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Abstract This paper aims to investigate the type of fuzzy
multiple attribute group decision making (MAGDM) where
arguments being aggregated are allowed to support each
other. In order to enable decision makers to express their
preferences more comprehensively, we firstly put forward a
hybrid tool, an interval-valued dual hesitant fuzzy lin-
guistic set (IVDHFLS), which employs interval-valued
hesitant membership and nonmembership degrees to assess
linguistic terms. Basic operational laws for IVDHFLS are
discussed, also a distance measure is designed to overcome
irrationality in traditional methodology for hesitant fuzzy
sets, i.e., artificially adding values to mismatching mem-
bership or nonmembership degrees. We next develop fun-
damental generalized power average aggregation operators
for IVDHFLS, including power average operator, power
geometric average operator, power ordered weighted
average operator and power ordered weighted geometric
average operator. Desirable properties and special cases of
these aggregation operators are further analyzed. Further-
more, based on the generalized operators above, we con-
struct two approaches for MAGDM with mutually
supportive arguments being aggregated under interval-
valued dual hesitant fuzzy linguistic environments. Finally,
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case studies are conducted to verify effectiveness and
practicality of the developed approaches.
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1 Introduction

Due to increasing complexity in socioeconomic environ-
ments and fuzziness in human cognition, single decision
maker is usually incompetent in considering all relevant
aspects of complicated decision making problems arising
in different systems, therefore, group decision making
(GDM) becomes common activity and analytics in modern
technological society [3, 33, 39]. The purpose of GDM is to
find most desirable solution(s) from finite alternatives by a
group of experts assessing on a set of criteria [48, 68]. As
an important part of GDM theories, multiple attribute
group decision making (MAGDM) has been widely studied
under different uncertain environments, for which fuzzy set
theory [64] and its extensions have been shown as effective
quantitative fuzzy tools for decision modelling with
uncertainty, such as interval-valued fuzzy set [38], intu-
itionistic fuzzy set (IFS) [1], interval-valued intuitionistic
fuzzy set [2]. However, these fuzzy theories may not
suitable for situations where decision makers are hesitant
and irresolute in establishing membership degrees because
of several possible values, so Torra [35], Torra and Nar-
ukawa [37] defined hesitant fuzzy set (HFS) to allow
membership degrees of an element to be a set of values.
HES are highly useful in handling complex decision situ-
ations where decision makers hesitate when providing their
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preferences [17, 44]. Recently, in view of that nonmem-
bership degrees play the same important role as member-
ship degrees in describing vague preferences, Zhu et al.
[72] developed dual hesitant fuzzy set (DHFS) to denote
membership and nonmembership degrees of an element to
a given concept by two sets of crisp values. Then Ju et al.
[15] and Farhadinia [8] extended DHFS to interval-valued
environments. Evidently, DHFS is more practical in
MAGDM as it provides an effective and flexible way to
assign values for each element in the domains [8, 71].

With respect to those complex MAGDM problems that
cannot be well-defined for quantification, Zadeh [65] sug-
gested linguistic variables for expressing qualitative fuzzy
preferences. Being capable of enhancing classical decision
models [22, 44], linguistic variables have been studied in
depth [4, 7, 26, 27, 29, 49, 50] and applied into many fields
[5, 9, 14, 43]. Especially, noticing inadequacy of single
linguistic term to reflect decision uncertainty completely,
some novel expression forms have been developed to
accommodate membership and nonmembership degrees of
an element to a particular linguistic term. Such as, based on
IFS, Wang and Li [42] introduced the intuitionistic lin-
guistic set, Liu and Jin [20] studied intuitionistic uncertain
linguistic set, Liu [19] further proposed interval-valued
intuitionistic uncertain linguistic set to incorporate advan-
tages and flexibility of both interval values and uncertain
linguistic variables. In order to tackle more complex
decision situations where exists decision hesitancy among
several possible values, based on HFS, Lin et al. [18]
developed hesitant fuzzy linguistic set whose elements
hold the structure comprising of a certain linguistic term
and a set of possible crisp membership degrees. Wang et al.
[44] studied interval-valued hesitant fuzzy linguistic set to
integrate advantages of both linguistic variables and
interval-valued hesitant fuzzy elements. Meng et al. [23]
presented linguistic hesitant fuzzy set to consider possible
membership degrees of each possible linguistic term.
Unfortunately, above HFS based fuzzy linguistic tools can
only permit possible values for membership degrees.

In practice, for MAGDM problems under ill-defined
circumstances, decision makers may want to state their
preferences by certain linguistic variable with not only a set
of possible membership degrees but also a set of non-
membership degrees. Till now, to our best knowledge, only
Yang and Ju [62] carried out forerunning work based on
DHFS to investigate dual hesitant fuzzy linguistic set
(DHFLS), but only allowing exact numbers to collect
possible membership and nonmembership degrees associ-
ated with a specified linguistic term. However, as noted in
[30, 52, 54], due to time pressure, lack of knowledge or
data, and limited expertise about complicated problems,
decision makers are usually only willing or able to use
interval values to express their preferences. Therefore, this
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paper extends DHFLS into interval-valued environments to
propose another desirable hybrid tool, i.e., interval-valued
dual hesitant fuzzy linguistic set (IVDHFLS). IVDHFLS
takes a compound structure (x, s, a(x),g(x)) to denote its
elements. For the evaluated object x, s provides certain
linguistic term, A(x) and g(x) represent two interval-valued
fuzzy sets to reflect possible membership and nonmem-

bership degrees to s. When /(x) and g(x) reduce to exact
sets, IVDHFLS becomes DHFLS. Obviously, IVDHFLS
retains advantages of linguistic variables and DHFS in
depicting fuzzy properties of an complex object, also holds
the flexibility of interval numbers when assigning possible
membership and nonmembership degrees.

During the procedures of MAGDM, aggregation oper-
ators play an indispensable role in aggregating individual
evaluations into collective ones [12]. Based on traditional
aggregation operators [6, 58, 61], such as operators WA,
WG, OWA, OWG, and etc., numerous extended aggrega-
tion operators have been introduced to support decision
making, such as, intuitionistic fuzzy aggregation operators
[63, 70], hesitant fuzzy aggregation operators [24, 45, 46],
linguistic aggregation operators [26, 27, 29, 49, 50],
induced aggregation operators [25, 28] and generalized
aggregation operators [27, 29, 66, 69]. However, most of
extant aggregation operators do not sufficiently consider
supportive correlations among arguments, so Yager [59]
developed power average (PA) operator and power ordered
weighted average (POWA) operator, in which weighting
vectors depend on input arguments and allow arguments
being aggregated to support each other. Then Xu and Yager
[57] developed the power geometric average (PG) operator
and the power ordered weighted average (POWGA) oper-
ator. Following their work, power average aggregation
operators have been further extended to accommodate
MAGDM under different uncertain environments. Such as,
the linguistic power aggregation operators by Zhou and
Chen [67], the power aggregation operators by Xu [55]
under intuitionistic fuzzy and interval-valued intuitionistic
fuzzy decision making environments, the power aggrega-
tion operators by Wan [40] under trapezoidal intuitionistic
fuzzy decision making environments, and generalized
argument-dependent power operators by Zhou et al. [68] to
accommodate intuitionistic fuzzy preferences. In this
paper, we continue to focus on investigating effective
approaches for fuzzy MADGM with arguments being
aggregated to support each other, but in which decision
preferences take the form of IVDHFLS. To do so, firstly, a
novel distance measure for IVDHFLS is put forward to
overcome irrationality in traditional methodology for HFS,
i.e., artificially complementing mismatching membership
or nonmembership degrees [32, 56]. Then, fundamental
generalized power aggregation operators are developed for
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IVDHFLS, including weighted generalized interval-valued
dual  hesitant fuzzy linguistic = power average
(WGIVDHFLPA) operator, weighted generalized interval-
valued dual hesitant fuzzy linguistic power geometric
average (WGIVDHFLPGA) operator, generalized interval-
valued dual hesitant fuzzy linguistic power ordered
weighted average (GIVDHFLPOWA) operator, and gen-
eralized interval-valued dual hesitant fuzzy linguistic
power ordered weighted geometric average (GIVDHFL-
POWGA) operator. Their desirable properties and special
cases are also discussed. Furthermore, by utilizing the
developed generalized power operators, two effective
approaches are constructed for MAGDM with mutually
supportive arguments being aggregated under interval-
valued dual hesitant fuzzy linguistic environments.

The remainder of this paper is organized as follows.
Section 2 briefly reviews concepts of linguistic variables and
interval-valued dual hesitant fuzzy set. In Sect. 3, we define
the interval-valued dual hesitant fuzzy linguistic set
(IVDHFLYS), for which operational rules and a new distance
measure are studied. Section 4 investigates fundamental
generalized power aggregation operators for IVDHFLS,
their properties and special cases. In Sect. 5, two MAGDM
approaches are constructed in details. Additionally, to verify
effectiveness and practicality of the approaches, illustrative
case studies are carried out in Sect. 6. Finally, conclusions
and further research are given in Sect. 7.

