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Abstract Protein–protein interaction plays a fundamental

role in many biological processes and diseases. Charac-

terizing protein interaction sites is crucial for the under-

standing of the mechanism of protein–protein interaction

and their cellular functions. In this paper, we proposed a

method based on integrated support vector machine (SVM)

with a hybrid kernel to predict protein interaction sites.

First, a number of features of the protein interaction sites

were extracted. Secondly, the technique of sliding window

was used to construct a protein feature space based on the

influence of the adjacent residues. Thirdly, to avoid the

impact of imbalance of the data set on prediction accuracy,

we employed boost-strap to re-sample the data. Finally, we

built a SVM classifier, whose hybrid kernel comprised a

Gaussian kernel and a Polynomial kernel. In addition, an

improved particle swarm optimization (PSO) algorithm

was applied to optimize the SVM parameters. Experi-

mental results show that the PSO-optimized SVM classifier

outperforms existing methods.

Keywords Protein interaction sites � Support vector

machine � Sliding window � Boost-strap � Particle swarm

optimization

1 Introduction

Protein–protein interaction involves in numerous physio-

logical and pathological processes [1]. Identifying protein

seats involved in protein–protein interactions, which is

called protein interaction site, can help to achieve a better

understanding of the protein–protein interaction. To

effectively predict the sites of protein interaction, compu-

tational intelligence methods such as support vector

machine, bayesian, random forest and neural networks

have been tested and achieve varying degree of success.

The prediction of protein interaction sites can be viewed

as a binary classification problem which is equivalent to

determine whether a given amino acid residue of a protein

is an interaction site or not [2]. In the work of Yan et al.

features were constructed based on a fragment of nine

continuous amino acids. Support vector machine and

bayesian network were used to predict interaction sites and

their method achieved a result of 72 % accuracy and 0.3

Matthews’ correlation coefficient (MCC) relevance [3].

Chen et al. who predicted protein interaction sites based on

random forest method had extracted features based on

biochemical characteristics such as protein amino acid

sequence, the residues’ distance matrix, conservatism of

protein evolution and so on [4]. They obtained 0.28 MCC.

Chen et al. used six features from the homology derived

secondary structure of proteins database (HSSP) and the

integrated radial basis function (RBF) neural network

algorithm to predict protein interaction sites [5]. According

to the related work, still there are several problems which

limit the prediction accuracy. Because the theory of the

biological properties responsible for protein–protein inter-

action are not clear yet, it is difficult to extract informative

features from biological properties to represent protein.

What more, because there are much fewer amount of data
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of interacting sites than that of non-interacting sites, which

is called data imbalance, it is difficult to get a significant

training set. In addition, the machine learning methods

used to predict the interaction sites in the past was used

without further modification according to the characteris-

tics of this specific problem, efficient classification models

were difficult to build there still has plenty of room to

improve the performance of the prediction.

Inspired by recent works, we reported a novel method to

predict protein interaction sites. After extracting relevant

features of interaction sites from HSSP database, we used

sliding window technique to construct a protein feature

space based on the influence of the adjacent residues. Then,

we used the boost-strap method to construct a balanced

data set from the originally imbalanced data set. Further-

more, for constructing an efficient classification model, the

hybrid kernel comprising a Gaussian kernel and a Poly-

nomial kernel was applied in SVM, and an improved par-

ticle swarm optimization was used to optimize the

parameters. To evaluate performance of the prediction, we

applied our method to a data set from the related work [5].

The data set was downloaded from SPIN database.

2 Materials and methods

2.1 Data set

To be convenient for the comparison of our prediction

method to previous work, the proposed method was tested

with the data set used by Chen et al. [5]. As shown in

Table 1, this data set contained 38 proteins (63 peptide

chains). More details of the data set building process can be

found in the Ref. [6].

2.2 Performance evaluation

The performance of the prediction was evaluated using

leave-one-out cross validation. In each experiment, we chose

37 proteins from the data set to build the train set and leave

the rest one as the test set, and carried out the replication

experiments 38 times. By choosing each individual protein

from the data set as test set for each experiment, all of the

proteins in the data set were traversed.

