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Abstract Extended grey numbers (EGNs), integrated

with discrete grey numbers and continuous grey numbers,

have a powerful capacity to express uncertainty and thus

have been widely studied and applied to solve multi-cri-

teria decision-making (MCDM) problems that involve

uncertainty. Considering stochastic MCDM problems with

interval probabilities, we propose a grey stochastic MCDM

approach based on regret theory and Technique for Order

Preference by Similarity to Ideal Solution (TOPSIS), in

which the criteria values are expressed as EGNs. We also

construct the utility value function, regret value function,

and perceived utility value function of EGNs, and we rank

the alternatives in accordance with classical TOPSIS

method. Finally, we provide two examples to illustrate the

method and make comparison analyses between the pro-

posed approach and existing methods. The comparisons

suggest that the proposed approach is feasible and usable,

and it provides a new method to solve stochastic MCDM

problems. It not only fully considers decision-makers’

bounded rationality for decision-making, but also enriches

and expands the application of regret theory.

Keywords Stochastic multi-criteria decision-making �
Extended grey number � Interval probability � Regret

theory � TOPSIS

1 Introduction

Decision-making is the process of identifying and choosing

alternatives based on the values and preferences of the

decision-makers. Because of the uncertainty and impreci-

sion of real-life decision problems, a variety of methods

have been proposed in the literature, such as multi-criteria

decision-making (MCDM) [11, 16, 27, 46] and uncertainty

decision-making [49–52]. MCDM is an important compo-

nent of decision theory and method research, which has

been studied and applied to many fields, including agri-

culture [11], medical care [9], economics [41], human

resources [30], and investment [60].

In traditional MCDM problems, a decision-maker uses

precise numbers to express his or her preferences. How-

ever, due to the increasing complexity and uncertainty of

MCDM problems, decision-makers are no longer able to

reduce decisions to finite, precise numbers. Instead, they

can provide a range of numbers, also called interval grey

numbers [7], to evaluate alternative decisions based on

uncertain information. For example, a decision-maker can

use the age range 18–25 to classify a person as a ‘‘youth’’.

In this instance, the interval age range may provide a better

representation than would a single year. Nevertheless, in

some cases interval grey numbers cannot fully depict the

information available in a discrete grey number. For

instance, if a decision-maker wants to choose a single value

from the choices 18, 20, and 25, the discrete grey number

f18; 20; 25g would be appropriate, whereas the interval

grey number ½18; 25� cannot accurately represent this

situation.

Liu [25] explained that discrete grey numbers can

coexist with interval grey numbers, and Yang [56] pro-

posed the use of extended grey numbers (EGNs), which

combine both intervals and discrete sets of numbers and
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can therefore express uncertainty in a more powerful way.

Suppose a company has two channels through which to add

investments: in one channel, stockholders add 1000 or

2000 dollars, and in the other channel the employees col-

lect 3000 to 4000 dollars. In this case, the EGN

f1000; 2000g [ ½3000; 4000� expresses the total invest-

ment, which neither the discrete grey number nor the

interval grey number do individually. Essentially, grey

numbers—including discrete grey numbers, interval grey

numbers, and EGNs—are the most basic concepts of grey

systems theory, and they are more flexible and practical in

dealing with problems involving uncertain information.

Since Deng [7, 8] first proposed grey systems theory, it

has been an excellent tool in researching grey MCDM

problems. At present, grey MCDM problems have been

widely studied and applied to various fields, such as

engineering design, economics, supply chain management,

and water source protection. Stanujkic [34] proposed an

extended multi-objective optimization on the basis of ratio

analysis (MOORA) method, in which the criteria values are

interval grey numbers. Wang et al. [47] defined the

expected probability degree and proposed a grey stochastic

MCDM method, in which criteria weights are incompletely

certain and alternatives’ criteria values take the form of

interval grey numbers. Su et al. [35] proposed a novel

hierarchical grey decision-making trial and evaluation

laboratory method to identify and analyze criteria values in

incomplete information. Chithambaranathan et al. [6]

integrated interval grey numbers with ELimination and

Choice Translating REality (ELECTRE) and VIsekriteri-

jumska optimizacija i KOmpromisno Resenje (VIKOR) to

evaluate the environmental performance of service supply

chains. Kuang et al. [17] integrated continuous grey num-

bers with linguistic expressions and proposed an approach

based on Preference Ranking Organization Method for

Enrichment Evaluation II (PROMETHEE II) for handling

uncertainty in MCDM. The aforementioned grey MCDM

problems generally express criteria values as interval grey

numbers. However, limited research has been conducted on

grey MCDM problems where criteria values are expressed

as EGNs.

In some practical MCDM problems, decision-makers

may find that the criteria values are random variables with

unknown probability density functions or probability mass

functions. These problems are called stochastic MCDM

problems, and they have extensive application backgrounds

[23, 27, 37, 48, 55]. Liu et al. [23] proposed a method

based on prospect theory to solve stochastic MCDM

problems with interval probability, in which criteria values

take the form of uncertain linguistic variables. Okul et al.

[27] proposed a method for addressing stochastic MCDM

problems by combining the Stochastic Multi-criteria

Acceptability Analysis (SMAA) and the Technique for

Order Preference by Similarity to Ideal Solution (TOPSIS)

method. Tan et al. [37] proposed another method based on

prospect stochastic dominance for solving discrete

stochastic MCDM problems with aspiration levels. Most

existing studies that solve stochastic MCDM problems use

real numbers as the criteria values, while only a few studies

use grey numbers. Owing to the increasing complexity and

uncertainty of decision problems, MCDM methods in

which criteria values are simultaneously random and grey

are increasingly used in the practical decision-making

process.

Currently available methods for solving MCDM prob-

lems can be classified into two categories: methods based

on complete rationality and methods based on bounded

rationality. Within these two categories, more specific

decision-making models and methods are based on the

rational choice model using Expected Utility Theory

(EUT). These can be further subdivided into three types as

follows. (1) The first subtype includes methods based on

distance measures, including TOPSIS [13] and VIKOR

[28]. The TOPSIS method determines the solution with the

shortest distance from the ideal solution and the farthest

distance from the negative-ideal solution; it possesses the

merits of robust logical structure and simple computation

procedure as well as the ability to consider the ideal and

negative-ideal solution simultaneously [16]. The VIKOR

method provides the maximum group utility of the majority

and the minimum of the individual regret of the opponent;

its calculations are simple and straightforward. (2) The

second subtype of methods includes those based on

aggregation operators, such as the arithmetic aggregation

operator [22], the geometric aggregation operator [22], the

Heronian mean (HM) operator [24, 57], the Prioritized

Average (PA) operator [45, 53], the Bonferroni mean

operator [3, 38, 39], and the Choquet integral operator [36,

44]. These aggregation operators, which provide a com-

prehensive evaluation value for each alternative, are widely

used in solving MCDM problems. However, the calcula-

tions involved are complex, and different operators con-

sistently produce different ranking results. (3) The third

subtype of methods is based on outranking relation models

such as ELECTRE [32, 42] and PROMETHEE [4]. The

ELECTRE method considers the minimum individual

regret, while the PROMETHEE method focuses on the

maximum group utility.