2 Preliminaries
2.1 Linguistic variables

Suppose S = {sy|o =0,1,...,1, — 1} be a finite and totally
ordered discrete linguistic label set with odd cardinality,
such as 3, 7 and 9, where s, is called a linguistic variable
that represents a possible value in S, [, is the cardinality.

Example 1 A linguistic set of nine terms, S, can be
defined as:

S = {s0 = none;s; = verylow; s, = low; s3
= almostmedium; s, = medium; ss = almosthigh; sg
= high; s7 = veryhigh; ss = perfect}.

For the linguistic term set S, it is usually required that
there exist the following characteristics:

1. The set S is ordered: s, > sp if 0> f;
Negative operator: neg(s,) = sg such that = g—
1 —o;

3. Max operator: max(sy,sg) = sp if s, <sp;

4. Min operator: min(sy,sg) = sg if s, > sp.

In the process of aggregating linguistic information,
however, some results may not exactly match any linguistic
terms presented in S. To preserve all given information,
Herrera et al. [10] extended discrete term set S to the
continuous term set S = {s,|o € [0,1, — 1]}. Elements in S
are called virtual linguistic terms and s, is called a con-
tinuous linguistic variable [49]. Obviously, linguistic
symbolic computational model based on continuous term
set S is simple and convenient to use in decision making;
most importantly, it can avoid information loss. Therefore,
in the following, we adopt the continuous term set S to
denote linguistic information.

Consider any two continuous linguistic variables: s, and
Sg, Ay A1,72 €10,1], Xu [49] defined some operational
laws:

Sq D Sp = Sp D Sy = Sutp;
Sy @ Sp = Sp Q Sy = Sup;
Su/sp = Syp if B #0;
ASy = S)y;

sé =S,

2(8y B ) = ASy B As;
218y @ A8y = (A1 + A2)Su;
(54 ® sﬁ)}' =5 ® s;;;

A1 A At
s Qs =8

e e o e

To simplify representation and facilitate calculation, Xu
[51] also presented the following functions to transform
linguistic terms into corresponding term indices.

Definition 2.1 [51] Let S= {s,Jo €[0,l, — 1]} be a
continuous linguistic term set, where [, is the cardinality;
sy € S is a continuous linguistic variable, denoting a virtual
linguistic term. Then the corresponding term index can be
derived by the function I as follows,

1:8S—1[0,1,—1],

lox) =71 (1)

Sometimes, we need to map different linguistic term sets
with different cardinalities into the linguistic term set with
same cardinality. The following transformation function
provide an effective way to map different linguistic term
sets into the one with largest cardinality.

Definition 2.2 [51] Given two continuous linguistic term
sets:  S; ={syla€[0,l,— 1]} and S, ={ss|f €
[0,1s — 1]}, where I, and [g are their cardinalities; s, € S
and sp € S, are continuous linguistic variables. Then the
transformation function f between s, and sg can be defined
as follows,

f:8—5
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Fig. 1 Mapping 5-granularity and 7-granularity linguistic term sets
into 9-granularity linguistic term set
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The above transformation function can be explained
clearly in Fig. 1. Taken 5-granularity and 7-granularity
linguistic term sets for examples, according to Eq. (2), we
can map them into a 9-granularity linguistic term set as
shown in Fig. 1.

2.2 Interval-valued dual hesitant fuzzy set
(IVDHFS)

Torra [35] and Torra and Narukawa [37] proposed hesitant
fuzzy set (HFS) to handle situations in which several val-
ues are possible for defining a membership function to a
fuzzy set.

Definition 2.3 [35, 37] Let X be a fixed set, a hesitant
fuzzy set (HFS) on X is in terms of a function that when
applied to X returns a subset of [0, 1], which can be rep-
resented as the following symbol,

E = {(x,hg(x))|x € X}, (4)

where hg(x) is a set of values in [0, 1], denoting possible
membership degrees of the element x € X to the set E.

For convenience, Xu and Xia [56] named & = hg(x) as a
hesitant fuzzy element (HFE) and H as the set of all HFEs.

Whereas, HFS accommodates only membership degrees
of an element to a given set without considering nonmem-
bership degrees. To overcome this limitation, Zhu et al.
[72] proposed the dual hesitant fuzzy set (DHFS).

Definition 2.4 [72] Let X be a fixed set, a dual hesitant
fuzzy set (DHFS) on X is represented as

D= {(x,h(x),g(x)>|x € X}a (5)

where h(x) = Uuehx {u} and g(x) = U,y {v} are two
sets of crisp values in [0, 1], denoting p0551ble membership

@ Springer

degrees and possible nonmembership degrees of the ele-
ment x € X to the set D, respectively. u and v satisfy
conditions: p,v € [0,1] and 0 <yt +v" <1, where u €

h(x),v € g(x), u* € I (x) = U, epy max{u} and v*e
87 (x) = U,y max{v} for all x € X.

However, precise membership degrees and nonmem-
bership degrees of an element to a set are sometimes hard
to be specified, to overcome this barrier, Ju et al. [15]

defined the concept of interval-valued dual hesitant fuzzy
set (IVDHES).

Definition 2.5 [15] Let X be a fixed set, then we can
define an interval-valued dual hesitant fuzzy set (IVDHES)
on X as:

D = {{(x, h(x),g(x))|x € X}, (6)
where ) = U[u L V)eh(x {ﬂ} = U L uV)eh(x) {lut, 11}
and g(x) = U pEY]eg(x {V} U EU]eg(x) {[VLv VU]} are two

sets of interval values in [0, 1], denoting possible mem-
bership degrees and nonmembership degrees of the ele-

ment x € X to set D, respectively; fi,7€[0,1], 0<
W)+ V)" <1, where (1V)" € T (x) = Uy pjei
max{u"} and (V)" € g (x) = Up vjeq max{v’} for
all x € X.

Here, we denote d = {h, g} as an interval-valued dual
hesitant fuzzy element (IVDHFE) and D as the set of all

IVDHFEs. Some operational rules for IVDHFEs were
defined as follows.

Definition 2.6 [15] Given three IVDHFEs represented by
g = {]717 g~}7al - {]711 ) g1}7g2 = {ﬁ2vg~2}” then basic oper-
ations between them can be described as

Lo d" = Upeyogipraviee LD 80— (1 -
VA T = (1 =)}, 4> 0;

2. Jd = U e - (U=, 1=(1-
uOTE 105 6913, 4> 0;

3. diod =Uy e i [ Ve [V gy, V30 V] €
SU{[uf + 15— “1:“2’:“1

15— w g1} ATV T
4. d @d _U[ﬂ[]‘7 1] Ehla[ﬂz#‘z} €h27[ viovf] € &,
[vé,véj] € s, uf 11}, {vE +v5 —viviov+

vy — vy}

Definition 2.7 [15] Let d; = {h;,§,} and dy = {hy,8,}
be any two IVDHFEs, then basic operational rules between
them can be defined as:

:3269511;
=d, ®dy;

1. a~'1 @&2
2. dy®d,
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3. Md ®dy) = idy @ idy, 2> 0;
4. di@d; = (d®d),7.>0.
Ju et al. [15] introduced a score function S(d) to cal-

culate score of d, and also defined an accuracy function
P(gl) of d to evaluate accuracy degree of d, where

~ 1
s =3\ 2w 2
(1L ,u)eh WE]eg
U
( oo () >, (7)
[ut,ul)eh veveleg
[Ev]eg
~ 1 1
Pd)==|— ,u +— yE
2 (h Z ()[anZ”%eg
Z u! +ﬁ Z v, (8)
( k. uVleh [veyU]eg

where [(h) and I(g) are numbers of interval values in & and
g, respectively. The larger the score S(&), the larger the
accuracy P(d), the greater the IVDHFE d. Then, ordering

relation between d, = {h;,§,} and dy = {h,,g,} can be
described as follows.

If S(d,)<S(d2) then d; <d,.
If S(d;) = S(d,), then

1. If P(d)) = P(d>), then d; = db;
2. IfP(d~1)<P(d2),thel‘l C?1<C?2.

2.3 Power aggregation operators

In this section, we briefly review some fundamental power
aggregation operators in literatures.

Definition 2.8 [59] A power average (PA) operator of
dimension 7 is a mapping: R" — R, according to following
formula:

i (L4 T(a)a

PA(ay,az,...,a,) = S (1 T(ay) 9)

where

T(a;) = Zn: Sup(a;, a;). (10)
jn

Sup(a;,a;) is the support function to calculate the degree
that a; receives support from a;. Sup(a;,q;) satisfies fol-
lowing three properties:

1. Sup(a;,a;) € [0,1];
2. Sup(ai,a_,-) = SMP(ajaai)§

3. Sup(a;,a;) > Sup(ay, ay), if |a; — aj| <|ax — ay].

PA operator is a non-linear weighted average aggrega-
tion operator, allowing arguments to support each other in
the aggregation process. Corresponding  weight
(1+ T(a;))/> 1, (1 + T(a;)) of argument a; depends on
all input arguments a;(i =1,2,...,n). The closer two
values are, the more they support each other.