To analyze the effectiveness of the proposed method

quantitatively, several widely used measures, including

accuracy, Matthews’ correlation coefficient (MCC) and F-

score were used. Accuracy is a simple but effective evalu-

ation standard. The preliminary knowledge of the details of

the experimental data is unnecessary, but if the data set was

imbalance, accuracy muse be used with caution, as some

researchers had shown that accuracy would be biased toward

the majority one in such condition. MCC is an objective

method to reflect the prediction performance. The F-score is

determined by two parameters: recall and precision which

are defined as (4) and (5) respectively, it is a useful measure

to reflect the overall prediction performance. The precise

definition of three measures above are as follows:

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN
ð1Þ

MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ � TPþ FNð Þ � TN þ FPð Þ � TN þ FNð Þ
p

ð2Þ

F � score ¼ 2 � precision� recall

precision þ recall
ð3Þ

where

Precision ¼ TP

TPþ FP
ð4Þ

Recall ¼ TP

TPþ FN
ð5Þ

where, TP, TN, FP, FN present the number of interaction

sites predicted correctly, the number of non-interaction

sites predicted correctly, the number of non-interaction

sites predicted as interaction sites, the number of interac-

tion sites predicted as non-interaction sites, respectively.

2.3 Feature selection

In our data set, if an amino acid residue was an interaction

site, it was labeled as ‘1’, otherwise it was labeled as ‘0’.

Protein interaction site was defined according to Yohei

Minakuchi et al. [7]. A surface residue is a residue of a single

peptide whose ratio of its accessible surface area to its whole

surface area was greater than 16 %, otherwise, it was called

an internal residue. Interface residue was defined according

Table 1 A data set that contain 38 proteins (Chen et al. [5])

PDB-ID Chain PDB-ID Chain PDB-ID Chain

1ABY A 1FRV A, B 1NPO A

1AGR A, E 1GLA F, G 1RBL A

1AIS B 1GUA A, B 1RLB A, E

1AOK A 1IBC A, B 1SCT A, B

1AQD A, B 1IHF A, B 1SCU A, B

1AUI A, B 1JCK A, B 1TCR A

1BPL A, B 2REQ A, B 1TMC A

1CAU A, B 1LGB A, B 1TTP A, B

1EBD A, C 1MEI A 1VOL A, B

1EFU A, B 1MHC A 2BTF A, P

1EFV A, B 1MHI A 2FGW H

1FDH G 1MIO A, B 2PCB A

1FIN A, B 1AXI A, B
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to Chen et al. [5], if the difference between the accessible

surface areas of a surface residue in a single chain (monomer

accessible surface area, MASA) to the accessible surface

areas when it was in a protein complex (complex accessible

surface area, CASA) was more than 1(A2), the residue would

be defined as an interface residue, and it was also called as an

interaction site. Otherwise it was defined as a non-interface

residue [5], which was also called as a non-interaction site.

All related terms we used in this paper had the same defini-

tion as above-mentioned.

In this paper, six features of the protein interaction site

originally proposed by Chen et al. [5] were used to charac-

terized the interaction site. They are sequence profiles,

entropy, relative entropy, conservation weight, accessible

surface area and sequence variability. These features could

be downloaded from the biological database HSSP (ftp://ftp.

ebi.ac.uk/pub/database/hssp/). More details of these six fea-

tures can be learned from the Ref. [5]. The sliding window

with a size of W was used to construct the feature vector

space. x continuous residues flank each of a target residue

are used to build the vector where x is defined in Eq. (7). The

size of the sliding window W is in the range of between 3 and

11. For each residue in a protein. The dimensions of the

feature vector are 25, including 20 for sequence profiles-

related variables, and the other five variables for the rest five

features. Thus, we defined a feature vector to represent the

nth residue in a protein amino acid sequence as follows:

Xn ¼ ðxðn�xÞ1; . . .; xðn�xÞ25; . . .; xðnÞ1; . . .;

xðnÞ25; . . .; xðnþxÞ1; . . .; xðnþxÞ25Þ
ð6Þ

Where,

x ¼ W � 1ð Þ=2 ð7Þ

The data set used in this paper was unbalanced due to

the number of non-interaction sites being much larger than

the interaction sites’. Generally, the former was two-thirds

more than the latter. We used boost-strap method to reduce

the impact of the unbalanced problem to improve the

performance of the prediction.

We proposed the following algorithm to transform the

unbalanced data set to a balanced one.

2.4 The classifier

Support vector machine (SVM) initially proposed by

Cortes and Vapnik in 1995 is based on the VC dimension

theory and minimum structure risk principle. SVM is

aimed at finding a balance between the complexity of the

model and its learning ability [8]. In this paper, we adopted

SVM to predict protein interaction sites. SVM is an

effective method for problems with small number of

samples, and predicting protein interaction sites is the case,

so theoretically SVM can get the global optimal point for

this problem. The kernel function of a SVM determines this

learning ability [9], and there are some commonly used

kernels as follows:

Linear kernel:

Kðx1; x2Þ ¼ ðx1 � x2Þ ð8Þ

Polynomial kernel:

Kðx1; x2Þ ¼ s
X

n

i¼1

x1ix2i þ r

 !d

ð9Þ

Radial basis function:

Kðx1; x2Þ ¼ exp �g
X

n

x1i � x2ið Þ2

 !