In the aforementioned MCDM methods based on com-

plete rationality, the decision-makers are fully rational

when evaluating the given alternatives. That is to say, their

information is complete, their cognition is infinite, and they

have sufficient time. However, during the real-life deci-

sion-making process, decision-makers’ rationality is lim-

ited by the information they are given, their personal

cognitive limitations, and the amount of time provided for
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them to make the decision. As a result, their real-life

behaviors usually depart from the predictions using EUT.

Furthermore, various contradictions to EUT have been

identified, such as the Allias paradox [1] and the Ellsberg

paradox [10]. Responding to the fact that people only have

limited rationality in a decision-making process, Simon

[33] considered and proposed the bounded rationality

principle. Ever since Simon’s [33] pioneer work in the

field, the concept of bounded rationality has been

increasingly emphasized in MCDM methods [14, 43]. The

most commonly used decision-making methods that are

based on bounded rationality are prospect theory [15, 40]

and regret theory [2, 26]. Both of these theories are

designed to preserve the basic structure of EUT, but they

also account for behaviors not predicted by EUT [18]. For

example, in prospect theory, researchers use value and

probability weight, respectively, to replace utility and

probability in EUT. In regret theory, researchers compare

the obtained outcome with the outcome that could have

been obtained had the decision-maker chosen a different

option to introduce a correction to change the utility

assessment.

In prospect theory, alternatives are evaluated by differ-

ent functions in terms of gains and losses with respect to

one or more reference points. The calculation functions

contain five parameters, a; b; h; c and d, which depend on

the psychological behavior of the decision-makers and are

therefore difficult to determine. a and b are the concave-

convex degree of the region power function of the gains

and losses, h shows that the region value power function is

steeper for losses than for gains, c is the risk gain attitude

coefficient, and d is the risk loss attitude coefficient. Unlike

prospect theory, regret theory does not need to specify a

reference point; furthermore, the calculation functions only

contain two parameters, the risk aversion coefficient and

the regret aversion coefficient, resulting in more extensive

applications. The regret reflects the difference in decision-

makers’ positions by choosing one of the unselected

alternatives instead of the selected alternative. Rejoice

reflects the additional pleasure gained from knowing that

the best alternative was selected.

Many studies have focused on regret theory because of

its descriptive power. Özerol et al. [29] investigated the

findings of regret theory and explored the parallel between

regret theory and the PROMETHEE II method. Zhang

et al. [58] proposed a decision analysis method based on

regret theory to solve stochastic MCDM problems in which

both the criteria values and probabilities of the states take

the form of interval numbers. Zhang et al. [59] considered

the regret aversion characteristic of decision-makers’ psy-

chological behavior and proposed a method for dealing

with stochastic MCDM problems. However, few attempts

have been made to apply regret theory to solving grey

stochastic MCDM problems.

As a result, this paper proposes a stochastic MCDM

method using regret theory, in which criteria values take

the form of EGNs. For simplicity, the classical TOPSIS

method is combined with the aforementioned grey

stochastic MCDM method. Other methods may be substi-

tuted and studied in the future. In the proposed method, the

utility value function and regret value function of EGNs are

constructed, and then the perceived utility value is obtained

by calculating the sum of the utility value and regret value

for the given criteria. By using the function of interval

probability, the overall perceived utility of alternatives is

calculated in the form of interval grey numbers. Based on

the TOPSIS method, all alternatives are ranked according

to their relative closeness. The contributions and benefits of

the proposed method include (1) applying EGNs to eval-

uate the incomplete information, (2) modeling the decision

problem while considering the decision-makers’ regret and

rejoice values, and (3) combining regret theory with the

TOPSIS method to solve grey stochastic MCDM problems.

This paper is organized as follows: Sect. 2 reviews key

concepts, including interval probability, grey numbers and

EGNs, grey random variables, and regret theory. Section 3

focuses on the grey stochastic MCDM approach based on

regret theory and TOPSIS, with criteria values taking the

form of EGNs. Section 4 provides two specific examples

and compares our experimental results with results from the

existing methods. Finally, Sect. 5 discusses conclusions.

2 Preliminaries

This section reviews the concepts of interval probability,

grey numbers and EGNs, grey random variables, and regret

theory.

2.1 Interval probability

Consider a variable x taking its values in a finite set

X ¼ fx1; x2; . . .; xng and a set of intervals ½Li;Ui� ði ¼
1; 2; . . .; nÞ satisfying 0� Li �Ui � 1 ði ¼ 1; 2; . . .; nÞ. We

can interpret these intervals as interval probability.

Definition 1 [12]: A set of intervals ½Li;Ui� ði ¼
1; 2; . . .; nÞ with 0� Li �Ui � 1 ði ¼ 1; 2; . . .; nÞ that

describe the probability of a fundamental event is called a

n-dimensional probability interval ðn� PRIÞ. Let L ¼
ðL1; L2; . . .; LnÞ and U ¼ ðU1;U2; . . .;UnÞ, then n� PRI

can be denoted as n� PRIðL;UÞ.

Definition 2 [12]: Let p1; p2; . . .; pn be a group of posi-

tive real numbers. If Li � pi �Ui ði ¼ 1; 2; . . .; nÞ and
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Pn
i¼1 pi ¼ 1, then n� PRIðL;UÞ is reasonable. Otherwise,

n� PRIðL;UÞ is unreasonable.

Lemma 1 [54]: A n� PRIðL;UÞ is reasonable, iff
Pn

i¼1 Li � 1�
Pn

i¼1 Ui.

Definition 3 [54]: If a n� PRIðL;UÞ is reasonable, the

probability intervals ½Li;Ui�ði ¼ 1; 2; . . .; nÞ can be trans-

formed into more precise probability intervals

½Li;Ui�ði ¼ 1; 2; . . .; nÞ. The formulae are given as follows:

Li ¼ max Li; 1 �
Xn

j¼1;j 6¼i

Uj

 !

