
ORIGINAL ARTICLE

General relation-based variable precision rough fuzzy set

Eric C. C. Tsang1 • Bingzhen Sun2 • Weimin Ma3

Received: 24 April 2015 / Accepted: 23 November 2015 / Published online: 11 December 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract In order to effectively handle the real-valued

data sets in practice, it is valuable from theoretical and

practical aspects to combine fuzzy rough set and variable

precision rough set so that a powerful tool can be devel-

oped. That is, the model of fuzzy variable precision rough

set, which not only can handle numerical data but also is

less sensitive to misclassification and perturbation,In this

paper, we propose a new variable precision rough fuzzy set

by introducing the variable precision parameter to gener-

alized rough fuzzy set, i.e., the variable precision rough

fuzzy set based on general relation. We, respectively,

define the variable precision rough lower and upper

approximations of any fuzzy set and it level set with

variable precision parameter by constructive approach.

Also, we present the properties of the proposed model in

detail. Meanwhile, we establish the relationship between

the variable precision rough approximation of a fuzzy set

and the rough approximation of the level set for a fuzzy set.

Furthermore, we give a new approach to uncertainty

measure for variable precision rough fuzzy set established

in this paper in order to overcome the limitations of the

traditional methods. Finally, some numerical example are

used to illuminate the validity of the conclusions given in

this paper.

Keywords Rough set � General relations � Uncertainty
measure � Variable precision rough fuzzy set

1 Introduction

Rough set theory, as one kind of generalization of the

notions of classical set theory, was proposed to deal with

uncertainty and indiscernibility [1–3]. One of the main

advantages of rough set theory is that it does not need any

preliminary or additional information about data, such as

probability distribution in statistics, basic probability

assignment in the Dempster–Shafer theory, or grade of

membership or the value of possibility in fuzzy set theory

[1]. The generalizations of rough set model considered with

respect to various generalized binary relations are main

research topics of rough set theory [4–7].

The standard rough set model is a qualitative model that

defines three regions for approximating a subset of a uni-

verse of objects based on an equivalence relation on the

universe. A lack of consideration of the degree of overlap

between an equivalence class and the set motivates many

researchers to study quantitative rough set models [8].

There are two important approaches to establish the

quantitative rough set model: probabilistic approach and

parameterized approach. Probabilistic approach to rough

set was firstly proposed by Yao [8, 9] and a non-parame-

terized definition way named as decision-theoretic rough

set was also defined in recently years [10–13]. The variable

precision rough set (VPRS) model, as one of parameterized

approaches to Pawlak rough set, proposed by Ziarko was

the other quantitative rough set model [14, 15]. In the very

& Bingzhen Sun

bzsun@xidian.edu.cn

& Weimin Ma

mawm@tongji.edu.cn

1 The Faculty of Information Technology, Macau University of

Science and Technology, Taipa, Macau, People’s Republic of

China

2 School of Economics and Management, Xidian University,

Xi’an 710071, People’s Republic of China

3 School of Economics and Management, Tongji University,

Shanghai 200092, People’s Republic of China

123

Int. J. Mach. Learn. & Cyber. (2017) 8:891–901

DOI 10.1007/s13042-015-0465-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0465-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0465-z&amp;domain=pdf


first paper of Ziarko [14], he used a set inclusion function

to define approximations. Also, only one parameter was

used. Later on, Ziarko reformulated the theory by using

probabilistic terms. So, variable precision rough set also is

one of probabilistic rough set models. Furthermore, an

improved model of Ziarko’s variable precision rough set

was given by Katzberg and Ziarko [16, 17]. As a gener-

alization, VPRS model was introduced to handle databases

with noise (i.e. the wrong or missing information, such as

error, misclassification or missing values). However, VPRS

cannot effectively handle numerical (real number) data and

is sensitive to perturbation of data (i.e. the small change

between observed values and true values). Then it inspired

to develop other new rough set models which could over-

come these difficulties. To handle databases with non-

symbolic values, fuzzy rough set (FRS) model has been

introduced by combining fuzzy sets and rough sets. Dubois

and Prade [18, 19] and Nakamura [20] were among the first

who showed that the basic idea of rough set given in the

form of lower and upper approximations can be extended

in order to approximate fuzzy set [21] defined in terms of

membership functions. Subsequently, Daniel et al. gives a

systematic study of the fuzzy rough set theory by using the

fuzzy logic [22]. It can handle more complex databases

with numerical data. However, FRS is sensitive to noise

and perturbation of data [23]. It is valuable from theoretical

and practical viewpoints to combine FRS and VPRS so that

a powerful tool which can handle numerical data and is

less-sensitive to noise and perturbation of data can be

developed.

In the past years, there are many researches on the

combination of FRS and VPRS and also propose some

generalized models [17, 24, 25]. Chen et al. proposed a

model of fuzzy variable precision rough set (FVPRS) by

introducing the variable precision parameter to fuzzy rough

set and also discussed the attribute reduction based on this

new model [24, 25]. As is well known, uncertainty pro-

cessing plays a key role in relation-based learning systems

[26–29]. It is found that, in comparison with the variable

precision rough fuzzy set, the modeling of fuzziness and

roughness can significantly improves the performance of a

learning system [30–33]. By the notions of the fuzzy

inclusion set and a-inclusion error based on the residual

implicators, the variable precision fuzzy rough set was

defined by using the extended version of the variable pre-

cision rough set model [34]. Meantime, they developed a

decision model with fuzzy attribute based on the proposed

model [35]. Subsequently, Ren and Zhang discussed the

properties for the Alicja’s model in detail [36]. Based on

the idea of Ziarko, Huang and Zhang define the lower and

upper approximations of a cut set of any fuzzy set with

variable precision parameter [37, 38]. A variable precision

fuzzy rough set based on the power inclusion degree of

fuzzy sets was also defined by Xu et al. and the variable

precision fuzzy rough set can carry the computing on fuzzy

rough set by fuzzy sets operating properties [39].