ð10Þ

Sigmoid Tanh kernel:

Kðx1; x2Þ ¼ tanhðsðx1 � x2Þ þ rÞ ð11Þ

Choosing an appropriate kernel can improve the pre-

diction performance. Currently, SVM kernel function is

determined based on the experience. In addition, a kernel

can also be designed for a specific data set. It’s worth

mentioning that the constructed kernel should meet the

requirements of Mercer’s condition [10].

Some related works [11, 12] proved that the model with

a mixture kernel could get better prediction performance

than the ones with a simple kernel. In this paper, in order to

improve the prediction accuracy, we constructed a model

based on SVM with a hybrid kernel function which com-

prised a Gaussian kernel and a Polynomial kernel. The

constructed hybrid kernel is defined as following:

KRP ¼ kKPOLY þ ð1 � kÞKRBF ð12Þ

Where, KPOLY is a Polynomial kernel as (9), which is a

global kernel only considering the distant points. On the

contrary, radial basis function KRBF as (10), is a local

kernel only considering the neighbors of the testing point.

The global kernel is responsible for the universal search to

Algorithm 1: Boost-strap.

Input: the interaction site data set 1S , the non-interaction site data set 0S , with 01 SS

Output: 20 data sets for experiments

Steps

1.  for i=1 to 20 do

2. Initialize subset oiS ; 

3. for j=1 to 1S do

4. jii eSS 00 , where je is extracted from 0S ;

5.  end for
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avoid losing of the optimal solution, while the local kernel

is responsible for speeding up the convergence. The pro-

posed hybrid kernel here was thus designed to take

advantages of the both of the two types of kernels above.

And the influence of two kernels can be tuned by the

parameter k.

2.5 Parameter optimization

There are many advantages to apply particle swarm opti-

mization (PSO) to optimize parameters of SVM with a

hybrid kernel [13]. PSO has quick convergence, and pos-

sesses global search capability with a few parameters. In

the PSO algorithm, particles were used to represent

potential solutions of a optimization problem. In this paper,

particles were used to represent k which was defined as in

(12), the weight of the basal classifiers was constructed by

training the data subset as described in ‘‘Sect. 2.3’’.

During PSO optimization, each particle flies in search

space at a certain velocity. The velocity is usually adjusted

in light of flight experiences. In this paper, in order to

search the solution space more efficiently, a parameter K

was introduced to adjust the velocity. If a particle’s ordinal

number was odd, K was set to be ‘-1’, which meant this

particle would fly in the direction opposite to the current

direction. Otherwise, it was set to be ‘1’ which meant it

would continue to fly in the current direction. Such treat-

ment could make the particles flying in two directions at

the same time, searching more widely. The iteration for-

mula of the PSO method is as follows:

Vid t þ 1ð Þ ¼ K x� VidðtÞ þ c1 � randðÞ � pbestidðtÞðf
�XidðtÞÞ þ c2 � randðÞ � pbestdðtÞ � XidðtÞð Þg

ð13Þ
Xidðt þ 1Þ ¼ Xid þ Vid t þ 1ð Þ ð14Þ

Where, d represents the dimension of the problem space

respectively. Vid represents the velocity of the ith particle in

the swarm. pbestid represents the best previous position of

the ith particle by which the best fitness value is achieved.

pbestd represents the best particle among all particles in the

swarm. randðÞ represents random numbers in the range of

0–1. w and t represent the inertia and the iteration number,

respectively. c1 and c2 are both positive constants. K is

defined above. In this paper, the fitness was defined as the

prediction accuracy.

2.6 Algorithm to predict protein interaction sites

We proposed an algorithm to predict protein interaction

sites using six features mentioned in ‘‘Sect. 2.3’’ as input.

The predicting algorithm is as follows:

Algorithm 2: Predicting the protein interaction sites.