;

Ui ¼ min Ui; 1 �
Xn

j¼1;j6¼i

Lj

 !

:

2.2 Grey numbers and extended grey numbers

A grey number is an uncertain number, which is usually

represented as closed intervals and used to describe

insufficient and incomplete information.

Definition 4 [25]: A grey number is a number with clear

upper and lower boundaries but has an unknown position within

these boundaries, the mathematical expression of which is

~� ¼ ½a; b�: ð1Þ

Here, ~� is a grey number, and a and b are the upper and

lower limits of the given information, a; b 2 R. A grey

number represents the range of the possible variance of the

underlying number, which is the same as an interval value

with the same upper and lower limit. Thus, it can also be

called an interval grey number.

Definition 5 [19]: Let ~�1 2 ½a; b� and ~�2 2 ½c; d� be two

interval grey numbers, and let lð ~�1Þ ¼ b� a and lð ~�2Þ ¼
d � c be the lengths of the interval grey numbers, respec-

tively. In this case, the expected probability degree of ~�1

against ~�2 is defined as follows:

Pð ~�1 � ~�2Þ ¼ max 1 � max
d � a

lð ~�1Þ þ lð ~�2Þ
; 0

� �

; 0

� �

:

ð2Þ

Definition 6 [19]: The relationship between ~�1 and ~�2

can be determined as follows:

(1) If Pð ~�1 � ~�2Þ\0:5, then ~�1 is less than ~�2, which

can be denoted as ~�1\ ~�2.

(2) If Pð ~�1 � ~�2Þ ¼ 0:5, then ~�1 is equal to ~�2, which

can be denoted as ~�1 ¼ ~�2.

(3) If Pð ~�1 � ~�2Þ[ 0:5, then ~�1 is larger than ~�2,

which can be denoted as ~�1 [ ~�2.

Definition 7 [21]: Let ~�1 2 ½a; b� and ~�2 2 ½c; d� be two

interval grey numbers. The Euclidean distance between ~�1

and ~�2 can be calculated as follows:

d ~�1; ~�2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
a� cð Þ2þ b� dð Þ2

h ir

: ð3Þ

Grey numbers are usually represented as closed

intervals, but continuous intervals cannot fully reveal

the uncertainty of the given information. In light of this,

Yang [56] provided a new definition of grey numbers

that considers both continuous and discrete grey

numbers.

Definition 8 [56]: Let � be a union set of closed or open

intervals. An EGN can be represented as follows:

� ¼
[n

i¼1

½ai; bi�: ð4Þ

Here, i ¼ 1; 2; . . .; n, n is an integer, and 0\n\1,

ai; bi 2 R and bi�1\ai � bi\aiþ1. The set of all EGNs that

meet Eq. (4) is represented as Rð�Þ.

Theorem 1: Let � be an EGN. The following properties

are true:

(1) � is a continuous EGN � ¼ ½a1; bn� iff ai � bi�1

(8i[ 1) or n ¼ 1;

(2) � is a discrete EGN � ¼ fa1; a2; � � � ; ang iff ai ¼ bi;

(3) � is a mix EGN iff only part of its intervals shrink to

crisp numbers and the others remain as intervals.

Definition 9 [56]: Let �1 ¼
Sn

i¼1 ½ai; bi� and �2 ¼
Sm

j¼1 ½cj; dj� be two EGNs, ai � biði ¼ 1; 2; . . .; nÞ,
cj � djðj ¼ 1; 2; . . .;mÞ, k 2 R; k� 0, then:

(1) �1 þ�2 ¼
Sn

i¼1

Sm
j¼1 ½ai þ cj; bi þ dj�;

(2) ��1 ¼
Sn

i¼1 ½�bi;�ai�;
(3) �1 ��2 ¼

Sn
i¼1

Sm
j¼1 ½ai � dj; bi � cj�;

(4) �1 ��2 ¼
Sn

i¼1

Sm
j¼1 ½minfaicj; aidj; bicj; bidjg;

maxfaicj; aidj; bicj; bidjg�;
(5) �1

�2
¼
Sn

i¼1

Sm
j¼1 ½minfai

cj
; ai
dj
; bi
cj
; bi
dj
g;maxfai

cj
; ai
dj
; bi
cj
; bi
dj
g�

ðcj 6¼ 0; dj 6¼ 0ðj ¼ 1; 2; . . .;mÞÞ;
(6) k�1 ¼

Sn
i¼1 ½kai; kbi�;

(7) �k
1 ¼

Sn
i¼1 ½minðaki ; bki Þ;maxðaki ; bki Þ�:

The expected probability degree of EGNs is provided,

inspired by the expected probability degree of the grey

numbers.
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Definition 10: Let �1 ¼
Sn

i¼1 ½ai; bi� and �2 ¼
Sm

j¼1 ½cj; dj� be two EGNs, �1;�2 2 Rð�Þ. The expected

probability degree of �1 against �2 is defined as follows:

Pð�1 ��2Þ ¼
1

n� m

Xn

i¼1

Xm

j¼1

P ½ai; bi� � ½cj; dj�
� �

: ð5Þ

Definition 11: Let �1 ¼
Sn

i¼1 ½ai; bi� and �2 ¼
Sm

j¼1 ½cj; dj� be any two EGNs, �1;�2 2 Rð�Þ. The order

relationship between these EGNs is defined as follows:

(1) If Pð�1 ��2Þ\0:5, then �1 is less than �2, which

can be denoted as �1\�2.

(2) If Pð�1 ��2Þ ¼ 0:5, then �1 is equal to �2, which

can be denoted as �1 ¼ �2.

(3) If Pð�1 ��2Þ[ 0:5, then �1 is larger than �2,

which can be denoted as �1 [�2.

2.3 Grey random variables

Discrete grey random variables, called grey random vari-

ables in this paper, are a group of random variables made

up of a finite set of EGNs. A grey random variable is

denoted as nð�Þ, and the probability distribution of nð�Þ is

shown in Table 1.

In Table 1, �i is the ith value that would be taken by

nð�Þ, while n is the number of values that a grey random

variable can have. pi is the probability with respect to �i,

and
Pn

i¼1 pi ¼ 1. The probability distribution function can

be denoted as f ðnð�Þ ¼ �iÞ ¼ pi.

2.4 Regret theory

Loomes and Sugden [26] and Bell [2] introduced regret

theory separately. They defined regret as a reflection of the

difference in a decision-maker’s position resulting from

choosing one of the unselected alternatives instead of the

selected alternative. They defined rejoice as a reflection of

the additional pleasure gained from knowing that the best

alternative was selected.