Yager [59] also defined the power ordered weighted
average (POWA) operator as follows.

Definition 2.9 [59] A power ordered weighted average
(POWA) operator of dimension n is a mapping: R" — R,
according to the following formula:

POWA,(a,az,...,a,) = Xn:wiaa(i), (11)
=1
where
o) o) 5-Ee
=
TV = Z}: Vois Vo) = 1+ T(ag(),
T(agu) = 'i'sup(ao(i),aam) (12)
=LA

Here, a,(; denotes the i th largest arguments a;(j =
1,2,...,n); g: [0,1] — [0, 1] is a basic BUM function [60]
which satisfies: g(0) =0,g(1) =1,g(x) >g(y) if x> y.
Sup(aq(i), as(j)) indicates to what degree the jth largest
argument supports the ith largest argument; T(aq(;))
denotes the support that the ith largest argument receives
from all the other arguments.

Xu and Yager [57] further proposed the power geomet-
ric (PG) operator and the power ordered weighted
geometric (POWG) operator.

Definition 2.10 [57] A power geometric (PG) operator of
dimension »n is a mapping: R" — R, according to the fol-
lowing formula:

1+T(a )

H | (147(@) (13)

where T (a;) satisfies Eq. (10).

Definition 2.11 [57] A power ordered weighted geo-
metric (POWG) operator of dimension n is a mapping:
R" — R, according to the following formula:

a,) = [k (14)
i=1

PG(al,az, e a

POWG(ay,as, .. .,

@ Springer
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where w; satisfies Eq. (12), and ag;) is the ith largest
among the arguments a;(j = 1,2,...,n).

By combining PA operator with generalized mean
operator, Zhou et al. [68] defined the following weighted
generalized power average (WGPA) operator, and gener-
alized power ordered weighted average (GPOWA)
operator.

Definition 2.12 [68] Given parameter A weighted gen-
eralized power average (WGPA) operator of dimension 7 is
a mapping: R" — R, according to the following formula:

S o1+ T(ar)d; )”’
) b

WGPA(ay, az, . . .,a,) = (

Z?:l U),(l + T( l)
(15)
where
T(a)= Y wSup(ai,a). (16)
=L
Here,w; € [0,1] and 7, o; = 1;Sup(a;i,a;) is the

support that a; receives from g;; 1 € (—o0,4+00) and 4 # 0.

Definition 2.13 [68] A generalized power ordered
weighted average (GPOWA) operator of dimension » is a
mapping: R" — R, defined by following formula:

1/2
GPOWA,.;(a1,az, ..., (Z wia ) : (17)

where w; satisfied Eq. (12); 4 € (—o0,400) and 4 # 0.

3 Interval-valued dual hesitant fuzzy linguistic set
(IVDHFLS)

For better tackling complex MAGDM problems, dual
hesitant fuzzy linguistic sets (DHFLS) [62] managed to
represent decision maker’s preferences by certain linguistic
term with possible membership degrees and nonmember-
ship degrees to indicate decision maker’s hesitancy. While
usually under circumstances of high complexity, due to
time pressure and knowledge limitations, decision makers
are only willing or able to provide their preferences with
interval values [30, 52, 54]. To accommodate this kind of
situations, inspired by DHFLS [62], here we define the
concept of interval-valued dual hesitant fuzzy linguistic set
(IVDHFLYS), and study its basic operational rules; then, we
propose an effective distance measure for IVDHFLS to
overcome irrationality in conventional method.

@ Springer

3.1 Definition of IVDHFLS

Definition 3.1 Let X be a fixed set, S be a finite and
continuous linguistic term set, then an interval-valued dual
hesitant fuzzy linguistic set IVDHFLS) SD on X is defined
as

SD = {<X, soc(x)’]/;(x)ag(x)ﬂx € X}a (18)

where s, is selected from predefined S to represent
decision maker’s judgment to an object x being evaluated;
h('x) = U ,u yU]eh {:u} U y ,uU Eh( ) {[:uL7 :uU]} iS a set Of
closed interval values belonging to [0,1] for denoting
possible membership degrees to which x belongs to
Soc(x);g(x) = UxL Uleg(x {v} UxL Uleg(x) {[vLa VU]} is a
set of closed interval Values belonging to [0, 1] for denoting
possible nonmembership degrees to which x belongs to
Sy(x)> that is, possible degrees to which x does not belong to
Sa- h(x) and g(x) satisfy: fi,v€[0,1,0< (uV)" +
(VU)+ S 17 where (:LLU)+ € ];Z+('x) = U[HL ul/]eh max{,u }
and (W) € gt(x) = Upt g max{vV} for V.

When X = {x,x, ...,
reduces to (s,,%,&). For convenience, sd = (s,,h,g) is

called an interval-valued dual hesitant fuzzy linguistic
number (IVDHFLN), and IVDHFLNs represent all ele-
ments in [IVDHFLS.

X} has only one element, SD

3.2 Operational rules for IVDHFLS

Definition 3.2 Given three IVDHFLNSs: sd = (s,, h, §),
sdy = (sy,,h1,8,) and sdy = (8,,h2,8,), 4 € [0,1], basic
operations on these sets are defined by

L. Asd = U(J,ﬁ.g)em’ (S;d, U[;LL,yU]EI;,[vL,vU]Gg {{[1_ (1 -
BT = (1= )3 09 0V 1) = Ug e
(sm Ut e Ve T e gf{[1 — (1 — by 1-

(1= 1) AIOD S 6V T3
2. Sd'”ZU(M.;;g“)esd (s“"’U[HL.uvleﬁ.,[vL.,v%eg ey

(W), (1= (=) 1= (1 =)} =
U(szﬁ,g)esd (Sl;” U[/AL,u”]eﬁ‘,[vL,\”/]eg {{[(ML);Vv ('uU)i]}’
(1= (1= 1= (1= )

3. sdy ®sdy = U(M gy €541, (80, h2,8,) € 5d(8, 4y,

U[ul MV1eh [ uY)hy [ VU]Egl Widles, {{['ul + '“2 “ﬁué’

1+ = u 1y A Vive vy
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4. sdy Q@sdy = Um Jin &1)€sdy (51, h,8,) € sd (S0,
U[ul Jleh, | ,uz,uu]ehz vivf] € &1, s, ve] € g {{[uis,

i g v}, {93 =il 98 = vV,
It can be easily proven that all results given above are

also IVDHFLNS, then we can have the following theorem.

Theorem 3.1 Let sd = (s, h,§),sd, = (s5,,h1,8,) and
sdy = (sy,, ha, &) be any three IV/DHFLN, then following
properties are true:

1. sd) @ sdy = sdr @ sdy;

2. sdy ®sdy = sdy ® sdy;

3. AMsdy @ sdy) = Jsdy & Asda, A € [0, 1];

4. sd} @ sdi = (sdy @ sdy)*, 2 € [0,1];

5. Msd @ dpsd = (A + Ao)sd, Ay, 22 € [0, 1];

6. sd“ @ sd® =sd" )y, 0 €]0,1].

Proof See Appendix 1. O

In order to compare two IVDHFLNs, we next define
score function and accuracy function, based on which a
comparison method for two IVDHFLNSs is presented.

Definition 3.3 Let sd = (s, h, ) be an IVDHFLN, then
score function S(sd) can be denoted as following

S(sd) = I(s,) Z uE () Z vE
,u uVleh g [ wleg
R e D) NENIT
[,u JV)eh [ eg

where [ is the function in Definition 2.1, /(k) and I(g) are
the numbers of interval values in & and g, respectively.

Definition 3.4 Let sd = (s, h, ) be an IVDHFLN, then
accuracy function P(sd) can be denoted as following

L v
Y@ 2

vEyUleg

1 1
P(sd) =1I(s;) x5 | — > u*
2 l(h) [HL#U]G};

(Z“JF_ZVU’

(20)
[t ul]eh 1) brvleg

where [ is the function in Definition 2.1, /(k) and I(g) are
the numbers of interval values in 4 and g, respectively.

Definition 3.5 Let any two IVDHFLNSs sd; = (s,,, 1, §,)

and sdy = (s, 2, §,), then
1. If S(sdy) <S(sd), then sd| <sd,.
2. If S(sd) = S(sd), then

(@) If P(sd,) = P(sd,), then sd = sds;
(b) If P(Sd1)<P(Sd2), then sd| <sd,.

3.3 An improved distance measure for IVDHFLS

When it comes to calculating distance between hesitant fuzzy
elements in HFS and its extensions, the first problem is that
lengths of membership set or nonmembership set in hesitant
fuzzy elements could be unequal. Normally for this kind of
situations, the complementing method [32, 56] is suggested to
construct distance measures, that is, to make the lengths equal
by adding values into membership set or nonmembership set
with shorter length. While artificially adding some values will
inevitably cause information distortion to some extent. There-
fore, without inserting any artificial values, here we define a
novel normalized Euclidean distance in following Defini-
tion 3.6 for IVDHFLS. It is worth noticing that Definition 3.6
is capable of calculating distance between any two [VDHFLNs
using linguistic term sets with different cardinalities.