In view of the existing results with the variable precision

fuzzy rough set, we present the rough approximation of a

fuzzy set with variable precision parameter in generalized

approximation space, i.e., the variable precision rough

fuzzy set model with general relations. Then we discuss the

relation between the model we established and other

existing models and also present the main properties in

detail.

The remainder of this paper is organized as follows.

Section 2 gives some preliminaries such as rough fuzzy set

and variable precision rough set. Section 3 presents the

model of variable precision rough fuzzy set based on

general relation by approximating a fuzzy set and its level

set, respectively. At the same time, the relationship among

of the proposed variable precision rough lower and upper

approximations were given. Also, we discuss the basic

properties for the proposed model in detail. Section 4

presents a new approach to uncertainty measure for vari-

able precision rough fuzzy set based on general binary

relation. Finally, we draw a conclusion and point out the

future work in Sect. 5.

2 Review of rough set models

In this section, we briefly review the concept of rough set

theory as well as their extension forms.

2.1 Pawlak rough set

Let U be a non-empty finite universe. R be an equivalence

relation of U � U: The equivalence relation R induces a

partition of U, denoted by ½x�R or [x] and U=R ¼ f½x�jx 2
Ug stands for the equivalence classes of x. Then (U, R) be

the Pawlak approximation space.

For any X � U; its lower and upper approximations are

defined as follows [1–3]:

RðXÞ ¼ fx 2 Uj½x� � Xg ¼ [f½x�j½x� � Xg;
RðXÞ ¼ fx 2 Uj½x� \ X 6¼ ;g ¼ [f½x�j½x� \ X 6¼ ;g:

The lower approximation RX is the union of all elementary

sets which are the subset of X, and the upper approxima-

tion RX is the union of all elementary sets which have a

non-empty intersection with X. The positive, boundary and

negative regions of X can be defined as follows [4, 15, 40]:

posðXÞ ¼ RðXÞ; bnðXÞ ¼ RðXÞ � RðXÞ; negðXÞ ¼ U � RðXÞ:

The positive region pos(X) consists of all objects that are

definitely contained in the set X. The negative region
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neg(X) consists of all objects that are definitely not con-

tained in the set X. The boundary region bn(X) consists of

all objects that may be contained in X. Since approxima-

tions are from equivalence classes, inclusion into the

boundary region reflects uncertainty about the classifica-

tion of object.

2.2 Variable precision rough set

In this part, we review the probabilistic formulations of

rough sets: the variable precision rough set. In probabilistic

approaches to rough set model [8], the classification

knowledge is assumed to be supplemented with the prob-

abilistic knowledge. The probabilistic knowledge reflects

the relation occurrence frequencies of sets. It is normally

assumed that all subsets X � U under consideration are

measurable by a probabilistic measure function P with

o\PðXÞ\1: That is to say, they are likely to occur but

their occurrence is not certain.

Let U be a non-empty set and R be an equivalence

relation on U. P is the probabilistic measure defined on the

r-algebra of measure subsets of U. For any subsets X � U

and the precision control parameter b 2 ð0:5; 1�; the lower

and upper approximation of X about the approximation

space (U, R) are defined as follows, respectively.

RbX ¼ [f½x�RjPðXj½x�RÞ� b; x 2 Ug;
RbX ¼ [f½x�RjPðXj½x�RÞ[ 1� b; x 2 Ug:

Similar to the classical Pawlak rough set, the positive

region, boundary region and negative region of the target

set X are defined by

posbðXÞ ¼ RbX; bnbðXÞ ¼ RbX � RbX;

negbðXÞ ¼ [f½x�RjPð�Xj½x�RÞ� b; x 2 Ug:

where � stands for the complementary of sets.

It is easy to known that the variable precision rough set

would be degenerated to the classical Pawlak rough set

when the precision parameter b ¼ 1:

3 Variable precision rough fuzzy set model based
on general relation

From the above analysis, we know that there has a solid

necessity to approximate a fuzzy concept in probabilistic

approximation space or discuss the theory of probabilistic

rough set in fuzzy environment for the management deci-

sion-making in practice. With the objective of bringing

together existing studies on probabilistic rough set

approximations in fuzzy environment, we discuss the

approximation of a fuzzy concept of the universe of dis-

course on the probabilistic approximation space in this

section. That is, we will establish the probabilistic rough

fuzzy set model [41]. Similar to the existing probabilistic

rough set models [8–10, 15, 42], we also present several

generalized forms for the proposed model.

3.1 Variable precision rough approximation

of a fuzzy set

The philosophy of the variable precision rough set is to

introduce a parameter a 2 ð0:5; 1� and a majority inclusion

relation defined on the equivalence classes of universe.

Then the lower and upper approximations are given by

confining the domain of the parameter a: On the other

hand, as a generalization of variable precision rough sets,

we also may consider the set-inclusion function named as

inclusion degree which used by Skowron and Stepaniuk

[40]. Here we use the conditional probabilistic of a fuzzy

event in order to keep the consistency with other general-

izations in the existing papers.

First of all, we present the concept of general binary

relations R and the generalized approximation space

(U, R).

Let U be a nonempty finite set. For any x 2 U; a subset

n(x) is called a neighborhood of x. A mapping n : U !
PðUÞ (where P(U) denotes all crisp subset) is called a

neighborhood operator. For any X � U; denote nðXÞ ¼
[x2XnðxÞ: Then, n(x) is called the neighborhood of

X. Based on the neighborhood operator, one can easily

obtain an general binary relations R.