In regret theory, these authors developed a modified

utility function to measure the expected value of satisfac-

tion derived from choosing alternative A and rejecting

alternative B. Let x and y be the consequence of choosing

alternative A and B, respectively, then the modified utility

function of achieving x can be denoted as

uðx; yÞ ¼ vðxÞ þ R vðxÞ � vðyÞð Þ: ð6Þ

Here, vðxÞ represents the utility value that the decision-

maker would derive from consequence A if he experiences

it without having to choose. R vðxÞ � vðyÞð Þ indicates the

regret-rejoice value, and the difference vðxÞ � vðyÞ is the

loss/gain value of having chosen A rather than the forgone

choice B. The regret-rejoice function Rð�Þ is monotonically

increasing and decreasingly concave, with R0ð�Þ[ 0,

R00ð�Þ\0 and Rð0Þ ¼ 0.

The regret theory was initially derived for pair-wise

choices, and since then it has been extended to general

choice sets [31]. Let x1; x2; . . .; xm be the consequence of

choosing alternatives A1;A2;. . .;Am, respectively. Ai is the

ith alternative, and xi is the consequence of Ai. The mod-

ified utility function of achieving xi can be denoted as

ui ¼ vðxiÞ þ R vðxiÞ � vðx	Þð Þ: ð7Þ

Here, x	 ¼ maxfxi i ¼ 1; 2; . . .;mj g. R vðxiÞ � vðx	Þð Þ
indicates the regret value, which is always non-positive.

Rational decision-makers choose the optimal alternative by

maximizing their expected modified utility of all possible

alternatives.

3 Grey stochastic MCDM approach based
on regret theory and TOPSIS

This section introduces the grey stochastic MCDM

approach based on regret theory and TOPSIS.

3.1 Description of the decision-making problem

Consider the following grey stochastic MCDM problem:

assume that A ¼ fa1; a2; . . .; amg is a discrete alternative

set of m possible alternatives, and that C ¼ fc1; c2; . . .; cng
is a set of n criteria. The weighted vector of the criteria is

W ¼ ðw1;w2; . . .;wnÞ, where wj 2 ½0; 1� and
Pn

j¼1 wj ¼ 1.

Due to the uncertainty of the decision-making environ-

ment, the alternatives would have some possible status. Let

Hj ¼ ðh1; h2; . . .; hljÞ be the possible status belonging to the

criterion cj, and let ptj ¼ ½pLtj ; pUtj � be the interval probability

of the status ht ð1� t� ljÞ that belongs to the criterion cj,

where 0� pLtj � pUtj � 1,
Plj

t¼1 p
Lt
j � 1 and

Plj
t¼1 p

Ut
j � 1.

Suppose that the characteristics of the alternative ai with

respect to cj are represented by the EGN �uij, the t-th

status of which is denoted as �utij ¼
Sl

k¼1 ½atijk; btijk�, and

atij1 � btij1\atij2 � btij2\ � � �\atijl � btijl. The grey stochastic

decision matrix can be represented as Rt ¼ �utij

	 


m�n
. We

are then able to rank the alternatives according to the

presented information.

Table 1 The probability distribution of nð�Þ

nð�Þ �1 �2 . . . �i . . . �n

p p1 p2 . . . pi . . . pn
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3.2 Decision-making procedure

For the aforementioned grey stochastic MCDM problem,

the solving procedure can be summarized as follows.

Step 1: Normalize the decision matrix.

In order to eliminate the influence of different

dimensions of physical quantity, the decision

matrix needs to be normalized so as to

transform the various criteria values into

comparable values. The criteria are normally

classified into two types: criteria of the

maximizing type and criteria of the minimiz-

ing type. If the criteria are of the maximizing

type, the transforming formula is as follows:

rtij ¼
�utij

b
tðmaxÞ
ijk

¼
[l

k¼1

atijk

b
tðmaxÞ
ijk

;
btijk

b
tðmaxÞ
ijk

" #

: ð8Þ

Here, b
tðmaxÞ
ijk ¼ max1� k� l;1� i�m btijk.

If the criteria are of the minimizing type, the

formula is as follows:

rtij ¼
a
tðminÞ
ijk

�utij
¼
[l

k¼1

a
tðminÞ
ijk

btijk
;
a
tðminÞ
ijk

atijk

" #

: ð9Þ

Here, a
tðminÞ
ijk ¼ min1� k� l;1� i�m atijk.

The normalized decision matrix is denoted by

Nt ¼ rtij

	 


m�n
, where rtij ¼

Sl
k¼1 ½rtijk; rtijk�.

Step 2: Identify the ideal point.

Identify the ideal point I ¼ ðIþ1 ; Iþ2 ; . . .; Iþn Þ.
Let Iþj ¼ ðr1þ

j ; r2þ
j ; . . .; r

ljþ
j Þ be the ideal point

related to criterion cj, and 1� t� lj; then

rtþj ¼ ½rtþj ; rtþj � can be calculated according to

the following formula:

rtþj ¼ rtþj

¼ maxfrtijk 1� i�m; 1� j� n; 1� t� lj
�
� ; 1� k� lg:

ð10Þ

Step 3 Calculate the utility values and regret values

concerning the criteria.

(a) The utility function should be built

before calculating the criteria’s utility

values. Due to the decision-maker’s

risk aversion, the utility function vðxÞ is

monotonically increasing concave, with

v0ðxÞ[ 0 and v00ðxÞ\0. Here, the

power function is used as the criteria

value of the utility function.

vðxÞ ¼ xa; ð11Þ

where a is the coefficient of risk aver-

sion and 0\a\1. If parameter a is

smaller, the decision-maker’s risk

aversion is greater.

For the criteria value

rtij ¼
Sl

k¼1 ½rtijk; rtijk�, the actual criteria

value x is in the range of
Sl

k¼1 ½rtijk; rtijk�
and subject to various kinds of distri-

bution [58]. Let f tijðxÞ be the probability

density function, then the utility value

vtij can be calculated with the following

formula:

vtij ¼
1

l

Xl

k¼1

Z rtijk

rt
ijk

vðxÞf tijkðxÞdx;

1� i�m; 1� j� n; 1� t� lj; 1� k� l:

ð12Þ

Here, two kinds of distribution are

taken into consideration.