Definition 3.6 Given two IVDHFLNSs sd;, = (sy,,h1,8;)
and sd, = (slgz,ﬁg,gz).Letlﬁl,l,h l5, and l4, be the lengths of
hy, o, g, and g, respectively, that is, denote the number of
elements in /;,hy,&; and &, Suppose S; = {sy, |0 €
[0,g1 — 1]} and S, = {s4,|92 € [0,g2 — 1]} be two sets of
continuous linguistic terms, where g; <g,. Then the nor-
malized Euclidean distance for [IVDHFLNs can be defined as

b, i 2
L1 o | fla) o w oo
d(sdy,sdr) = | =| — J — *
(s, sdz) = | 3 lallzzjz;kz;(gz—l#’“ g — 1"k
2
I EACTV R S )
gz—l hy gz—l ha
I g
ale =1 k=1 g—-1% g-1%
12
P EACT RN ul’
g—1 8 g-1#%

(1)

Especially, if and only if ¥ = 0, h; = h, and g1 =&,
we call sd; and sd, are perfectly consistent, and the
distance between sd; and sd is equal to 0.

Theorem 3.2 The above interval-valued dual hesitant
fuzzy linguistic Euclidean distance satisfies following fun-
damental properties:

1. 0<d(sdy,sdr) <1;
d(sdy,sdy) = 0 if and only if sdy and sd, are perfectly
consistent;

3. d(sdy,sdy) = d(sdy, sdy).
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4 Generalized power aggregation operators
for IVDHFLS

In this section, we carry out extension study of traditional
power average operators to accommodate interval-valued dual
hesitant fuzzy linguistic information. A series of generalized
power aggregation operators for IVDHFLS are proposed, their
desirable properties and special cases are also discussed.

4.1 Weighted generalized interval-valued dual
hesitant fuzzy linguistic power aggregation
operators

Definition 4.1 For a collection of IVDHFLNs sd;(j =
1,2,...,n), a weighted generalized interval-valued dual

WGIVDHFLPA,, ;(sd,, sdy, . . ., sd,) = U( s
Sz 1,8 ) ©5dj

;i (147 (sd;))

Sl 1 oo g L
=

R 0 (147(sd)))
1 — <1—H(l—(l—v ) )Z ]()IIT(S(/))>

j=1

1/2

> -1 @; = 1 Parameter A € (0,+00) Sup(sdj,sdy) is the
support the degree that sd;
receives from sdy Sup(sd;,sdy) satisfies following three
properties:

function to calculate

1. Sup(sd;,sdy) € [0, 1];

2. Sup(sd;,sdy) = Sup(sdy, sd;);

3. Sup(sd;,sdy) > Sup(sd;, sds) if d(sd;,sdy)<d(sd;,sdy)
where d is a distance measure between two

IVDHFLNS.

Theorem 4.1 Let sdj = (s,,h;, ;) be a collection of

IVDHFLNSs, then aggregation results from Definition 4.1
are still IVDHFLNs, and we have

N /iy
)j (147 (sd;)) 2
(§ (%) )
§ 0; (14T (sd;))

. 1/4 ; W (147(sd))) (24)
(l _ H (l _ (ﬂ]) )Z L (14T (sd;) ) , (1 o H (1 _ (#}])A)Zi:l tv),‘(l+T(J(/i))> ,

1/4

J=1

n e v
2 i ; (14T (sd;
J_G—Hu—u_ﬁnﬂl“”v

hesitant fuzzy linguistic power average (WGIVDHFLPA)
operator is a mapping S* — S:

WGIVDHFLPA,, ;(sd, sds, .. ., sd,)

n i\ /4
_ (D= (;(1 + T(sd)))sd) (22)
2i i1+ T(sd;)) ’
where
T(sd;) = Z o Sup(sd;, sdy) (23)
k=1,k£
w:(whwz,...,wn)r is the weighting vector for
sdi(j=1,2,...,n) with conditions €1[0,1] and
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is the weighting vector for
satisfies €[0,1] and

T
'7(Un)
And o

where @ = (w1, m,, ..
sdi(j=1,2,...,n).

Proof Theorem 4.1 can be proved by mathematical
induction method. See Appendix 2. O

Theorem 4.2 Given a collection of IVDHFLNs sd; =
(Sa;7hj7g~j)(j = 1727 BERS)
o= (w,my,... w,,)T is weighting vector for sdj,w; €
0,1] and 37 ;= 1. If o= (1/n,1/n,..., 1/n)", op-
erator WGIVDHFLPA reduces to following generalized

interval-valued dual hesitant fuzzy linguistic power aver-
age (GIVDHFLPA) operator:

n). A is a parameter and A > 0.
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& (14 T(sd)))sd’
j=1

GIVDHFLPA (sdy, sds, . . ., ST TT0d)
i=1 i

sd,) =

Ul w1y [ Ve,
10T 7
Jj=1

1+T(s(/f)

1/2
1 (1 ~TJa-a- vf)*)ZTH'*'W) 1 (1 _

U(x,/ ,/;/-,gj)esd/

/0y
O(f))‘)

1/4

S
1+ (sdj)
(ZZ (147 (sdy)

n 14+7(sd;) 1/2 n 1+T(de) ’s
<1 — H (1 — (yf)i)zu(‘*’“‘”f))) , ( 1 _ 'uj (1+T(Sl1,-))> , ( )
J

j=1

1+T(.¢rlj)

RN
[To-a-w )")Z,-,<l+»fw>

=1

Besides, along with variations of A and o, the
WGIVDHFLPA operator reduces to several other special
cases, which are listed in Theorem 4.3.

Theorem 4.3 Given a collection of IVDHFLNs sd; =
(Sa/,hjagj)(j - 17 27 sy
o= (0, ... a)n)T is weighting vector for sd;,w; €
[0,1] and }7 | w; = 1. Then

1. If A=1 and o= (1/n,1/n,..,1/n)", then
WGIVDHFLPA reduces to the interval-valued dual hesi-
tant fuzzy linguistic power average (IVDHFLPA) operator:

n). A is a parameter and A > 0.

& (14 T(sd;))sd;

o5 _]i,zl (1+7(sd))

IVDHFLPA(sd,, sd, . .

n 1+T(sr1 n
Uit el ko0 g, {{ [1 ~TI 0= sy =TT (= f
J

i1 =1

n 147 (sd;) n 147 (sdj)
{ LH BTN o <>2] }})
J ’ J
= j=1

(553h1,8; ) €3d

IVDHFLA(sd,, sds, . .

1 n
sdy) =~ & sd; = .
»5dn) njgsj U (SLZ,I

(5;:h7,8))€sd;

IT0- uhy 1 (27)

*H (1—g } } { [ﬁ( ’Lﬁﬁ(vlyﬁ} }}>
=1 J=1

Definition 4.2 For a collection of IVDHFLNSs: sd;(j =
1,2,...,n), a weighted generalized interval-valued dual
hesitant fuzzy linguistic power geometric average
(WGIVDHFLPGA) operator is a mapping S" — S:

n 17 (sdj) ;'

Z;IZ

(14T (sdp) *

I+T(ul )
>ZT:] (1+T(Ad,-))‘| } . (26)

2. If
Sup(sd;,sd;) =k (i.e., a constant) for all i#j, then
WGIVDHFLPA reduces to the interval-valued dual hesi-
tant fuzzy linguistic average (IVDHFLA) operator:

)v:l,w:(l/n,l/n,...,l/n)T and

WGIVDHFLPGA,, ;(sd, sd3, . . ., sdy,)

@ (14T (sd)))
1 n ~r
-3 (j%(/lsdj)zf1“”'“”(“""”>, (28)

(1
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where T(sd;) is the Eq. 23). o= (wy,
wy,...,m,)" is the weighting vector for sd;, w; € [0, 1] and

27:1 w; = 1. J is a parameter and 4 € (0, 4+00).

Theorem 4.4 Let sd; = (55,1, 8;) (j = 1,2,...,n) be a
collection of IVDHFLNs, then aggregation results from
Definition 4.2 are still IVDHFLNs, and we have

same€ as

WGIVDHFLPGA,, ;(sd, , sd, . .

o Sdy) = U s

(5,05t

n _oteg) /2
=1 !
n o)\ /A
<1 - H (1- (VJ-L);”)Z:1"’f<l+f<w,->>>
= j=1

Theorem 4.5 For a collection of IVDHFLNs: sd; =
(5,0 &) G =1,2,...,
o= (0,0, ... a)n)T is the weighting vector for sd;, w; €
0,1 and Y} ;= 1. If o = (1/n,1/n,...,1/n)", then
WGIVDHFLPGA reduces to following generalized inter-

val-valued dual hesitant fuzzy linguistic power geometric
average (GIVDHFLPGA) operator,

n). A is a parameter and > 0.

