675 0.1691 0.1686 0.0008 5:17

* All times are reported in min:sec format

Table 5 Optimization results for the rival swam-based solvers for

Case 2 for 30 independent runs

Methods Min Max Mean Std. Time

PSO-w 0.1738 0.1757 0.1751 0.0009 4:55

PSO-cf 0.1741 0.1761 0.1754 0.0010 4:46

PSO-w-local 0.1734 0.1741 0.1739 0.0003 5:12

PSO-cf-local 0.1732 0.1752 0.1752 0.0010 5:04

UPSO 0.1722 0.1733 0.1729 0.0005 4:31

FIPSO 0.1711 0.1720 0.1720 0.0004 4:36

FDPSO 0.1708 0.1719 0.1719 0.0005 4:14

CPSO-H 0.1718 0.1725 0.1723 0.0003 5:03

CPSO 0.1699 0.1705 0.1705 0.0003 4:48

CPSO-C-Loz 0.1695 0.1704 0.1695 0.0004 4:52

CPSO-C-Log 0.1691 0.1694 0.1694 0.0001 4:55

CPSO-C-Burg 0.1690 0.1692 0.1691 0.0001 4:58

* All times are reported in min:sec format

Table 6 Optimization results for the rival swam-based solvers for

Case 3 for 30 independent runs

Methods Min Max Mean Std. Time

PSO-w 0.1784 0.1803 0.1797 0.0009 4:31

PSO-cf 0.1782 0.1799 0.1793 0.0008 4:28

PSO-w-local 0.1778 0.1791 0.1787 0.0006 4:42

PSO-cf-local 0.1768 0.1792 0.1785 0.0011 4:40

UPSO 0.1778 0.1795 0.1790 0.0009 4:08

FIPSO 0.1779 0.1795 0.1795 0.0008 4:09

FDPSO 0.1784 0.1791 0.1789 0.0004 4:06

CPSO-H 0.1765 0.1782 0.1782 0.0008 4:43

CPSO 0.1741 0.1756 0.1751 0.0007 4:24

CPSO-C-Loz 0.1725 0.1734 0.1731 0.0004 4:31

CPSO-C-Log 0.1733 0.1739 0.1737 0.0003 4:27

CPSO-C-Burg 0.1727 0.1731 0.1730 0.0002 4:29

* All times are reported in min:sec format
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indicates the variation of CR profiles of CPSO-C-Burg for

4 independent runs. It can be seen that the obtained CR

profiles have the relatively same path, and such an

observation brings the authors to the conclusion that

CPSO-C-Burg is robust in terms of the balance between

exploration and exploitation capabilities. Given the results

Fig. 11 Real-time evolution of

the objective function obtained

from CPSO-C-Burg

Fig. 12 Real-time convergence profiles for: a Case 1, b Case 2, c Case 3, and d sensitivity of Burg-chaos-based CPSO for the three different

cases over 4 independent runs
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of this experiment and taking the accuracy experiment into

account, one can easily infer that the performance of the

CPSO-C-Burg is quite acceptable for solving the system of

equations for the calculation of optimal profiles. The

boxplots of the final obtained CR values of the rival

methods over 30 independent runs are presented in Fig. 13.

It can be seen that all of the considered methods show a

trivial deviation of CR through the independent simula-

tions. The results also reveal that PSO-cf-local and FIPSO

do not have acceptable performances and their mean CR

value is less than the other algorithms, which means that

they often fail to converge to a unique solution through the

independent runs.

Finally, the optimal control effort surfaces obtained by

CPSO-C-Burg are given in Fig. 14. It can be seen that the

overall shapes of the obtained surfaces are equal for the

three controlling cases. However, it can be seen that the

surfaces of Cases 2 and 3 cover a broader range with

Fig. 13 Boxplots of the convergences of the rival methods for the three considered cases

Fig. 14 Different surfaces of the control efforts calculated by the optimal controller
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Fig. 15 Different surfaces of the states calculated by the optimal controller

Fig. 16 Variations of Texh with respect to: a spark timing, and b air/fuel ratio

Fig. 17 Variations of HCraw with respect to a spark timing, and b air/fuel ratio
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respect to the AFR control signal. The optimal state sur-

faces are also presented in Fig. 15. The differences of the

calculated states are clear, and it can be seen that there is a

remarkable difference when a surface is presented in terms

of X6.