(1) Uniform distribution

Uniform distribution is one of the most

common distributions. For a grey ran-

dom variable x following uniform dis-

tribution, the probability density

function is

(2) Normal distribution

Normal distribution is extremely

important in statistics and is often used

in the natural and social sciences for

f tijkðxÞ ¼
1

rtijk � rtijk
; rtijk � x� rtijk

0; otherwise

8
<

:
1� i�m; 1� j� n; 1� t� lj; 1� k� l: ð13Þ
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real-valued random variables with

unknown distributions [5]. For a grey

random variable x following normal

distribution, the probability density

function is:

Here, the mean value is

ltijk ¼ ðrtijk þ rtijkÞ=2, and the standard

deviation is rtijk ¼ ðrtijk � rtijkÞ=6:

(b) The regret-rejoice function RðDvÞ is

constructed to determine the regret

values concerning the criteria; it is

monotonically increasing and decreas-

ingly concave with R0ð�Þ[ 0, R00ð�Þ\0

and Rð0Þ ¼ 0. RðDvÞ can be repre-

sented as follows:

RðDvÞ ¼ 1 � expð�dDvÞ: ð15Þ

Here, d is the regret aversion coeffi-

cient, and d[ 0. If the value of d is

larger, then the decision-maker tends

toward regret aversion. Dv represents

the difference between the utility values

of two alternatives. When RðDvÞ[ 0,

RðDvÞ represents the rejoice value;

conversely, RðDvÞ represents the regret

value when RðDvÞ\0.

Compared with the ideal point, the

regret value of alternative ai with

respect to cj under the t-th status can be

calculated as follows:

Rt
ij ¼ 1 � exp �d vtij � vtþj

	 
h i
;

1� i�m; 1� j� n; 1� t� lj:
ð16Þ

Here, vtþj ¼
R rtþj
rtþ
j

vðxÞf tþj ðxÞdx ¼ rtþj

	 
a

and vtij � vtþj ; thus Rt
ij � 0, and Rt

ij rep-

resent the regret values.

Step 4: Calculate the overall perceived utility values

of alternatives.

The perceived utility values of alternatives

can be calculated on the basis of Step 3. These

represent the sum of the utility value and

regret value of the alternatives. Let utij be the

perceived utility value of alternative ai with

respect to cj under the t-th status, then

utij ¼ vtij þ Rt
ij; 1� i�m; 1� j� n; 1� t� lj:

ð17Þ

The overall perceived utility value of alter-

native ai with respect to cj can be calculated

as follows:

uij ¼
Xlj

t¼1

utijp
t
j: ð18Þ

Here, �ptj is the more precise interval proba-

bility, which can be calculated by

�pLtj ¼ max pLtj ; 1 �
Xlj

t0¼1;t0 6¼t
pUtj

	 

; ð19Þ

�pUtj ¼ min pUtj ; 1 �
Xlj

t0¼1;t0 6¼t

pLtj

 !

: ð20Þ

The overall perceived utility matrix is denoted

by U ¼ ðuijÞm�n, where uij ¼ ½uij; uij�.
Step 5: Prioritize the alternatives according to the

overall perceived utility intervals.

Identify the positive ideal solution Uþ and the

negative ideal solution U� of the overall

perceived utility intervals as follows:

Uþ ¼ ðuþ1 ; uþ2 ; . . .; uþmÞ;
U� ¼ ðu�1 ; u�2 ; . . .; u�mÞ:

The ideal solutions are chosen according to

the following formula:

uþj ¼ max
m

i¼1
uij; 1� i�m; 1� j� n; ð21Þ

u�j ¼ min
m

i¼1
uij; 1� i�m; 1� j� n: ð22Þ

Using Eq. (3), calculate the distances between

each overall perceived utility interval and

both the positive ideal solution dþi and the

negative ideal solution d�i .

f tijkðxÞ ¼
1
ffiffiffiffiffiffi
2p

p
rtijk

exp �ðx� ltijkÞ
2.

2ðrtijkÞ
2

� 

; rtijk � x� rtijk

0; otherwise

8
<

:
1� i�m; 1� j� n; 1� t� lj; 1� k� l: ð14Þ
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dþi ¼
Xm

j¼1

wjdðuij; uþj Þ; ð23Þ

d�i ¼
Xm

j¼1

wjdðuij; u�j Þ: ð24Þ

Then, estimate the relative closeness with the

following formula:

Ci ¼
d�i

d�i þ dþi
: ð25Þ

The bigger Ci is, the better ai will be.

4 Illustrative examples

This section uses two examples to perform a detailed and

precise demonstration of the proposed approach. The first

example shows the use of the proposed approach with

interval grey numbers, which can be considered a special

case of EGNs. The second example demonstrates the

application of the proposed approach with general EGNs.

In addition to validating the effectiveness of the proposed

method, we also perform comparison analyses.

4.1 Illustration of the proposed approach

To demonstrate the use of the proposed approach with

interval grey numbers, consider the problem of evaluating

companies for investment decisions [20].

Example 1 An investment bank is planning to invest in

three companies denoted as A ¼ fa1; a2; a3g. Three criteria

are taken into account: c1, annual product income; c2,

social benefit; and c3, environmental pollution degree. The

criteria’s weights vector is denoted as W ¼ ð0:1; 0:2; 0:7Þ.
All three companies have three possible statuses: good, h1;

fair, h2; and poor, h3. The probability of each status is

expressed as an interval probability, the values of which

are P1 ¼ ½0:3; 0:5�, P2 ¼ ½0:4; 0:9�, and P3 ¼ ½0:1; 0:5�. The

criteria value of each alternative takes the form of interval

grey numbers, and the grey random variable is subject to

normal distribution. Table 2 lists the associated assessment

values. It is possible to choose the best alternative

according to the information provided.

The following procedure yields the most desirable

alternative.

Step 1: Normalize the decision matrix.

In Example 1, c1 and c2 are of the maximizing

type, while c3 is of the minimizing type.

Applying Eqs. (8) and (9) yields the normal-

ized decision matrix, as shown in Table 3.

Step 2: Identify the ideal point.

Applying Eq. (10) to the data shown in

Table 3 yields the absolute ideal point I¼
ðIþ1 ; Iþ2 ; . . .;Iþn Þ. Here, Iþj ¼ðr1þ

j ;r2þ
j ; . . .;r

ljþ
j Þ,

and rtþj ¼ ½rtþj ;rtþj � ¼ ½1;1� ð1� j�n;1� t� ljÞ.
Step 3: Calculate the utility values and regret values

concerning the criteria.

Calculating the utility values and regret values

concerning the criteria requires consideration

of two parameters, namely the risk aversion

coefficient and the regret aversion coefficient.

According to Tversky and Kahneman [40],

the coefficient of risk aversion is a ¼ 0:88.