0j(14T(sdj)) s

" T (14T (sdy)) L WUles.
T, (i 2 - 0 [0 eg)

(147 (sd}))

1/4
A= (1 lo-a- mZ) @

=1

(147 (sd)))

1/4
, (1 o H (1 _ (VJU)/:)Z::I (vzi(l+T(sr/i))> 7

T
where o = (w1, s, ..., 0y)
sdj,; € [0,1] and 37, w; = 1.

GIVDHFLPGA(sdy, sds, . . .,sd,) =

M~

J=1

N 147 (sd;) y

7 >
E 1+T(sd; L U WL yOles
4\ 4] I:l:l (o) 2wzt T [y i1y [y v €

is the weighting vector for

147 (sdj)
(é (/lsdj)zl'zl (14T (sd}))

f; Gs
n ) 1/ n 147 (sdy) 1/2 (30)
n> m S
[ <I—H(1—(1—,ujl.‘) )EiH‘*T(“)) - <1_ (1—( 1_'“] )Z: I T(d))) ,
j=1 =
n L(“’f) 1/2 n 4T 1/%
( H 1 _ (1+T(.rd,‘))> , <1 - H (1 - (v;/)/v)zil(]%»T(.\'zli)))
j=1 =1

Proof Theorem 4.4 can be proved by mathematical — Theorem 4.6 For a collection of IVDHFLNs: sd; =

induction method. See Appendix 3. O
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o= (w,m,... w,,)T is the weighting vector for sd;, w; €
[0,1] and 37| w; = 1, Then

1. If A=1 and o= (1/n,1/n,..,1/n)", then
WGIVDHFLPGA reduces to the interval-valued dual
hesitant  fuzzy linguistic power
(IVDHFLPGA) operator:

geometric average

147 (sd;)

IVDHFLPGA(sdy, sds, . .., sdy) = & 52 T

=1

3. Boundedness: The GIVDHFLPA operator and the
GIVDHFLPGA operator lie between the max and min
operators,
sd~ < GIVDHFLPA;(sd,,sdy, . . .,sd,) < sd*,
sd~ < GIVDHFLPGA;(sdy,sdy, . . .,sd,) <sd*.

= U N 147 (sdj) s (3 1 )
(yhg)est \ T Dai T [ ey [ gy
j=1"J
" 1”+T(xdj) " nH»T(Adj) " n1+1(.cf{,-) . nl+T(.w{,-)
{{ |JH (,ujL)Zi:l ) H (#Jy)zi:] (1+T(vd,v))‘| }7 { |JH (ij)Zi:I (476t (v;])zx':] <1+r(m))] }})
=1 =1 =1 =1
, T
2. If A=1,0=1/n1/n,...,1/n)",Sup(sd;,sd;) = k Proof See Appendix 4. 0

(i.e., a constant) for all i#j, then WGIVDHFLPGA
reduces to the interval-valued dual hesitant fuzzy linguistic
geometric average (IVDHFLGA) operator:

Now, we can analyze some properties of operators
developed above.

n 1
IVDHFLGA(sdy, sda, . . .,5d,) = @ sdj =
j=1

(51,8 ) €3

U

~ {{ LH ) ] (M}’)F] } { [H vy,
[yf,ﬂju]ehj,["f,\ij]eg =1 J=1 j=1 J=

Similar to GIVDHFLPA and GIVDHFLPGA, operators
IVDHFLPA, IVDHFLA, IVDHFLPGA and IVDHFLGA
also hold properties of commutativity, idempotency and
boundedness.

(32)

Theorem 4.7 GIVDHFLPA operator and GIVDHFLPGA

operator hold following properties:
1. Commutativity: Let (sd;,sd}, ..

tation of (sdy,sda, .. .,sd,), then

., sd’) be any permu-

GIVDHFLPA;(sdy, sd;, . . .,sd,)

= GIVDHFLPA,(sd,,sdy, . . .,sd,),
GIVDHFLPGA, (s, sd, . . . sd’)
— GIVDHFLPGA, (sdy, sdb, . . ., sdy).

2. Idempotency: Let sd; = sd, forall j = 1,2,...,n, then

GIVDHFLPA,(sdy, sdy, . . .,sd,) = sd,
GIVDHFLPGA(sdy,sds, . . .,sd,) = sd.

Clearly, operators WGIVDHFLPA and
WGIVDHFLPGA are idempotent and bounded, but they do
not hold commutativity. Take WGIVDHFLPA for exam-
ple, if (sdf,sd;,...,sd}) is any permutation of (sd,
sda, ..., sdy), then T(sdi) =37\, oxSup(sd;,sdy).
Since (T'(sd}),T(sd;),...,T(sd})) may not be the permu-
tation of (7' (sdy),T(sdy),...,T(sdy,)), then

WGIVDHFLPA (sdy, sd, . . ., sd,,)
— WGIVDHFLPA;(sd; , sd5, . . ., sd")

generally does not hold. And it is the same with operator
WGIVDHFLPGA.

Lemma 4.1 [36] Assume
1,2,...,n,and 377, 4 = 1, then

that Xj>0,/1j>0,j:
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n n
A
[T =3 i,
j=1 j=1
with equality if and only if x; =x, = -+ = Xx,,.

Theorem 4.8 For a collection of IVDHFLNs sd; =

(50,15, 8) = 1,2,..,n),0 = (01, 02,...,00,)" is the
weighting vector for sd;, »; € [0, 1] and 377, @; = 1, then

IVDHFLPGA,,(sdy,sda, . . ., sd,)
<IVDHFLPA,,(sd,,sd,, .. .,sd,).
Proof See Appendix 5. O

Theorem 4.8 shows that values obtained by
IVDHFLPGA operator are not bigger than the ones
obtained by the IVDHFLPA operator. Considering varia-
tions of parameter A, we also can derive the following
Theorems 4.9 and 4.10.

Theorem 4.9 For a collection of IVDHFLNs: sd; =

(89,1, 8) = 1,2,...,n),0 = (w1, w3, .. .,wn)T is the
weighting vector for sdj, w; € [0,1] and 37 ;=
1,4 >0, then

IVDHFLPGA,,(sdy, sd, . . ., sd,)
< GIVDHFLPA,, ,(sd\,sda, . ..,sd,).
Proof See Appendix 6. O

Theorem 4.10  For a collection of IVDHFLNs: sd; = (s,
fz,-,gj),w = (a)l,wz,...,wn)T is the weighting vector for
sd;, w; € 0, 1] and 27:1 wj=1,A>0/=1,2,...,n, then

GIVDHFLPGA,, ;(sd1,sd, . . ., sdy)
<IVDHFLPA,(sd,,sd,, . ..,sd,).
Proof See Appendix 7. O

Theorems 4.9 and 4.10 give us the result that values
obtained by IVDHFLPGA operator are not bigger than the
ones obtained by IVDHFLPA operator, no matter how
parameter A changes.

4.2 Generalized interval-valued dual hesitant fuzzy
linguistic power ordered weighted aggregation

operators

In the above developed operators WGIVDHFLPA and
WGIVDHFLPGA, weighting vectors only depend upon

@ Springer

the mutually supportive input arguments themselves.
However, in many group decision making problems, we
need to rearrange all given arguments in descending (or
ascending) order, then weight the ordered positions of
input arguments so as to relieve influence of unfair
arguments on decision results by assigning low weights to
those “false” or “biased” ones. Therefore, based on ideas
of OWA operator [58] and power average aggregation
operator [59], in this section, we study fundamental
generalized power ordered weighted operators for
IVDHFLS.

Definition 4.3 For a collection of IVDHFLNs sd;(j =
1,2,...,n),sd,; be the jth largest of them, parameter 1 €
(0, +00). Then a generalized interval-valued dual hesitant

fuzzy linguistic power ordered weighted averaging
(GIVDHFLPOWA) operator is a mapping S" — S:

GIVDHFLPOWA,, ;(sdy, sds, . . ., sdy,)
. 17
_ (,ea <w]~sdi@>) , (33)

=1

=)o)

n .1
with w; € [0, 1] and ij =1,R = Z Vow)-
j=1 k=1

TV = Z Vs(i)s Vg(i) =1+ T(Sdﬂ(]-)),
= n (34)
T(sdy;)) = Z Sup(sdy(j), Sdy(x))-
k=1.k#j
In Eq. (34), T(sd,(;) denotes support that jth largest
argument receives from all the other arguments,
Sup(sdy(j), sds(xy) indicates support for sdy(; from sdg ).
g:10,1] — [0,1] is a basic BUM function [60] which
satisfies g(0) = 0,g(1) =1 and g(x) > g(y) if x > y.

Theorem 4.11 Let sd; = (s, 1, &) (j = 1,2,...,n) be a
collection of IVDHFLNSs, aggregation results yielded from
Definition 4.3 are still IVDHFLNs, and we have
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. 8dy)

GIVDHFLPOWA,, ;(sd,, sda, . .