For x; y 2 U; if xRy, then R is called general binary

relations of U. That is, ðx; yÞ 2 R; x is called the prede-

cessor of y. Meanwhile, y is called the successor of

x. Denote

RsðxÞ ¼ fy 2 UjxRyg; RpðxÞ ¼ fy 2 UjyRxg:

Then RsðxÞ and RpðxÞ are called the successor and prede-

cessor neighborhoods of x.

Furthermore, the binary relation and the neighborhood

operators Rs; Rp can be determined one by one. i.e., xRy ,
x 2 RpðxÞ , y 2 RsðxÞ [34]. Also, we suppose the binary

relation satisfy the property of serial for any element of

universe in this paper.

Definition 3.1 [43] Let U be a nonempty finite universe.

R is a general binary relation on U. We call (U, R) the

generalized approximation space.

In the following, we present the lower and upper

approximations of any fuzzy set on the generalized

approximation space with variable precision parameter.

As is well known, the key concept is conditional

probability between the target set and the successor or

predecessor neighborhoods of x in variable precision rough

set.
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So, we firstly define the definition of conditional

probability of any fuzzy event in probabilistic space.

Definition 3.2 [44] Let U ¼ fx1; x2; . . .; xn; . . .g: Denote
PðxnÞðn ¼ 1; 2; . . .Þ be the probability of xn and satisfy

PðxnÞ� 0;
P1

n¼1 PðxnÞ ¼ 1: For any A 2 FðUÞ(where

F(U) denotes all the fuzzy subsets of U), the probability of

the fuzzy event A is defined as follows:

PðAÞ ¼
X1

n¼1

AðxnÞPðxnÞ

where AðxnÞ stands for the membership function of fuzzy

set A.

If the probabilistic space is continuous, then the

probability of fuzzy event A is defined as follows:

PðAÞ ¼
Z

U

AðxÞdP ¼ EðAðxÞÞ:

Here dP is the Lebesgue–Stieltjes integral [45].

By this definition and the concept of conditional

probability of classical measure theory, we define the

conditional probability of a fuzzy event given the descrip-

tion of a crisp set as follows.

Definition 3.3 Let U be a non-empty finite universe, R be

a general binary relation of U. Denote U=Rs ¼ fRsðxÞjx 2
Ug and P the probabilistic measure. For any A 2 FðUÞ and
x 2 U: PðAjRsðxÞÞ is called the conditional probability of

fuzzy event A given the description RsðxÞ: Define

PðAjRsðxÞÞ ¼
P

y2RsðxÞ AðyÞ
jRsðxÞj

¼ jAðyÞj
jRsðxÞj

where j 	 j stands for the cardinality of a crisp set and |A(y)|

stands for the cardinality of a fuzzy set A.

The PðAjRsðxÞÞ also can be understand the probability of
an object x 2 U random selected belongs to the fuzzy

concept A given the description RsðxÞ:

Remark 3.1 The conditional probability of a fuzzy event

based on general binary relation given in Definition 3.3 is a

direct generalization of the conditional probability of a

crisp set in the fuzzy environment. Especially, the

PðAjRsðxÞÞ will degenerate the form in Ref. [46] when R is

an equivalence relation over universe of discourse. Further,

Ref. [47], Sarkar proposes a rough-fuzzy membership

function for any two fuzzy sets of the universe of discourse

as:

l ~AðxÞ ¼
j~A \ ~Bj
j~Bj

; for any ~A; ~B 2 FðUÞ; x 2 U:

So, the conditional probability Pð~AjRsðxÞÞ also can be

regarded as the rough-fuzzy membership function between

a fuzzy set ~A and a crisp set RsðxÞ � U:

By this definition, the following properties are clear.

Proposition 3.1 Let U be a non-empty finite universe,

R be an equivalence relation of U. P is the probabilistic

measure. Then the following conclusions hold.

1. 0
PðAjRsðxÞÞ
 1;

2. If A;B 2 FðUÞ and A � B; then PðAjRsðxÞÞ

PðBjRsðxÞÞ;

3. PðAcjRsðxÞÞ ¼ 1� PðAjRsðxÞÞ (where Ac stands for the

complementary set of A).

In the following, we give the variable precision rough

approximations of a fuzzy set in generalized approximation

space.

Let (U, R) be a generalized approximation space. For

any A 2 FðUÞ; a 2 ð0:5; 1� and x 2 U: RsðxÞ is the suc-

cessor neighborhood of x 2 U: P is the probabilistic mea-

sure defined on the r�algebra of measure subsets of

U. The lower and upper approximations of fuzzy set A on

(U, R) with variable parameter a are, respectively, defined

as follows:

RaðAÞðxÞ ¼ minfAðyÞjPðAjRsðxÞÞ� a; y 2 RsðxÞg; x 2 U;

RaðAÞðxÞ ¼ maxfAðyÞjPðAjRsðxÞÞ[ 1� a; y 2 RsðxÞg; x 2 U:

Obviously, RaðAÞ and RaðAÞ are two binary operators from

FðUÞ �! FðUÞ:
In general, if RaðAÞ ¼ RaðAÞ; then we call A definable

fuzzy set on (U, R). Otherwise, A is called rough fuzzy set

based on general binary relation.

By the definition variable precision rough fuzzy set

based on general binary relation, it is easy to verify the

following properties for the binary operators Ra and Ra:

Theorem 3.1 Let (U, R) be a generalized approximation

space. Ra and Ra are the binary operators from FðUÞ �!
FðUÞ: Then

1. Rað;Þ ¼ Rað;Þ ¼ ;; RaðUÞ ¼ RaðUÞ ¼ U;

2. RaðAÞ � RaðAÞ;
3. RaðAÞ ¼ ðR1�aðAcÞÞc; RaðAÞ ¼ ðRaðAcÞÞc;

4. RaðA[BÞ�RaðAÞ[RaðBÞ; RaðA\BÞ� RaðAÞ\RaðBÞ;
5. RaðA\BÞ�RaðAÞ\RaðBÞ; RaðA[BÞ�RaðAÞ[RaðBÞ:

Proof It can be easily verified by the definition.