Assume the regret aversion coefficient is

d ¼ 0:3; other values of d will be discussed

later. The utility values and regret values

concerning the criteria can be determined

using Eqs. (11), (12), (14), and (16). For

example, v1
11 ¼ 0:860, R1

11 ¼ �0:043,

v1
21 ¼ 0:982, and R1

21 ¼ �0:005. All criteria

values are compared with the absolute ideal

point, so the regret values concerning the

criteria are non-positive.

Table 2 Assessment values of alternatives under each criterion

C a1 a2 a3

c1 h1

h2

h3

½2:4; 2:5�
½3:5; 3:6�
½3:0; 3:4�

½2:8; 2:9�
½3:3; 3:4�
½3:1; 3:2�

½2:5; 2:7�
½2:9; 3:0�
½2:8; 2:9�

c2 h1

h2

h3

½3:1; 3:3�
½3:7; 4:0�
½2:9; 3:1�

½3:5; 3:7�
½3:3; 3:6�
½3:5; 3:9�

½3:3; 3:5�
½2:4; 3:0�
½2:7; 3:0�

c3 h1

h2

h3

½0:6; 0:75�
½0:4; 0:7�
½0:25; 0:4�

½0:4; 0:55�
½0:3; 0:4�
½0:6; 0:8�

½0:5; 0:65�
½0:2; 0:3�
½0:3; 0:5�

Table 3 The normalized decision matrix

C a1 a2 a3

c1 h1

h2

h3

½0:828; 0:862�
½0:972; 1:000�
½0:882; 1:000�

½0:966; 1:000�
½0:917; 0:944�
½0:912; 0:941�

½0:862; 0:931�
½0:806; 0:835�
½0:824; 0:853�

c2 h1

h2

h3

½0:838; 0:892�
½0:925; 1:000�
½0:744; 0:795�

½0:946; 1:000�
½0:825; 0:900�
½0:897; 1:000�

½0:892; 0:946�
½0:600; 0:750�
½0:692; 0:769�

c3 h1

h2

h3

½0:533; 0:667�
½0:286; 0:500�
½0:625; 1:000�

½0:727; 1:000�
½0:500; 0:667�
½0:313; 0:417�

½0:615; 0:800�
½0:667; 1:000�
½0:500; 0:833�
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Step 4: Calculate the overall perceived utility values

of alternatives.

By applying Eq. (17), the utility values and

regret values calculated above can be added to

get the perceived utility values for the alter-

natives, which are shown in Table 4.

More precise interval probabilities can be

found using Eqs. (19) and (20), with the

results p1 ¼ ½0:3; 0:5�, p2 ¼ ½0:4; 0:6�, and

p3 ¼ ½0:1; 0:3�. Table 5 shows the overall

perceived utility values calculated using

Eq. (18).

Step 5: Prioritize the alternatives according to the

overall perceived utility intervals.

First, identify the positive ideal solution Uþ

and the negative ideal solution U� of the

overall perceived utility intervals:

uþ1 ¼ ½0:751; 1:312�; uþ2 ¼ ½0:719; 1:267�;
uþ3 ¼ ½0:577; 0:989�;

u�1 ¼ ½0:659; 1:154�; u�2 ¼ ½0:584; 1:024�;
u�3 ¼ ½0:336; 0:647�:

Next, calculate the distances between each

overall perceived utility interval and both the

positive ideal solution dþi and the negative

ideal solution d�i using Eqs. (23) and (24):

dþ1 ¼ 0:218; dþ2 ¼ 0:113; dþ3 ¼ 0:052;

d�1 ¼ 0:042; d�2 ¼ 0:148; d�3 ¼ 0:207:

Finally, apply Eq. (25) to obtain the relative

closeness:

C1 ¼ 0:160; C2 ¼ 0:567; C3 ¼ 0:799:

C3 [C2 [C1 thus determining that the best

alternative is a3.

The value of coefficient d reflects the degree

of the decision-makers’ regret aversion.

Table 6 shows the relative closeness and

ranking results using different d values.

Table 6 shows that the ranking results remain

the same when different d values are used.

However, in some cases the ranking results

may change as the d value changes.

Example 2 Assume the assessment values of the alter-

natives under each criterion in Example 1 take the form of

general EGNs, and the grey random variable is subject to

uniform distribution. The associated assessment values are

shown in Table 7.

The following procedure will yield the most desirable

alternative.

Step 1: Normalize the decision matrix.

In Example 2, c1 and c2 are of the maximizing

type, while c3 is of the minimizing type.

Applying Eqs. (8) and (9) yields the normal-

ized decision matrix, as shown in Table 8.

Step 2: Identify the ideal point.

The absolute ideal point I ¼ ðIþ1 ; Iþ2 ; . . .; Iþn Þ
can be obtained from the data shown in

Table 8 by applying Eq. (10). Here, Iþj ¼
ðr1þ

j ; r2þ
j ; . . .; r

ljþ
j Þ and rtþj ¼ ½rtþj ; rtþj � ¼

½1; 1� ð1� j� n; 1� t� ljÞ.
Step 3: Calculate the utility values and regret values

concerning the criteria.

The parameters used in this example are again

a ¼ 0:88 and d ¼ 0:3. The utility values and

regret values concerning the criteria can be

obtained using Eqs. (11), (12), (13), and (16).

For example, v1
11 ¼ 0:807, R1

11 ¼ �0:060,

v1
21 ¼ 0:752, and R1

21 ¼ �0:078. All the cri-

teria values are compared with the absolute

Table 4 The perceived utility

values matrix
C a1 a2 a3

c1 h1

h2

h3

0:817

0:981

0:929

0:977

0:917

0:913

0:878

0:787

0:810

c2 h1

h2

h3

0:841

0:954

0:728

0:966

0:838

0:938

0:903

0:613

0:681

c3 h1

h2

h3

0:521

0:255

0:778

0:839

0:501

0:217

0:653

0:804

0:603

Table 5 The overall perceived utility values matrix

a1 a2 a3

c1 ½0:730; 1:276� ½0:751; 1:312� ½0:659; 1:154�
c2 ½0:707; 1:211� ½0:719; 1:267� ½0:584; 1:024�
c3 ½0:336; 0:647� ½0:473; 0:785� ½0:577; 0:989�

Table 6 The relative closeness and ranking results using different d
values

C1 C2 C3 Ranking results

d ¼ 0:1 0:1658 0:5688 0:7975 a3 [ a2 [ a1

d ¼ 0:2 0:1632 0:5690 0:7977 a3 [ a2 [ a1

d ¼ 0:3 0:1603 0:5671 0:7986 a3 [ a2 [ a1

d ¼ 0:4 0:1581 0:5658 0:8012 a3 [ a2 [ a1
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ideal point, so the regret values concerning

the criteria are non-positive.