R 1/ R 1/4
U \A\W
U["au e Ehaty ) e €800 ( (1- 'u“(/ ) ' (1 — L0 = (ke)”) ) ’ (35)
j=1 j=1
. 1/ " 1/4
AN AN
- (1—H(1—<1—v§@> ) ) 1= (1—H<1—<1—v5@> ) )
j=1 j=1
where w; satisfies Eq. (34) and sd, ;) be the jth largest of n 1
sdi(j =1,2,...,n). Ais a parameter and A € (0,+00). [VDHFLA(sdy, 5d3, -, 5c) _16:91 ;Sd/
Proof Similar to proof of Theorem 4.1, Theorem 4.11
can also be proved by mathematical induction method, = U SZ U
R =171 % N
detailed proof steps are omitted here for conciseness. (s55.1.8;) Esd; (. uNeh;vE vl eg; (37)

Theorem 4.12 For a collection of IVDHFLNs: sd; =
(sa/,ﬁj,gj) (G=1,2,...,n), then we have

1. If A= 1, then GIVDHFLPOWA operator reduces to
the following interval-valued dual hesitant fuzzy linguistic
power ordered weighted averaging (IVDHFLPOWA)
operator:

IVDHFLPOWA,,(sdy, sds, .. ., sdy) = & wisd,
=1

- U

(Syw) o) 8a()) €5 )

S n
Z,le Wjdke()

e 1 Ehot Ly

{{ [1 STL0 - i -TT0 - ﬂsf(,pw"] }

Jj=1 j=1
{ LH ()", H (vé@-»wf‘] } }) .
(36)

2.If A=1 and w= (1/n,1/n,....1/n)", then GIVD
HFLPOWA reduces to the following interval-valued dual
hesitant fuzzy linguistic average (IVDHFLA) operator:

(,)]Ega(,

=

n

Hlﬂ(luﬂr‘ulﬂ<1u}fﬁ”,

Definition 4.4 For a collection of IVDHFLNs sd;(j =
1,2,...,n), let sd,; be the jth largest of them, 1 is a
parameter and 1 € (0, +00). A generalized interval-valued
dual hesitant fuzzy linguistic power ordered weighted
geometric average (GIVDHFLPOWGA) operator is a
mapping §" — S:

GIVDHFLPOWGA,, ;(sd,, sds, . . ., sdy,)

1/ n W,
— 1 <j(_®l(ﬂsd”(i)) ) s

in which w; satisfies Eq. (34).

(38)

Theorem 4.13 Let sd; = (s, h;,&;) be a collection of
IVDHFLNs, then aggregation results from Definition 4.4
are still IVDHFLNs, and we can have
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GIVDHFLPOWGA,, ;(sd,, sds, . . ., sd,) =

n

~— SiTT .
(i) &, 7 | | (Rogy)
(S“a(j) 7]1‘7(/)‘ga(j)> €sdy(j) ( 7y g (A9%()

1/2 . 1/4
I AN U \A\Wj
U[’*ﬁm’“zgo)]g;”(f)‘[”ﬁovvgo)]egno) 1= (l N H (1—=(1- '“0(1')) ) /) 1= (1 - H (1-01- Ma(/)) ) /> ©(39)

=

n ) 1/2 n
(1 -Ia- (Vﬁ(,-))ﬂ)w’) ; <1 -[[a- (fo@)i)””)

J=1

1/2

where w; satisfies Eq. (34), sdy) is the jth largest of
sdi(j=1,2,...,n), 2 is a parameter and 2 € (0,400).

Proof Similar to proof of Theorem 4.4, Theorem 4.13
can be proved by mathematical induction method, and
proof steps are omitted here.

Theorem 4.14 For a collection of IVDHFLNs sd; =

(5o, R, &) = 1,2,...,n), then

1. If 2 = 1, then operator GIVDHFLPOWGA reduces to
interval-valued dual hesitant fuzzy linguistic power
ordered weighted geometric average (IVDHFLPOWGA)
operator, where

IVDHFLPOWGA,,(sd, , sds, . . ., sd,) =

(82,5 1a() 8() ) €5ats)

In resemblance to proof of Theorem 4.7, operators
IVHFLPOWA and IVHFLPOWGA can be proved holding
properties of commutativity, idempotency and bounded-
ness. Besides, similar to Theorems 4.8, 4.9 and 4.10, we
can also conclude the theorems as follows.

Theorem 4.15 For a collection of IVDHFLNs: sd; =

(80,1, 8) = 1,2,...,n), 4> 0, then,

GIVDHFLPOWGA,, ) (sdy, sds., . . ., sd,)
< GIVDHFLPOWA,, ; (sdy, sdy, . . ., sd,).

U ST
. ( I =0

L \wj U \wj L \wj U \wj
U {{ lJH(”am) T (ke ] }{ ll =TT =g 1 =TT =) ] }}
(1L ) 125 €Rat s [VE ) Ve 5 1 €8 () =1 =l =1 =1

2. If A=1,w=(1/n,1/n,...,1/n)", then operator
GIVDHFLPOWGA reduces to interval-valued dual hesi-
tant fuzzy linguistic geometric average (IVDHFLGA)
operator, where

IVDHFLGA(sd;, s>, . .
j=1 -

n | n | n
{{ [ (:ujL)na (:u]U)n‘| }7 { [1 - (
ke vt avieg L L Li=1 =1 =

—
|
<
=~
~
—
|
-
—
—
|
N~—
=
—_ 1

Theorem 4.16 Let sd; = (s%,ﬁj,gl-) G=1,2,...,n) be a
collection of IVDHFLNs, 4 > 0, then,

n 1
L 8dy) = d)" = n 1,
) @ (s J) (SH“ (O(I.)r]z

(41)
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IVDHFLPOWGA,,(sd,, sd, . . ., sd,,)

< GIVDHFLPOWA,, ;(sdy, s>, . . ., sd,).

Theorem 4.17 Let sd; = (s, h;, &) (j = 1,2,...,
collection of IVDHFLNs, 4 > 0, then,

GIVDHFLPOWGA,, ;(sd, , sd>, . . ., sdy,)
< IVDHFLPOWA,,(sdy, sds, . . ., sdy,).

n) be a

5 Approaches for MAGDM with interval-valued
dual hesitant fuzzy linguistic information

In this section, we apply afore-developed generalized power
aggregation operators to construct effective approaches for
MAGDM under interval-valued dual hesitant fuzzy linguistic
environments. Let A = {A;,A,,...,A,} be a discrete set of
alternatives, G = {G, Gy, ...,G,} be the set of attributes,
wm)T be the weighting vector for attribute
vector G, where w; >0,j=1,2,...,m and Z,"ij =1.
D ={d,,d,,...,d;} denotes the set of decision makers, =
(1,12, - .., n,) represents the weighting vector for experts,
with i, >0,and >, me =1, k=1,2,...,
R* = (r}),n is the decision matrix, where r§ = (s§,

o= (w,w,,...,

t. Suppose that

5, 86
takes the form of IVDHFLN, given by decision maker dy, for
alternative A; with respect to attribute G;.

Then, depending on actual decision situations where
whether weighting information for decision makers and
attributes can be determined in advance, in the following,
we propose MAGDM approaches based on the developed
generalized power aggregation operators for two basic
cases: (1) case I, where expert weights and attribute
weights are known; (2) case II, where expert weights and
attribute weights are totally unknown.

5.1 Approach for MAGDM with known expert
weights and attribute weights (case I)

Aiming at actual decision situations in which weighting
vectors for decision makers and attributes can be obtained
in advance, we apply WGIVDHFLPA and
WGIVDHFLPGA operators to construct the following
Approach I to resolve MAGDM under interval-valued dual
hesitant fuzzy linguistic environments.

5.1.1 Approach I: MAGDM with known expert weights
and attribute weights

Step I-1 According to Egs. (2) or (3), transform decision
matrices R* = (rf),, given with linguistic term sets of

_k
different cardinalities into the decision matrices R =
—k . . . ~k
(rij)lzx;11 denoted with same linguistic term set, where r; =
ko~
(5,7
dlfferent cardinalities into the one with largest cardinality.
Step [-2 Calculate support degrees by the following
function:

i gu) Normally, we transform linguistic term sets of

k1 kol
SM])( U’ U) =1 _d(rijvrij)a
ki1=12,...tk#Li=12,...n j=12,....m,

(42)
which satisfies the conditions for support functions in

Definition 2.8. d (
Euclidean distance measure defined in Eq (21).

) that IVDHFLN
Sl

Tijs f]) is calculated by normalized

Step I-3 Calculate the support degree T(

r]; receives from other IVDHFLNs 7, (l =1,2,.

k) where

Z WIS”P 117 l] (43)
I=1,1#k
Step I-4 Utilize weights n,(k=1,2,...,
makers d; to calculate weights g“g.