Remark 3.2 In general, the following relation may not

satisfy but it holds in the other existed rough fuzzy set

model [18, 19, 22]:

RaðAÞ � A � RaðAÞ

Similar to the Pawlak rough set, we also define the

uncertainty measure of probabilistic rough fuzzy set as the

way of the Pawlak rough set in the following:

We call qaðAÞ ¼
jRaðAÞj
jRaðAÞj

the accuracy of approximation

for fuzzy set A in generalized approximation space.
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Moreover, the approximated quality of lower and upper

approximations are, respectively, define as follows:

qðAÞ ¼ jRaðAÞj
jUj ¼ PðRaðAÞÞ; qðAÞ ¼ jRaðAÞj

jUj ¼ PðRaðAÞÞ:

Furthermore, the relationship between the accuracy and

quality of approximation can be expressed as follows:

qaðAÞ ¼
qðAÞ
qðAÞ :

Then, we call raðAÞ ¼ 1� qaðAÞ the roughness for fuzzy

set ~A in generalized approximation space.

Actually, there are the similar properties for the

accuracy of approximation and roughness of the variable

precision rough fuzzy set based on general binary relation

and also can establish the relationship between the

accuracy of approximation and roughness like the existing

rough set models [39].

In order to illuminate the above results for the variable

rough fuzzy set model based on general binary relation, we

present a numerical example as follows.

Example 1 Let U ¼ fx1; x2; x3; x4; x5; x6g and R be an

general binary relation over universe U. Then the successor

neighborhood of x 2 U is U=Rs ¼ fRsðx1Þ ¼ fx1; x2g;
Rsðx2Þ ¼ fx2; x3g;Rsðx3Þ ¼ fx3; x4g;Rsðx4Þ ¼ fx4; x5g;
Rsðx5Þ ¼ fx1; x3; x5; x6g; Rsðx6Þ ¼ fx1; x2; x3; x4gg be a

covering of universe U with binary relation R. Let A 2
FðUÞ be a fuzzy set on U with the membership function

A ¼ 0:3

x1
þ 0:6

x2
þ 0:2

x3
þ 0:5

x4
þ 0:9

x5
þ 0:4

x6
:

Then we have following results by Definition 3.3:

PðAjRsðx1ÞÞ ¼
Aðx1Þ þ Aðx2Þ

jRsðx1Þj
¼ 0:3þ 0:6

2
¼ 0:45;

PðAjRsðx2ÞÞ ¼
Aðx2Þ þ Aðx3Þ

jRsðx2Þj
¼ 0:6þ 0:2

2
¼ 0:4;

PðAjRsðx3ÞÞ ¼
Aðx3Þ þ Aðx4Þ

jRsðx3Þj
¼ 0:2þ 0:5

2
¼ 0:35;

PðAjRsðx4ÞÞ ¼
Aðx4Þ þ Aðx5Þ

jRsðx4Þj
¼ 0:5þ 0:9

2
¼ 0:7;

PðAjRsðx5ÞÞ ¼
Aðx1Þ þ Aðx3Þ þ Aðx5Þ þ Aðx6Þ

jRsðx5Þj

¼ 0:3þ 0:2þ 0:9þ 0:4

4
¼ 0:45;

PðAjRsðx6ÞÞ ¼
Aðx1Þ þ Aðx2Þ þ Aðx3Þ þ Aðx4Þ

jRsðx6Þj

¼ 0:3þ 0:6þ 0:2þ 0:5

4
¼ 0:4:

Suppose a ¼ 0:6: Then, we obtain the lower and upper

approximations of A about the generalized approximation

space (U, R) as follows:

RaðAÞðx1Þ ¼ R0:6ðAÞðx1Þ ¼minfAðyÞjPðAjRsðx1ÞÞ� 0:6;

y 2 Rsðx1Þg ¼ 0;

RaðAÞðx2Þ ¼ R0:6ðAÞðx2Þ ¼minfAðyÞjPðAjRsðx2ÞÞ� 0:6;

y 2 Rsðx2Þg ¼ 0;

RaðAÞðx3Þ ¼ R0:6ðAÞðx3Þ ¼minfAðyÞjPðAjRsðx2ÞÞ� 0:6;

y 2 Rsðx3Þg ¼ 0;

RaðAÞðx4Þ ¼ R0:6ðAÞðx4Þ ¼minfAðyÞjPðAjRsðx2ÞÞ� 0:6;

y 2 Rsðx4Þg
¼minf0:5; 0:9g ¼ 0:5;

RaðAÞðx5Þ ¼ R0:6ðAÞðx5Þ ¼minfAðyÞjPðAjRsðx5ÞÞ� 0:6;

y 2 Rsðx5Þg ¼ 0;

RaðAÞðx6Þ ¼ R0:6ðAÞðx6Þ ¼minfAðyÞjPðAjRsðx6ÞÞ� 0:6;

y 2 Rsðx6Þg ¼ 0;

So, we have

R0:6ðAÞ ¼
0

x1
þ 0

x2
þ 0

x3
þ 0:5

x4
þ 0

x5
þ 0

x6
:

RaðAÞðx1Þ ¼Rð0:6ÞðAÞðx1Þ ¼ maxfAðyÞjPðAjRsðx1ÞÞ[ 0:4;

y 2 Rsðx1Þg
¼maxf0:3; 0:6g ¼ 0:6;

RaðAÞðx2Þ ¼Rð0:6ÞðAÞðx2Þ ¼ maxfAðyÞjPðAjRsðx2ÞÞ[ 0:4;

y 2 Rsðx2Þg ¼ 0;