Figure 16 indicates the variations of exhaust gas tempera-

ture for the three cases with respect to the controlling signals. It

is clear that the final value of Texh profile is higher for the last

case, and it is the lowest for Case 1. Such observations bring us

to the conclusion that increasing the engine speed has a pos-

itive impact on the exhaust gas temperature. The relatively

same behavior is observed for the engine-out hydrocarbon

emissions (HCraw-c) (as indicated in Fig. 17). The catalytic

converter efficiency profiles are also presented in Fig. 18. It

can be seen that, for Case 1, the catalyst’s efficiency reaches

the nominal value in a shorter period of time (in 20 s), and the

required time for the same phenomenon is about 35 s for Case

3 which has the lowest engine speed profile.

As an optimal controller, the performance of the pro-

posed controller should also be compared with another

high-performance rival method. In a previous work by the

authors’ research group, it was demonstrated that PMP can

show very promising result for the coldstart problem. Here,

the authors compare their controller with the results

obtained using PMP. The comparative results are presented

in Table 7. It can be seen that the results of the proposed

controller is acceptable as compared to those of PMP

(which is among the most powerful optimal controllers). It

can be seen that for Case 3, the obtained result is

remarkably better than PMP, and for the other cases, the

obtained results are comparable. Moreover, it is obvious

that the proposed intelligent controller has a neural network

at its heart which can neatly deal with disturbances and

noises in practice as it can be retrained, if necessary, to

increase the accuracy of the calculated controlling profiles.

7 Concluding remarks

In this study, for an automotive engine during the cold-

start period, a novel intelligent optimal control

scheme was proposed using the Hamiltonian function, to

formulate the objective function based on the engine

system’s state-space model and an approximation method,

known as extreme learning machine (ELM). ELM was

used to estimate the values of exhaust gas temperature

(Texh) and engine-out hydrocarbon emissions (HCraw-c)

using the state values coming from a control-oriented

model of the system. By formulating the nonlinear state,

co-state and control input equations for the coldstart

problem, a large-scale constraint optimization problem

emerged which was solved by a cellular particle swarm

optimization (CPSO) algorithm. The simulation results

clearly demonstrated that the method is best suited for the

calculation of the optimal controlling and state profiles for

the considered problem. Indeed, the power of the opti-

mization method enabled us to consider different operat-

ing cases and come up with practical results. Furthermore,

the continuous differentiable formulation of ELM allowed

us to develop some representative formulations for Texh
and HCraw-c to calculate the optimal values based on the

fundamental theorem of calculus of variations. To further

demonstrate the efficacy of the proposed controller, as

well as CPSO, different rival population-based solvers

and also a powerful optimal controller based on the

Pontryagin’s minimum principle (PMP) were taken into

account. The results of the comparative study clearly

demonstrated the efficacy and feasibility of the control-

ling commands obtained by the proposed intelligent

optimal controller. The results also brought the authors to

the conclusion that the adopted CPSO can yield a quali-

fied solution compared to the other rival techniques. In

general, our findings show that the proposed intelligent

controller is best suited for the considered problem, which

is one of the most critical issues from the automotive

industry’s perspective.

Fig. 18 Catalytic converter efficiency profiles for the three cases

Table 7 Comparison of the results obtained by PMP and CPSO-FT-

OC

Controller Case 1 Case 2 Case 3

HCcum Time HCcum Time HCcum Time

PMP 0.145 4:45 0.158 4:45 0.218 4:45

CPSO-FT-OC 0.168 5:17 0.169 4:58 0.173 4:29

* All times are reported in min:sec format
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Appendix A

Details of difference-based formulations of the proposed

controller

The following difference-based system of equations is

obtained for the co-states:

Moreover, the following difference-based system of

equations is obtained for the states:

oH X� kð Þ;U� kð Þ; �k� k þ 1ð Þ
� �

ox�1 kð Þ ¼ �k�1 kð Þ

¼ � KTexh

XN

j¼1

x1
j

og a1
j=1 kð Þ þ a2

j=2 kð Þ þ a3
j=1 kð Þ þ b1

j

� �

o=1 kð Þ � o=1 kð Þ
ox�1 kð Þ

0

@

1

A� k1

s1

k�1 k þ 1ð Þ
� �
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� �

ox�3 kð Þ ¼ �k�2 kð Þ
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j¼1

x1
j

og a1
j=1 kð Þ þ a2

j=2 kð Þ þ a3
j=1 kð Þ þ b1

j

� �

o=3 kð Þ � o=3 kð Þ
ox�3 kð Þ

0

@

1

A� k3

s3

k�2 k þ 1ð Þ
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og j1
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ok�1 k þ 1ð Þ ¼ x�1 k þ 1ð Þ ¼ dt � u1 kð Þ
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In addition, the following equations are derived for the

control signals:

For Eqs. (A.1) to (A.3), the following differentiations

should be employed:
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