IVDHFLN rf,

L
&= ’7"(1+T<r'3">?k k=121, (44)
PO ne(1+T(ry))

where gU>O and Zk | fk =1.

t) for decision
associated with the

_k
Step I-5 Aggregate all individual decision matrices R =

~k . . . .
(i) usm(k=1,2,...,t) into group decision matrix R =

(7i7)uxm DY use of WGIVDHFLPA operator, or into group
decision matrix R = (r by use of WGIVDHFLPGA

l )nxm
operator, where
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2

— WGIVDHFLPA: (7, Fis Too -

%EIU

“k 1/
I/

. 1/2 . 1/7
y; Y
Ui et e OHU %ﬂf>7oﬂa%h>> 7 (45)
' k=1 k=1
p 5k 1/4 ‘ et 1/4
1-1Ja 9 1= (1 =T =@ =vEh
k=1 k=1
or
2 1 -
WGIVDHFLPGA“( N U S b
k. ~k 7Hk:1 (Zoy)"0
(s 7[./.,1”5;8{-})67;'/
. 1/2 . 1/2
&K NG
U 1 - <1 ~[Ia-a-uh )Cv> 1= (1 o § (URC Ty )“) ) (46)
[k k) el [vEk vk egh k=1 k=1
. 1/2 . 1/2
e e
(1 -TTa- (V,-ij)ﬁ)g”> ; <1 -TIa-08 )€">
k=1 k=1
Step 1-6 Calculate support degrees Sup(ry,ry) and m o o
Sup(r¢ ri lp) by following functions: Z wpsup(rij’rip)' (50)
p=Lp#j
Su, Fij, i :l—drl-l,r,- )
f(:jl’i)' T ja[g L 11:)2’ oam j#p, (47) Step I-8 Calculate weighting vector w;(i = 1,2,...,n;j =
1,2,...,m) associated with r;;, and w{/ associated with r{’:
G G '
Sup( Tij» zp)_l_d( 1]7rip)7 48
1*1 2 '7n;]ap:1323"'am;j7épm ( ) Wij = m (1+T(r[j)) (51)
Z] L 0i(1+T(ry))’
which satisfy the conditions for support functions in Def- G
it o1+ T9(5))
inition 4.1. Here, d(ry,r;) and d(r l],rlp) are calculated ,,G — i (52)
ij

according to Eq. (21).
Step I-7 Calculate support degree T(r;;) that IVDHFLN r;

receives from other IVDHFLNs r,p(p =1,2,...,m;p #j),

or T(ri?) of IVDHFLN r by r; (p =1,2,....m;p #£)),

where

T(ry) = Z wpSup(rij, rip), (49)
p=lp#j

@ Springer

Iy §)

Step 1-9 Use WGIVDHFLPA operator or WGIVDHFLPG
operator to aggregate all evaluation values r;(i=

(A)j(l + TG(F

1,2,..,mj=1,2,...,m) or ry into overall evaluation
values r;(i=1,2,...,n) or r¢ corresponding to each

alternative A;(i = 1,2,.. .,

n):
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r; = WGIVDHFLPA,, ;(ri1, ria, .. rim) = J, s i,
’ ‘y"ii7hi/’ ij ) ETij m 1
(525 i 837) (Z/:l wi (o) )
m 1/2 m 1/4
A\wij Jywii
U[ys,y,.lj/]eﬁ,j,[vfj.vg]egij (1 - L1 (1 - (/lf;) ) I) ) (1 - 1_'1[ (1 - (:uz(]]) ) ) ) (53)
J= J=
m 1/2 m 1/2
A\ Wij A\ wij
1-(1—H(1—(1—v§)) ) ,1-(1— (1= (1=v)" )
j=1 j=1
or
G G .G G
r¢ = WGIVDHFLPGA,, ;(r$,1S,...,r%) = S G
i A( 112 ) U(Yf’jﬁggg) erd ( %Hj:l (ng) ?
. 1/4 " 1/4
T aw@
U6 6] g 146 06| g 1- (1 -] 1(1 — (1= %)) ) 11— <1 - H(l — (1= %)) ) : (54)
J= J=

m o 1/4.
(1 -1 (1— (vij)/~)Wff> , (1 —

Step 1-10 Calculate scores s(r;) or s(r¢) for the overall
interval-valued dual hesitant fuzzy linguistic numbers
ri(i =1,2,...,n) or r? of alternatives A;(i = 1,2, ...,n) by
Definition 3.5.

Step I-11 Rank all alternatives A;(i = 1,2,...,n) and select
the best one(s) in accordance with the ranking order of
ri(i=1,2,..,n)or ré(i=1,2,...,n).

5.2 Approach for MAGDM with unknown expert
weights and attribute weights (case II)

To tackle more uncertain decision situations where
weighting information for decision makers and attributes
are totally unknown, we choose GIVDHFLPOWA or
GIVDHFLPOWGA operators to develop following
Approach II for MAGDM under interval-valued dual
hesitant fuzzy linguistic environments.

5.2.1 Approach II: MAGDM with unknown expert weights
and attribute weights

Step II-1 Same as step I-1.
Step II-2 Calculate support degrees according to following
function
_a(k) —~o(l) _a(k) _a(l)
Sup(r,-j ST )=1-— d(rij STy ),

ki=12,...tk#i=12,...n,j=1,2,....m,

(55)
which satisfies conditions for support functions given in

Definition 2.8. Here, d(?:;(k),f;(l)

malized Euclidean distance measure in Eq. (21).

) is calculated by nor-

Step II-3 Calculate support degree T(?;(k)) that the kth
largest IVDHFLN 'Fjj(k) receives from other IVDHFLNs
D=1,2,..., 1 #k), where

~0
Tij
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S sup(ry 7).

=1,k

(56)

Step I1-4 Utilize Eq. (34) to calculate weights nf associated
with the kth largest IVDHFLN r , we have n” =g(&) —
(&) with nj; € [0,1] and Zk 1’7u =1, g is the BUM

_d(rii(j)’riGﬁ(p))?
n? j)p: 1727"'7m; ]#p’

Sup(rg(j), rg_(p)) =1

60
i=1,2,..., (60)

which satisfy conditions for support functions in Defini-
tion 4.1. Here, d(r;,r;,) and d(r{,r{) are calculated by
Eq. (21).

Step II-7 Calculate support degree T'(ris(;j) that the jth

function [60], R*=3>F, u DTV, =3, V;(I),V{;U) largest IVDHFLN r,,(; receives from other IVDHFLNs
~a(l) Tig (1721,277’"717 #J)
=1+T(r;"). )
_k

Stip II-5 Aggregate all individual decision matrices R = (Fia)) Z Sup(Fio(i)s Fio(p)); (61)

(7)) uxm(k=1,2,...,1) into group decision matrix R = p=1p7j

(Fi)usm ©OF RY=(r{),., by GIVDHFLPOWA or

GIVDHFLPOWG operator, where

-2 t -
— GIVDHFLPOWA, (7, Fis T i) = o RN KT,
Syl 8 )€y (Zk:1’7u(“u )/)
, 1/2 , 1/2
9 N T K
U[lﬁgk Uo'k)] U(A [ngk)_an(k]qu(k) <1 — H (] _ (Mll; (M)?)’L,) , (] — H (] — ('uz[// (k))))’?17> , (57)
Y ! Y k=1 k=1
. 1/ . 1/7
( H Lo‘(k)) )W,,) 1— (1 - H (1 B (1 v;/o‘(k))i)’?,,>
k=1 k=1
or
— GIVDHFLPOWGA(Fy, T, ., 7y)
= U o) " ( a(k A , U[Iula(k) 0} eha(k) [Vlrr(k ‘Ua(k] e?®
( x:- u ’gu )6 ij Hkl Y Y Y

(58)

Step II-6 Calculate support degrees Sup(ris(, Tig(p)) OF

Sup(rg(j), rg(p)) according to following functions:

Sup(rio‘(]')ariﬂ(p)) =1- d(riﬂ(]')ario'(p))v (59)
i:172""7n;j’p:172""7m;j¢p,

@ Springer

or support degree T(rG(j>) that the jth largest IVDHFLN
ri(jm receives from IVDHFLNs rm@) p=1,2,....m;p #
J), where
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m Step 11-10 Calculate scores s(r;) (i =1,2,...,n) or s(r%)
G G .G
T(rigg) = IZ#Sup(rmm,rm(p)). (62) for r; (i=1,2,...,n) or r? related to alternatives A; (i =
p=1p#j

Step II-8 Utilize Eq. (34) to calculate weights w;(i =

1,2,...,mj=1,2,. )orwyGf
wij = g(1y) —g(R" ‘) with w; €

g is the BUM function [60],

Rj=Y Vi, TV= Z Vis(j)»
p=

p=1

[0,1] and Y77 wy = 1,

Vi(i(j) =1+ T(rio'(j));

o RS .
or wg = g(rs) — g(542) with wg €[0,1] and > ", wg =

17 g is the BUM function [60], R{ =)
to‘(p Zj 1 m(/ w(/) =1+ T( m'(/))
Step 1I-9 Utilize WGIVDHFLPOWA operator or

WGIVDHFLPOWG operator to aggregate r;(i =
1,2,...,mj=1,2,...,m) or r into overall values r;(i =
1,2,...,n) or r¢ related to each alternative A;, where

ri = WGIVDHFLPOWA,, ;(ri1, 112, - - -y Fim) =

s
(%a(,-) s j) aé’mw) €Tig(j) (Z o1 Wi (%ia() )")
~ ) (-1
U[H,-L(,m#f(l,(,-)]Ehm(/),[V,-L,,(, Vini) | €8iat) ]:1[ 'ulff(/)
=

m 1/4 m
( = | LR ))A)W/’f) < ~TIa-a-v2
J=1 Jj=1

1,2,...,n) according to Definition 3.5;
Step II-11 Rank all the alternatives A; (i = 1,2,...,n) and
select the best one(s) in accordance with the ranking of
ri (i=1,2,...,n) and rC.