RaðAÞðx3Þ ¼Rð0:6ÞðAÞðx3Þ ¼ maxfAðyÞjPðAjRsðx3ÞÞ[ 0:4;

y 2 Rsðx3Þg ¼ 0;

RaðAÞðx4Þ ¼Rð0:6ÞðAÞðx4Þ ¼ maxfAðyÞjPðAjRsðx4ÞÞ[ 0:4;

y 2 Rsðx4Þg
¼maxf0:5; 0:9g ¼ 0:9;

RaðAÞðx5Þ ¼Rð0:6ÞðAÞðx5Þ ¼ maxfAðyÞjPðAjRsðx5ÞÞ[ 0:4;

y 2 Rsðx5Þg
¼maxf0:2; 0:3; 0:4; 0:9g ¼ 0:9;

RaðAÞðx6Þ ¼Rð0:6ÞðAÞðx6Þ ¼ maxfAðyÞjPðAjRsðx6ÞÞ[ 0:4;

y 2 Rsðx6Þg ¼ 0;

So, we have

R0:6ðAÞ ¼
0:6

x1
þ 0

x2
þ 0

x3
þ 0:9

x4
þ 0:9

x5
þ 0

x6
:

Meanwhile, it is easy to verify that R0:6ðAÞ 6� A 6� R0:6ðAÞ:
Furthermore, the accuracy and roughness of ~A with

probabilistic approximation space can be calculated as

follows:
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q0:6ðAÞ ¼
jR0:6ðAÞj
jR0:6ðAÞj

¼ 0:208; r0:6ðAÞ ¼ 1� q0:6ðAÞ ¼ 0:792:

Also, the approximated quality of lower and upper

approximations are, respectively, calculated as follows:

qðAÞ ¼ jR0:6ðAÞj
jUj ¼ 0:08; qðAÞ ¼ jR0:6ðAÞj

jUj ¼ 0:4:

So, the validity of the basic concepts of variable precision

rough fuzzy set model are tested by this numerical

example.

3.2 Variable precision rough approximation

the level set of a fuzzy set

In this section, we present the rough lower and upper

approximations for the level set of a fuzzy set about the

generalized approximation space.

Let (U, R) be a generalized approximation space. For

any fuzzy set A 2 FðUÞ (where F(U) denotes all fuzzy

subsets of universes U) and variable parameter a 2 ð0:5; 1�:
RsðxÞ is the successor neighborhood of x 2 U: P is the

probabilistic measure defined on the r-algebra of measure

subsets of U. For any parameter k 2 ½0; 1�; the lower and

upper approximations of fuzzy set A on (U, R) with vari-

able parameter a are, respectively, defined as follows:

RaðAkÞ ¼ fx 2 UjPðAkjRsðxÞÞ� ag;
RaðAkÞ ¼ fx 2 UjPðAkjRsðxÞÞ[ 1� ag:

Remark 3.3 Here we use the probability form to define

the lower and upper approximations of any fuzzy set with

the generalized approximation space but not the majority

inclusion relation which is used by all variable precision

rough sets model. Actually, the majority inclusion relation

is the conditional probability between any two sets from

the computational point of view. So, the above definition

also can be regarded as the probability description of rough

fuzzy set model based on general relation or variable pre-

cision probabilistic rough fuzzy set based on general

relation.

Like the existing rough set models, we also can present

the positive region, negative region and boundary region

for the fuzzy set with generalized approximation space as

follows.

posaðAkÞ ¼ RaðAkÞ; negaðAkÞ ¼ �RaðAkÞ;
bnaðAkÞ ¼ RaðAkÞ � RaðAkÞ:

From the above definition, it is easy to know that we

actually give the rough approximations of the level-set for

any fuzzy set on the generalized approximation space with

variable precision parameter. So, it also is an extension or a

general form of the variable precision rough set model

based on general relations defined by Gong and Sun [43,

48].

In the following, we establish the relationships between

the variable precision rough fuzzy sets and the existing

rough sets in details.

Remark 3.4 If fuzzy set A 2 FðUÞ is a crisp set, then

RaðAkÞ and RaðAkÞ degenerate to the variable precision

rough set based on general relations [22]. Furthermore, the

lower approximation RaðAkÞ and upper approximation

RaðAkÞ will be degenerated to the Ziarko’s variable preci-

sion rough set when the binary relation R of universe U is

an equivalence relation.

Remark 3.5 If a ¼ 1; the variable precision rough fuzzy

set model proposed in this paper will be degenerated to the

fuzzy rough set based on level-set of fuzzy set [23].

Similarly, we also can define the lower and upper

approximations of any fuzzy set A 2 FðUÞ with variable

precision parameter a 2 ð0:5; 1� on the generalized approx-

imation space (U, R) by using the successor neighborhoods

RpðxÞ of any x 2 U: Meanwhile, the similar results can also

be obtained using Definition 3.2.

Similarly, we define the accuracy and roughness of the

variable precision rough fuzzy set model as follows.

Let (U, R) be a generalized approximation space. For

any A 2 FðUÞ; a 2 ð0:5; 1�: RaðAkÞ and RaðAkÞ are the

lower and upper approximations of the level set of A about

(U, R). Then the accuracy of A about the generalized

approximation space is defined as follows:

qkaðAÞ ¼
jRaðAkÞj
jRaðAkÞj

:

Furthermore, we call rkaðAÞ ¼ 1� qkaðAÞ ¼
jbnaðAkÞj
jRaðAkÞj

the

roughness of A about the generalized approximation space

(U, R). Also, it is easy to know that 0
 qkaðAÞ
 1 and

0
 rkaðAÞ
 1:

In the following, we present some properties for the

variable precision rough fuzzy set based on the general

relation established in Sect. 3.

According to the Definition 3.2, the lower and upper

approximations satisfy the following properties.