Step 4: Calculate the overall perceived utility values

of alternatives.

The utility values and regret values can be

calculated using Eq. (17), and then added to

get the perceived utility values of alternatives,

which are shown in Table 9.

Similar to Example 1, the more precise

interval probabilities are p1 ¼ ½0:3; 0:5�,
p2 ¼ ½0:4; 0:6�, and p3 ¼ ½0:1; 0:3�. The over-

all perceived utility values are calculated

using Eq. (18), as shown in Table 10.

Step 5 Prioritize the alternatives according to the

overall perceived utility intervals.

First, identify the positive ideal solution Uþ

and the negative ideal solution U� of the

overall perceived utility intervals as follows:

uþ1 ¼ ½0:716; 1:251�; uþ2 ¼ ½0:737; 1:288�;
uþ3 ¼ ½0:238; 0:450�;

u�1 ¼ ½0:566; 1:005�; u�2 ¼ ½0:530; 0:953�;
u�3 ¼ ½0:118; 0:253�:

Next, calculate the distances between each

overall perceived utility interval to both the

positive ideal solution dþi and the negative

ideal solution d�i using Eqs. (23) and (24):

dþ1 ¼ 0:057; dþ2 ¼ 0:135; dþ3 ¼ 0:056;

d�1 ¼ 0:138; d�2 ¼ 0:056; d�3 ¼ 0:135:

Finally, apply Eq. (25) to obtain the relative

closeness:

C0
1 ¼ 0:708; C0

2 ¼ 0:293; C0
3 ¼ 0:707:

C0
1 [C0

3 [C0
2, thus the best alternative is a01.

Table 11 shows the relative closeness and

ranking results using different d values.

Table 11 shows that the ranking of a02 is cer-

tain, but whether a01 or a03 is the better alter-

native depends on the d value. When d ¼ 0:1,

a03 is superior to a01, but the situation reverses

when d� 0:2. This shows that the decision-

makers’ regret aversion exerts an impact on

the ranking of the alternatives.

4.2 Comparison analysis and discussion

A comparison analysis is performed to verify the validity

and feasibility of the proposed decision-making method.

The first type of method uses the prospect theory and

Table 7 Assessment values of

alternatives under each criterion
C a01 a02 a03

c1 h1

h2

h3

f2:7g [ ½3:0; 3:2�
f3:0g [ ½3:3; 3:5�
f2:8g [ ½3:0; 3:2�

f2:5g [ ½2:7; 3:0�
f2:1g [ ½3:1; 3:3�
f2:7g [ ½3:1; 3:3�

f3:1g [ ½3:4; 3:7�
½2:9; 3:0� [ f3:5g
f2:9g [ ½3:3; 3:5�

c2 h1

h2

h3

f2:8g [ ½3:5; 4:0�
½3:7; 4:0� [ ½4:1; 4:4�
½3:3; 3:8� [ f4:0g

½3:5; 3:9� [ ½4:4; 4:5�
½3:7; 3:9� [ ½4:4; 4:5�
½3:8; 4:1� [ f4:3g

f2:8g [ ½3:3; 3:5�
½2:6; 3:1� [ ½3:3; 3:5�
½3:2; 3:7� [ ½4:2; 4:5�

c3 h1

h2

h3

½0:25; 0:4� [ ½0:6; 1:0�
½0:1; 0:25� [ ½0:5; 0:6�
½0:4; 0:6� [ f0:75g

½0:4; 0:5� [ ½0:6; 0:75�
½0:3; 0:4� [ ½0:6; 0:75�
½0:25; 0:4� [ f0:5g

½0:2; 0:3� [ ½0:4; 0:6�
½0:25; 0:4� [ f0:5g
½0:2; 0:4� [ ½0:6; 0:65�

Table 8 The normalized decision matrix

C a01 a02 a03

c1 h1

h2

h3

f0:730g [ ½0:811; 0:865�
f0:857g [ ½0:943; 1:000�
f0:800g [ ½0:857; 0:914�

f0:676g [ ½0:730; 0:811�
f0:600g [ ½0:886; 0:914�
f0:771g [ ½0:886; 0:943�

f0:838g [ ½0:919; 1:000�
½0:829; 0:857� [ f1:000g
f0:829g [ ½0:943; 1:000�

c2 h1

h2

h3

f0:622g [ ½0:778; 0:889�
½0:822; 0:889� [ ½0:911; 0:978�
½0:733; 0:844� [ f0:889g

½0:778; 0:867� [ ½0:978; 1:000�
½0:822; 0:867� [ ½0:978; 1:000�
½0:844; 0:911� [ f0:956g

f0:622g [ ½0:733; 0:778�
½0:578; 0:689� [ ½0:733; 0:778�
½0:711; 0:822� [ ½0:933; 1:000�

c3 h1

h2

h3

½0:200; 0:333� [ ½0:500; 0:800�
½0:167; 0:200� [ ½0:400; 1:000�
f0:267g [ ½0:333; 0:500�

½0:267; 0:333� [ ½0:400; 0:500�
½0:133; 0:167� [ ½0:250; 0:333�
f0:400g [ ½0:500; 0:800�

½0:333; 0:500� [ ½0:667; 1:000�
f0:200g [ ½0:250; 0:400�
½0:308; 0:333� [ ½0:500; 1:000�
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VIKOR, which is also based on bounded rationality. The

second type of method uses the expected probability

degree, which is based on complete rationality.

1. Comparison of the proposed approach with the method

based on prospect theory and VIKOR

Li and Zhao [20] proposed a VIKOR method based on

prospect theory to achieve a comprehensive look at the

alternatives. After normalization, the prospect value

function of the interval grey numbers was defined, and

the prospect value of each alternative was calculated

using all other alternatives as a reference point. After

this step the positive ideal solution and the negative

ideal solution can be easily identified. Finally, the

Sið�Þ, Rið�Þ, and Qið�Þ values can be obtained as

shown in Table 12.

Since S3ð�Þ\S2ð�Þ\S1ð�Þ, R3ð�Þ\R2ð�Þ\R1

ð�Þ, and Q3ð�Þ\Q2ð�Þ\Q1ð�Þ, the definitive rank-

ing is a3 [ a2 [ a1, and the best alternative is a3.