Data: The data set mentioned in section 2.1

Steps:

1. Download sequence file and .pdb files for each protein from PDB database; 

2. Generated a .dssp file for each protein from its .pdb file with the software DSSP;

3. Extract the MASA of each residue in a single chain, and the CASA of the residue in a protein

complex from the .dssp file of each protein;

4. Download the features mentioned in section 2.3 from HSSP;

5. Judge the target residue whether it was an interface residue (interaction site) or not based on the 

conditions discussed in section 2.3, if it was, the corresponding position in its feature vector would 

be marked as 1, otherwise it was 0;

6. Construct the feature vector as showed in (6) to represent each protein; 

7. Apply Algorithm 1 to obtain 20 training subsets;

8. Train 20 basic classifiers based on SVM with hybrid kernels by using the 20 subsets, respectively; 

in the process, the improved PSO was applied in the SVM parameters optimization;

9. Compare the score of label named ‘1’ with the score of label named ‘0’, if the former is larger, the 

sample would be marked as ‘1’; Otherwise, it would be marked as ‘0’; 

10. Evaluate the performance of the constructed model with a test set according to the measures 

introduced in the section 2.2.

3 Results

The effectiveness of the protein interaction site prediction

method in this paper was evaluated by the leave-one-out

cross validation method. By choosing one protein each

time from the data set to construct a test set without rep-

etition, we carried out the replication experiments 38 times,

thus eventually all proteins were treated. Finally, we gave

some performance evaluations according to the measures

as introduced in ‘‘Sect. 2.2’’.

3.1 Parameters setting

Some related parameters about PSO were set as follows,

the size of the population N ¼ 40, the max iteration

DT ¼ 100, the learning factor c1 ¼ c2 ¼ 1:4962, the max

particle velocity Vmax ¼ ðXmax � XminÞ � 0:1, the max

value of the target particle position Xmax ¼ 1 and the min

value Xmin ¼ 0, the linear iterative inertia weight w0 ¼ 0:9

and w1 ¼ 0:4. Finally, particles in the swarm stopped

iterating when the optimal prediction accuracy did not

change in the continuous 20 times iteration.

3.2 Experimental results

Firstly, seven sliding windows were made, including 1, 3,

5, 7, 9, 11, to optimize the size of sliding windows which

achieved the best accuracy. During this process, the basic

classifier was based on hybrid kernel SVM, and the

experiment data was the 38 proteins as listed in Table 1.

The results were shown in Table 2.

In the table, each row stores the experiment result of dif-

ferent window size. The last number of the names of the first
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column is the size of the windows, for example, the WIN3 row

stores the experiment result for window size equals to 3.

According to the results in Table 2, WIN9 which was

represented the slipping window with the size of nine,

obtained the best MCC and F-score than the others, this

conclusion was the same as the result of previous related

work [5, 14].

Secondly, we compared the performance of our method

with an existing method, called integrated RBF neural

network [5]. Here, we set the size of the slipping window to

be nine. The result of the comparison was shown in

Table 3.

According to Table 3, the MCC, F-score and accuracy

were higher by 5.45, 4.08 and 2.84 % respectively in SVM

experiment than RBF experiment. In conclusion, the pro-

posed method on the basis of SVM with hybrid kernels

achieved better performance in predicting the protein

interaction sites.

The structures of proteins could be visualized at atomic

scale by molecular graphic software such as Rasmol. In

order to verify our method visually, we would show the

details of prediction results of protein 1npo and 1 tmc as

Chen et al. [5] had done to make the result comparison

more convenient.

In the Fig. 1, for the protein 1npo, there are totally 95

yellow residues which are surface residues defined as

‘‘Sect. 2.3’’, and each of these residues might be an inter-

action site or a non-interaction site. And our proposed

method correctly predicted 79 residues of them as Fig. 2

showed. For the protein 1 tmc, as shown in Fig. 3, there are

totally 175 yellow residues called surface residues, 151 of

them were correctly predicted by using our method as

Fig. 4 showed. So it is evident that we got much more

correctly predicted protein residues than Chen et al. [5],

showing the effectiveness of our method in another way.

4 Conclusion and discussions

With the advent of post-genome era, the researchers have

put an increasing attention to study the proteomics, espe-

cially in the field of predicting protein interaction sites. In

this paper, we proposed a method based on support vector

machine with a hybrid kernel to predict protein interaction

sites. Firstly, sliding window was applied to construct

feature vector space for each amino acid residues on a

peptide. Secondly, boost-strap was applied to transfer the

imbalanced data set into a balanced one. Thirdly, a SVM

with a hybrid kernel comprising a Gaussian kernel and a

Polynomial kernel was constructed. In order to obtain the

optimal parameters for the prediction performance, the

Table 2 The experimental results of different windows by SVM with

hybrid kernel function

Window MCC F-score Accuracy (%)