Theorem 3.2 Let (U, R) be a generalized approximation

space. For any fuzzy set A;B 2 FðUÞ; a; b 2 ð0:5; 1� and

k 2 ½0; 1�: Then the following relations hold for the lower

and upper approximation operators.

1. RaðAkÞ � RaðAkÞ:
2. Rað;kÞ ¼ Rað;kÞ ¼ ;; RaðUkÞ ¼ RaðUkÞ ¼ U:

3. A � B ¼) RaðAkÞ � RaðBkÞ; RaðAkÞ � RaðBkÞ;
4. a� b ¼) RaðAkÞ � RbðAkÞ; RaðAkÞ � RbðAkÞ;
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5. k1; k2 2 ½0; 1�; k1 � k2 ¼) RaðAk1Þ � RaðAk2Þ;
RaðAk1Þ � RaðAk2Þ;

6. RaðAk [ BkÞ � RaðAkÞ [ RaðBkÞ;
RaðAk \ BkÞ � RaðAkÞ \ RaðBkÞ:

7. Rað�AkÞ ¼ �RaðAkÞ; Rað�AkÞ ¼ �RaðAkÞ:

Proof It can be easily verified by the definitions.

Remark 3.6 In general, the following relationships dose

not hold since the binary relations R is not an equivalence

relation over universe U.

1. RaðAkÞ ¼ [fRsðxÞjPðAkjRsðxÞÞ
 a; x 2 Ug;
2. RaðAkÞ ¼ [fRsðxÞjPðAkjRsðxÞÞ\1� a; x 2 Ug:
By the above definition of the rough lower and upper

approximations for the level set of a fuzzy set about the

generalized approximation space, the following results also

are clear.

Theorem 3.3 Let (U, R) be a generalized approximation

space. For any fuzzy set A 2 FðUÞ; a 2 ð0:5; 1� and k 2
½0; 1�: Then the following relationship holds for any x 2 U:

posaðAkÞ ¼ negað�AkÞ where �Ak ¼ U � Ak:

Proof By the definition of the position region of A, we

have that

posaðAkÞ ¼RaðAkÞ ¼ fx 2 UjPðAkjRsðxÞÞ� ag
¼ fx 2 UjPðAkjRsðxÞÞ� ag

¼ x 2 Uj jAk \ RsðxÞj
jRsðxÞj

� a

� �

¼ x 2 Uj1� jAk \ RsðxÞj
jRsðxÞj


 1� a

� �

¼ x 2 Uj jðU � AkÞ \ RsðxÞj
jRsðxÞj


 1� a

� �

¼ x 2 Uj jð �AkÞ \ RsðxÞj
jRsðxÞj


 1� a

� �

¼fx 2 UjPð�AkjRsðxÞÞ
 1� ag
¼�Rað�AaÞ ¼ negað�AkÞ:

So, we prove the equation hold.

Theorem 3.4 Let (U, R) be a generalized approximation

space. For any fuzzy set A 2 FðUÞ; a 2 ð0:5; 1� and k 2
½0; 1�: Then the following relationships hold for any x 2 U:

1.
S

k2½0;1� kðRaðAkÞÞðxÞ ¼
W

k2½0;1�fkjPðAkjRsðxÞÞ� ag;
2.

S
k2½0;1� kðRaðAkÞÞðxÞ ¼

W
k2½0;1�fkjPðAkjRsðxÞÞ[ 1� ag:

Proof It is easy to prove similarly by using the decom-

position theorem of classical fuzzy set theory.

3.3 The relationship between the variable precision

approximations of a fuzzy set and its level set

In this section, we will establish the relationship between

the variable precision rough approximation of a fuzzy set

and the level set for the fuzzy set.

From the Theorem 3.2, for any a 2 ð0:5; 1� and A 2
FðUÞ; k1; k2 2 ½0; 1� and k1 � k2; the following relations

hold:

RaðAk1Þ � RaðAk2Þ; RaðAk1Þ � RaðAk2Þ:

Therefore, for any a 2 ð0:5; 1�; it is easy to know that the

family of the set fRaðAkÞjk 2 ½0; 1�g and fRaðAkÞjk 2
½0; 1�g are two nested sets over the universe U.

By the Theorem 3.4, we present two symbols as

follows:

R0
aðAÞðxÞ ¼

_

k2½0;1�
fkjPðAkjRsðxÞÞ� ag

¼
_

k2½0;1�
fkjx 2 RaðAkÞg; x 2 U;

ð1Þ

R
0
aðAÞðxÞ ¼

_

k2½0;1�
fkjPðAkjRsðxÞÞ[ 1� ag

¼
_

k2½0;1�
fkjx 2 RaðAkÞg; x 2 U;

ð2Þ

As the former mentioned, both the family of the set

fRaðAkÞjk 2 ½0; 1�g and fRaðAkÞjk 2 ½0; 1�g are two nested

sets over the universe U. So, the set R0
aðAÞ and R

0
aðAÞ are two

fuzzy sets on the universeU. That is, we can obtain two fuzzy

sets by using the variable precision rough lower approxi-

mation and upper approximation of the level set for a fuzzy

set about the generalized approximation space (U, R).

Based on the above analysis, the following conclusion

show the relationship between the variable precision rough

approximation of a fuzzy set and the level set for the fuzzy

set.