When we use the same example, Li and Zhou’s method

[20] produces the same ranking of alternatives as our

proposed method. These results verify the validity of

the method proposed in this paper. Though there are

some differences between the two methods, both the

method based on prospect theory and the proposed

method based on regret theory take the decision-

makers’ psychological behavior into account. One

main difference between the two methods is that the

decision-makers utilizing prospect theory need to give

one or more reference points, which are not necessary

when utilizing regret theory. Also, five parameters

used in the prospect theory calculation formula are

difficult to determine. Compared with prospect theory,

the regret theory calculation formula involves only two

parameters, giving it superior ease of use. In addition,

the EGNs used in this paper are more powerful in

expressing evaluation information than interval grey

numbers. Thus, to some extent, the method proposed in

this paper is more practical than the method proposed

by Li and Zhao [20].

2. Comparison of the proposed approach with the method

based on expected probability degree

Wang et al. [47] proposed a grey stochastic MCDM

method based on expected probability degree. For

comparison, the interval probability should be trans-

formed to the known probability by substituting each

interval value with the mean value of its upper and

lower limits and normalizing the values. After trans-

formation, the probability values of the statuses in

Example 1 are p1 ¼ 0:364, p2 ¼ 0:455, and

p3 ¼ 0:181.

In this method, the expected probability degrees of the

alternative under criteria were calculated to form the

expected probability degree judgment matrix. With

respect to each criterion, the comprehensive judgment

matrix of expected probability degrees was easily

established. Then, the comprehensive sorting value

was determined with the calculation formula ðxi ¼Pm

l¼1

Pn

k¼1
wk�E P xik [ xlkð Þð Þð Þþm

2
�1

m� m�1ð Þ ; where E P xik [ xlkð Þð Þ
is the expected probability degree of the grey stochas-

tic variable xik against xlk). The values are x1 ¼ 0:291,

x2 ¼ 0:360, and x3 ¼ 0:255. Since x2 [x1 [x3,

the ranking is a2 [ a1 [ a3, and the best alternative is

a2.

The ranking obtained by the method based on the

expected probability degree is visibly different from

that obtained by the method based on regret theory

Table 9 The perceived utility

values matrix
C a01 a02 a03

c1 h1

h2

h3

0:747

0:901

0:817

0:674

0:705

0:817

0:883

0:909

0:884

c2 h1

h2

h3

0:679

0:884

0:812

0:950

0:904

0:904

0:632

0:639

0:845

c3 h1

h2

h3

0:335

0:306

0:186

0:231

0:016

0:426

0:548

0:076

0:434

Table 10 The overall perceived utility values matrix

a01 a02 a03

c1 ½0:666; 1:159� ½0:566; 1:005� ½0:716; 1:251�
c2 ½0:639; 1:114� ½0:737; 1:288� ½0:530; 0:953�
c3 ½0:242; 0:407� ½0:118; 0:253� ½0:238; 0:450�

Table 11 Relative closeness and ranking results using different d
values

C1 C2 C3 Ranking results

d ¼ 0:1 0:7018 0:2973 0:7027 a03 [ a01 [ a02

d ¼ 0:2 0:7060 0:2958 0:7042 a01 [ a03 [ a02

d ¼ 0:3 0:7082 0:2928 0:7072 a01 [ a03 [ a02

d ¼ 0:4 0:7120 0:3154 0:6846 a01 [ a03 [ a02

Table 12 Sið�Þ, Rið�Þ, and Qið�Þ values

Sið�Þ Rið�Þ Qið�Þ

a1 ½0:371; 0:935� ½0:006; 0:700� ½0:146; 1:000�
a2 ½0:233; 0:749� ½0:000; 0:645� ½0:053; 0:842�
a3 ½0:149; 0:346� ½0:000; 0:195� ½0:000; 0:265�
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proposed in this paper. The difference lies in the

position of a3. When the method based on the expected

probability degree is used, a3 is inferior to a2 and a1,

but with the use of the proposed method, the situation

is reversed. Compared with Wang et al.’s method [47],

which is based on complete rationality using the

expected probability degree, the proposed method is

based on bounded rationality using regret theory. The

proposed method fully considers decision-makers’

bounded rationality for decision-making, making it

superior to traditional decision-making methods.

Compared with the existing methods, the proposed grey

stochastic MCDM method based on regret theory and

TOPSIS has the following advantages.

1. The EGNs, combining both intervals and discrete sets

of numbers, can express the evaluation information

with more flexibility. They have a more powerful

capability to express uncertainty due to missing

information, and thus have a wider range of

applications.

2. The method proposed in this paper is based on

bounded rationality, which fully considers the deci-

sion-makers’ psychological behavior. Compared with

traditional decision-making methods based on com-

plete rationality, the proposed method can address

decision-making problems more reasonably and

effectively.

3. The proposed method is based on regret theory, which

takes the decision-maker’s attitude of regret into

account. Compared with prospect theory, regret theory

does not use reference points, and the calculation

formula includes fewer parameters. Therefore, the

proposed method is more advantageous than prospect

theory in practical application.

4. The proposed method based on regret theory employs a

new form of criteria values, EGNs, thus expanding the

application of regret theory.

5 Conclusions

Stochastic MCDM methods are widely used in real-life

decision-making processes, and the decision-making

method based on regret theory is more congruent with

people’s actual decision-making behavior. In this paper, we

proposed a grey stochastic MCDM approach based on

regret theory using EGNs to express criteria values. Regret

theory was first used to obtain the utility value and regret

value concerning the criteria, and then the perceived utility

values of the alternatives were calculated. Next, the TOP-

SIS method was used to prioritize the alternatives

according to the overall perceived utility intervals. Finally,

two examples and comparison analyses were presented to

demonstrate the feasibility and usability of the proposed

method.

The proposed method makes several important contri-

butions. First, dealing with stochastic MCDM problems

with EGNs expands the research scope of MCDM. The

proposed method also incorporates the decision-makers’

regrets into the decision-making model, which makes the

method more applicable to real-world choices. Addition-

ally, the proposed method expands the application of regret

theory and provides a new method through which to solve

stochastic MCDM problems.

It is worth noting that there are a considerable number of

MCDM problems with criteria values that are expressed as

grey and show randomness. Grey stochastic MCDM

problems have a wide range of applications, such as

investment, new product development project selection,

medical care evaluation, supplier selection, and project risk

assessment. Therefore, the study of grey stochastic MCDM

problems has important practical applications.

In the future, we expect to investigate the generalized

distance measures and aggregation operators of EGNs.

Furthermore, we may apply our distance measures and

aggregation operators to other grey stochastic MCDM

methods based on bounded rationality. Meanwhile, we will

also consider expanding the scope of application of our

method.
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