WIN1 0.4345 0.5915 74.32

WIN3 0.4623 0.611 76.67

WIN5 0.5090 0.6420 78.21

WIN7 0.5411 0.6642 79.83

WIN9 0.6052 0.7116 83.16

WIN11 0.5230 0.6516 78.91

WIN13 0.4701 0.6154 76.20

Table 3 The experimental results comparison of two methods

MCC F-score Accuracy (%)

SVM 0.6052 0.7116 83.16

RBF 0.5507 0.6708 80.32

Fig. 1 Visualization of protein 1NPO. The surface residues, includ-

ing the interaction site and non-interaction site of 1NPO are colored

yellow

Fig. 2 Visualization of the prediction result of protein 1NPO by our

method. The interaction and non-interaction residues correctly

predicted are colored yellow, and the residues not correctly predicted

are colored red
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parameters of hybrid kernel and the weight of basal clas-

sifiers were selected by PSO. Finally, for comparison

convenience, prediction results were described in two dif-

ferent ways according to Chen et al. [5]. The comparison

results showed the proposed method effectively improve

the prediction performance.

Although the proposed method has improved the per-

formance of prediction, it was mainly focused on classifier

algorithm. In the future work, more research about feature

extraction are expected to further improve the performance

of prediction.

Acknowledgments This work was funded by the Natural Science

Foundation of Fujian Province (2012J05114, 2013N5006), Special

Project on the Integration of Industry, Fuzhou City Science Founda-

tion (2012G106). We also want to thank for the help from Dr. Zhibin

Fu.

References

1. Alberts BD, Bray D, Lewis J et al (1989) Molecular biology of

the cell. Garland, New York

2. Ni QS, Wang ZZ, Wang GY et al (2008) Prediction of protein–

protein interactions based on local support vector machine.

J Biomed Eng Res 02(9):1106–1109

3. Yan CH, Dobbs D, Honavar V et al (2004) A two stage classifier

for identification of protein–protein interface residues. Bioinfor-

matics 20(1):371–378

4. Chen XW, Jeong JC (2009) Sequence-based prediction of protein

interaction sites with an integrative method. Bioinformatics

25(5):585–591

5. Chen YH, Xu JR, Bin Yang et al (2012) A novel method for

prediction of protein interaction sites based on integrated RBF

neural networks. Comput Biol Med 42:402–407

6. Meng W, Wang F, Peng X (2008) Prediction of protein–protein

interaction sites using support vector machine. Appl Sci

26(4):403–408

7. Minakuehi Y, Satou K, Konagaya A (2002) Prediction of pro-

tein–protein interaction sites using support vector machines.

Genome Inform 13:322–323

8. LiQin Jin (2007) Biological chemistry. Zhejiang University

Press, Hangzhou (in Chinese)
9. Marangoni F, Barberis M, Botta M (2003) Large scale prediction

of protein interactions by a SVM-based method. In: Neural Nets,

vol 2859. Springer, Berlin Heidelberg, pp 296–301

10. Li Liu (2009) The research and validation of support vector

machine (SVM) algorithm with different kernels. Jiangnan

University, Wuxi, Jiangsu (in Chinese)
11. Cortes C, Vapnik V (1995) Support vector network. Mach, Learn

12. Chatterjee P, Basu S, Kundu M et al (2011) PPI_SVM: prediction

of protein–protein interactions using machine learning domain–

domain affinities and frequency tables. Cell Mol Biol Lett

16:264–278

13. Aimin Zhou, Bo-Yang Qub, Hui Li et al (2011) Multiobjective

evolutionary algorithms: a survey of the state of the art. Swarm

Evol Comput 1(1):32–49

14. Xing X, Chen Y, Yang B (2010) Dimensional reduction based on

conservative adaptive K-nearest neighbor algorithm. Univ Jinan

Sci Technol 2:159–162 (in Chinese)

Fig. 3 Visualization of protein 1 TMC. The surface residues includ-

ing the interaction site and non-interaction site of 1 TMC are colored

yellow

Fig. 4 Visualization of the prediction result of 1 TMC by our

method. Residues correctly predicted are colored yellow, and residues

not correctly predicted are colored red

398 Int. J. Mach. Learn. & Cyber. (2018) 9:393–398

123


	Predicting protein--protein interaction sites using modified support vector machine
	Abstract
	Introduction
	Materials and methods
	Data set
	Performance evaluation
	Feature selection
	The classifier
	Parameter optimization
	Algorithm to predict protein interaction sites

	Results
	Parameters setting
	Experimental results

	Conclusion and discussions
	Acknowledgments
	References