Theorem 3.5 Let (U, R) be a generalized approximation

space. For any fuzzy set A 2 FðUÞ; a 2 ð0:5; 1� and k 2
½0; 1�: Then the following relationship holds for any x 2 U:

RaðAÞ ¼ R0
aðAÞ; RaðAÞ ¼ R

0
aðAÞ:

Proof Denote k1 ¼ RaðAÞðxÞ; x 2 U; k2 ¼ R0
aðAÞðxÞ;

x 2 U:

For any a 2 ð0:5; 1�; suppose k 2 ½0; 1� satisfy x 2
RaðAkÞ: Then, for any y 2 Ak \ RsðxÞ; there must be

AðyÞ� k: So, there is miny2RsðxÞ\Ak
� k: Then we prove

k1 � k: Therefore, k1 � k2:

Conversely, for any k[ k2; by the definition of k2 ¼
R0
aðAÞðxÞ; there is AðyÞ\k when y 62 RsðxÞ \ Ak and y 2
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RsðxÞ: Then we obtain that k[ k1 by the definition of k1 ¼
RaðAÞðxÞ: Therefore, we can obtain that k2 � k1 since the

relation k[ k2 holds for any k 2 ½0; 1�:
So, we prove RaðAÞ ¼ R0

aðAÞ:
The second equation RaðAÞ ¼ R

0
aðAÞ can be easily

proved as the same way of RaðAÞ ¼ R0
aðAÞ:

4 Uncertainty measure of variable precision rough
fuzzy set

In Sect. 3, the accuracy and roughness are used to char-

acterize uncertainty of a fuzzy set and approximation

accuracy is employed to depict accuracy of a rough clas-

sification according to a general binary relation of universe.

Although these measures are effective, they have some

limitations when the lower and upper approximations of a

fuzzy set with one level set is equal to that with another

level set. To overcome these limitations, we address in this

section the issue of uncertainty of a fuzzy set in the gen-

eralized approximation space.

Firstly, through an illustrative example, we real the

limitations of the accuracy and roughness established in

Sect. 3.2 for evaluating uncertainty of a fuzzy set and

approximation accuracy of a rough classification according

to a general binary relation.

Example 2 (Continued from Example 1) Let k ¼ 0:5;

then we obtain A0:5 ¼ fx2; x4; x5g:
Taking a ¼ 0:6; then the lower and upper approximation

of the 0:5�level set of fuzzy set A about the generalized

approximation space (U, R), respectively, are as follows:

R0:6ðA0:5Þ ¼ fx4g; R0:6ðA0:5Þ ¼ fx1; x2; x3; x4; x6g;

there is

qkaðAÞ ¼
jRaðAkÞj
jRaðAkÞj

¼ q0:50:6ðAÞ ¼
1

5
; r0:50:6ðAÞ ¼ 1� q0:50:6ðAÞ ¼

4

5
:

Taking a ¼ 0:7; then the lower and upper approximation

of the 0:5�level set of fuzzy set A about the generalized

approximation space (U, R), respectively, are as follows:

R0:7ðA0:5Þ ¼ fx5g; R0:7ðA0:5Þ ¼ fx1; x2; x3; x4; x6g;

there is

qkaðAÞ ¼
jRaðAkÞj
jRaðAkÞj

¼ q0:50:7ðAÞ ¼
1

5
; r0:50:7ðAÞ ¼ 1� q0:50:7ðAÞ ¼

4

5
:

So,

q0:50:7ðAÞ ¼ q0:50:6ðAÞ r0:50:7ðAÞ ¼ r0:50:6ðAÞ:

Note that, in Example 2, there are two different values for

the precision parameter with a ¼ 0:6 and a ¼ 0:7; but the

same accuracy or roughness is obtained for the fuzzy set

A about the generalized approximation space (U, R),

respectively. Therefore, it is necessary to introduce more

effective measure for the variable precision rough fuzzy set

based on general binary relation.

In this section, we will propose a new uncertainty

measure for the variable precision rough fuzzy set based on

general binary relation by using the concept of the entropy

of a fuzzy set on the generalized approximation space.

We first introduce the concept of entropy of a fuzzy set

by an axiomatic approach.

Definition 4.1 [21, 49, 50] Let e : F ! ½0;þ1Þ be a real
function. If the following conditions are satisfied:

1. eðDÞ ¼ 0; 8D 2 PðUÞ:
2. eð½1

2
�UÞ ¼ maxA2FðUÞ eðAÞ; (where ½1

2
�U stands for the

fuzzy set over universe U and satisfies ½1
2
�UðxÞ ¼ 1

2
for

any x 2 U).

3. For any A;B 2 FðUÞ; x 2 U; if there is BðxÞ�AðxÞ
when AðxÞ� 1

2
or BðxÞ
AðxÞ when AðxÞ
 1

2
; then

eðAÞ� eðBÞ:
4. eðAcÞ ¼ eðAÞ for any A 2 FðUÞ:

Then, we call e a entropy on the family of fuzzy set

F(U).

Let U ¼ fx1; x2; � � � ; xng: Define

EðAÞ ¼
Xn

i¼1

AðxiÞð1� AðxiÞÞ; 8A 2 FðUÞ:

Then, E is an entropy on the family of fuzzy set F(U).

In the following, we present a new approach to uncer-

tainty measure for variable precision rough fuzzy set based

on general binary relation according to the conclusions of

Theorem 3.5.

Definition 4.2 Let (U, R) be a generalized approximation

space. For any fuzzy set A 2 FðUÞ; a 2 ð0:5; 1�: We call

EðR0
aðAÞÞ ¼

X

x2U

R0
aðAÞðxÞð1� R0

aðAÞðxÞÞ

and

EðR0
aðAÞÞ ¼

X

x2U

R0
aðAÞðxÞð1� R0

aðAÞðxÞÞ

the lower fuzzy entropy and upper fuzzy entropy of fuzzy

set A about generalized approximation space (U, R) with

precision parameter a:

Where R0
aðAÞÞ and R

0
aðAÞ were defined by the formula

(1) and (2) in Sect. 3.3.
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It is east to know that EðR0
aðAÞÞ ¼

P
x2U RaðAÞðxÞð1�

RaðAÞðxÞÞ and EðR0
aðAÞÞ ¼

P
x2U RaðAÞðxÞð1� RaðAÞðxÞÞ

according to the conclusions of Theorem 3.5.

Where RaðAÞÞ and RaðAÞ were defined in Sect. 3.1.

Definition 4.3 Let (U, R) be a generalized approximation

space. For any fuzzy set A 2 FðUÞ; a 2 ð0:5; 1�Þ and k 2
½0; 1�: We call

AccuracyaðAÞ

¼ EðR0
aðAÞÞ

EðR0
aðAÞÞ

¼
P

x2U _fkjx 2 RaðAkÞgð1� _fkjx 2 RaðAkÞgÞ
P

x2U _fkjx 2 RaðAkÞð1� _fkjx 2 RaðAkÞÞg
:

the accuracy of fuzzy set A about the generalized approx-

imation space with precision parameter a: Furthermore, we

call RoughnessaðAÞ ¼ 1� AccurcyaðAÞ the roughness of

fuzzy set A about the generalized approximation space with

precision parameter a:

From the Definition 4.3, the following propositions are

clear.

Proposition 4.1 Let (U, R) be a generalized approxima-

tion space. 8A 2 FðUÞ; a 2 ð0:5; 1�; k 2 ½0; 1�: Then the

following results are clear.

1. AccuracyaðAÞ not increase with the decrease of

precision parameter a:
2. RoughnessaðAÞ not decrease with the increase of

precision parameter a:

Proposition 4.2 Let (U, R) be a generalized approxima-

tion space. 8A 2 FðUÞ; a 2 ð0:5; 1�; k 2 ½0; 1�: Then the

following results are clear.

0
AccuracyaðAÞ
 1; 0
RoughnessaðAÞ
 1:

Proposition 4.3 Let (U, R) be a generalized approxima-

tion space. 8A 2 FðUÞ; a 2 ð0:5; 1�; k 2 ½0; 1�: If there is

RaðAkÞ ¼ RaðAkÞ for any k 2 ½0; 1�: Then

AccuracyaðAÞ ¼ 1; and RoughnessaðAÞ ¼ 0:

Corollary 4.1 Let (U, R) be a generalized approximation

space. 8A 2 FðUÞ; a 2 ð0:5; 1�; k 2 ½0; 1�: If there exits one

k 2 ½0; 1� satisfies RaðAkÞ 6¼ RaðAkÞ: Then

RoughnessaðAÞ 6¼ 0 and AccuracyaðAÞ 6¼ 1:

Example 3 (Continued from Example 1) Let a ¼ 0:6: By

computing, we have that

Let a ¼ 0:7: By computing, we have that

So, Accuracy0:6ðAÞ 6¼ Accuracy0:7ðAÞ and

Roughness0:6ðAÞ 6¼ Roughness0:7ðAÞ:
Furthermore, there are

Accuracy0:6ðAÞ[Accuracy0:7ðAÞ and

Roughness0:6ðAÞ\Roughness0:7ðAÞ:
This verifies the conclusions of Proposition 4.1 well.

Accuracy0:6ðAÞ ¼
EðR0

0:4ðAÞÞ
EðR0

0:4ðAÞÞ

¼ 0� 1þ 0� 1þ 0� 1þ 0:5� 0:5þ 0� 1þ 0� 1

0:6� 0:4þ 0:6� 0:4þ 0:5� 0:5þ 0� 1þ 0:9� 0:1þ 0� 1
¼ 0:126:

Roughness0:6ðAÞ ¼1� Accuracy0:6ðAÞ ¼ 0:874:

Accuracy0:7ðAÞ ¼
EðR0

0:7ðAÞÞ
EðR0

0:7ðAÞÞ

¼ 0� 1þ 0� 1þ 0� 1þ 0:5� 0:5þ 0� 1þ 0� 1

0:6� 0:4þ 0:6� 0:4þ 0:5� 0:5þ 0:9� 0:1þ 0:9� 0:1þ 0:6� 0:4
¼ 0:097:

Roughness0:7ðAÞ ¼1� Accuracy0:7ðAÞ ¼ 0:903:
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5 Conclusion

In this paper, we propose a new rough set model named

variable precision rough fuzzy set based on general rela-

tions. We define the lower and upper approximations of

any fuzzy set and its level set on the generalized approxi-

mation space with variable precision parameter by using

the conditional probability between the fuzzy set (level-set

of the fuzzy set) and the neighborhood set of any element

x 2 U: In other words, we establish the variable precision

probabilistic rough fuzzy set based on general relations or

the probabilistic definition of variable precision rough

fuzzy set model based on general relations. Meanwhile, we

discuss the relationships between the established model

and the exiting rough set models in detail. Also, we

establish the relationship among of the variable precision

rough approximation of a fuzzy set and its level set. The

results show that the proposed model have extended the

related rough set model and also included the existing

models. Furthermore, we study the properties of the vari-

able precision rough fuzzy set model based on general

relations and we also compare the differences between the

proposed model and the related models. Finally, we give

new measurement for the accuracy and roughness of the

variable precision rough approximation in generalized

approximation space.

The proposed model in this paper gives a new per-

spective for investigating of the variable precision rough

fuzzy set. Like the classical fuzzy rough set, the variable

precision fuzzy rough set is also one of an important

models both in theoretical and practical of the rough set

theory. As far as the possible application of the proposed

model, the binary relation over the universe of discourse

and the idea of the definition for general relation-based

variable precision rough fuzzy set can describe the char-

acterization of uncertainty emergency decision-making

problems of unconventional emergency events. Then,

several interesting and valuable uncertainty decision-

making models will be established for emergency decision-

making by using the proposed approach in this paper. So,

the future research will focus on the further discussion of

the variable precision fuzzy rough set theory and its

applications in the decision-making of unconventional

emergency events with uncertainty.
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