For more clarity, Fig. 2 shows flowcharts of the above-
proposed IVDHFLS-based approaches for MAGDM under
the situations of cases I and II.

5.3 Advantages of proposed approaches

Based on IVDHFLS and its generalized power operators,
the above-proposed approaches can effectively tackle
MAGDM problems where arguments being aggregated are
mutually supportive [41, 47, 55]. The main advantages of
proposed approaches can be outlined as follows.

1. The newly defined expression form of IVDHFLS holds
advantages of linguistic variables and DHFS when

1/74

17
.U,g(,) A W") ; (63)

J=1

1/i
o)) )WU>

or

= WGIVDHFLPOWGA.,, ;(r§, 15, .. .,15)

»m

G

; UG
[Hi(:(/’)"#ir(/)]eh/a(/) I m(,)"ia(,‘)] 8ia(j)

ia(j)

= K WG, U
U o ¢ ¢ ( IH (208, )"0 ’ LG
Sxiar(/) ,hiau),gi:’(/.) (S =1 Wia(j)

" 1/
N
- (1—1'[(1—(1—%,?@) ) ) 1 (1—
J=1 j=1

N

Pl

I1a-

17
w8 (64)
)|

m 1/ , 1
(1 [Ja-0 wm)A)WU) ) (1 -110- (v%((;f>))')w>
Jj=1 j
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| MAGDM based on IVDHFLS |
v

Case I: With known expert Step I-1 & Step II-1: Transform individual ~ |[Case I1: With unknown expert
weights and attribute weights matrices by use of Eq.(2) or Eq.(3) weights and attribute weights

Step 1-2. Calculate support degrees Step 1I-2. Calculate support degree
between individual values 7* and 7/ between individual values 77® and 7o

i i
Step I-3. Compute total support | | Known expert Step I1-3. Compute total support
degree T(z) for 7l weights 7, degree of 7(r°")

¥
Step I-4. Obtain integrated expert

weights based on 7, and T(7")
¥
Step I-5. Aggregate individual
decision matrices into group decision
matrix by WGIVDHFLPA

{

Step 1-6. Calculate support degrees
between group values 7, and 7,

v

!

Step I1-4. Determine expert weights

!

Step II-5. Aggregate individual decision
matrices into group decision matrix by
GIVDHFLPOWA

!

Step I1-6. Calculate support degrees

between group values r, =~ and 1, ,

degree T(s;) for 7,

Step I-7. Calculate total support Known attribute
weights o,

Step II-7. Calculate total support
degree of 7

¥
Step I-8. Determine integrated

attribute weights based on », and 7(r;)

Step I-9. Obtain overall evaluation
value of each alternative by
WGIVDHFLPA

Step II-8. Obtain power weights for
attributes

v

Step 11-9. Obtain overall evaluation value
of each alternative by GIVDHFLPOWA

v

‘ Step I-10 & Step 1I-10. Calculate score degrees of overall evaluation values ‘

¥

‘ Step I-11 & Step II-11. Output ranking order of alternatives ‘

depicting decision hesitancy in ill-defined problems.
IVDHEFLS is specially suitable for complex decision
situations where experts are willing to or only capable
of indicating their hesitancy with interval values rather
than crisp ones on both membership and nonmember-
ship degrees. On the other hand, by setting upper
bounds and lower bounds as equal in /(x) and g(x),
IVDHFLS flexibly reduces to accommodate such
decision scenarios where membership or nonmember-
ship degrees can be assigned exactly with crisp values.
For calculating distances between IVDHFLNs, the
improved distance measure defined in Eq. (21) man-
ages to help proposed MAGDM approaches avoid the
information distortion caused by conventional com-
plementing method [32, 56].

As for MAGDM case I with known expert weights and
attribute weights, approach I derives synthesized
expert weights (using Eq. (44)) and attribute weights
(using Egs. (51) or (52)) by taking into account known
weighting information and supportive correlations
among arguments simultaneously, so that approach I
manages to consider characteristics of problems in
case I more comprehensively. While for more complex

@ Springer

Fig. 2 Flowcharts of proposed IVDHFLS-based approaches for MAGDM

MAGDM in case II without weighting information
(i.e., expert weights and attribute weights are totally
unknown), approach II utilizes BUM function [60] to
objectively derive appropriate expert weights and
attribute weights from supportive correlations among
interval-valued dual hesitant fuzzy linguistic argu-
ments. Overall, by employing IVDHFLS to depict
decision preferences, the proposed approaches I and II
can exploit decision information more adequately, so
as to effectively resolve MAGDM with mutually
supportive arguments being aggregated.

In what follows, application and comparative studies are
carried out to verify our proposed MAGDM approaches.

6 Illustrative examples
6.1 Case study
Emergency management is a very important issue in social

systems because frequently happening emergency events
may cause disastrous consequences, especially in countries



Int. J. Mach. Learn. & Cyber. (2016) 7:1147-1193

1167

with high population density, such as China. One of the
most important components in emergency management is
to evaluate the emergency response capacity (ERC) of
emergency departments or emergency solutions [16]. In
this subsection, we apply approaches developed in Sect. 5
to evaluate emergency response capacity of emergency
solutions.

To implement rescue to a urban fire happened in China,
for effective response, local emergency department have to
select the most appropriate alternative from prepared
emergency solutions (adapted from Ju et al. [16]). Suppose
there are three emergency solutions to select: {A;, A, As}.
Three decision making teams d (k = 1,2,3), including
employees team (d;), external experts team (d,), senior
managers team (d3), are organized to evaluate the emer-
gency solutions under four attributes: emergency process
capability (Gp), emergency forecasting capability (G,),
emergency support capability (G3), after-disaster process
capability (G4). Due to uncertainty and time pressure,
decision makers are usually hesitant and are more likely
willing to express their preferences by use of linguistic
terms. Then the fuzzy tool of IVDHFLS defined in this
paper is provided to all teams to assess the alternatives.
Then, three interval-valued dual hesitant fuzzy linguistic
decision matrices, i.e., R* = (rl’.‘j)3x4(k =1,2,3), are col-
lected and shown in Tables 1, 2 and 3. Suppose R' given
by d; uses the nine-granularity linguistic term set S =
{50,51,52,53, 54,55, 56,57, 53 }, R given by d, uses the five-
granularity linguistic term set S = {so, 51,52, 53,54}, and R®
given by ds uses the eleven- granularity linguistic term set
S = {s0,51,52,53, 54,55, 56, 57, 58, 59, S10 | - Subsequently, we
use the developed decision making approaches to derive
ranking order of the three emergency solutions. Decision
steps are detailed as follows.

Case I Suppose that weighting information is known.
The weighting vector for decision making teams is n =
(0.4,0.3,0.3)", weighting vector for attributes is @ =
(0.2,0.3,0.3,0.2)T. For this case, we use Approach I to
obtain ranking order of the emergency solutions.

Step I-1 Transform decision matrices into the ones by use
of linguistic term set with largest cardinality (i.e., the ele-
ven-granularity linguistic term set) according to Eq. (2).

1
Therefore, R' = (r})3,, is mapped into R = (?;)3X4 as

shown in Table 4, R*> = (rl-zj)3x4 is mapped into R? =

3
(r7)3x4 as shown in Table 5, R = R°.
Step I-2 Calculate support degrees Sup(?f;,?fj) (k,1,i=
1,2,3;j=1,2,3,4;k # I) by Eq. (42). For simplicity, we
k
ij?

kol ,
denote Sup(r;;, ;) by Sup referring to support degrees

_k 1
between R and R, then we have

Table 1 The interval-valued dual hesitant fuzzy linguistic decision matrix R' provided by d;

Gy

G3

G

G

(s4, {[0.6, 0.7], [0.7, 0.8]}, {[0.1, 0.2]})

(s6, {[0.4, 0.51}, {[0.2, 0.4]})

(s7, {[0.2, 0.41}, {[0.4, 0.5]1})

(s, {[0.2, 0.31},

(s1, {[0.1, 0.41}, {[0.2, 0.3], [0.3, 0.4]})

(s2, {[0.5, 0.6}, {[0.1, 0.2]})

(ss, {[0.3, 0.51}, {[0.1, 0.2]})
(ss, {[0.4, 0.71}, {[0.2, 0.3]})
(s7, {[0.6, 0.81}, {[0.1, 0.2]})

Ay

{[0.5, 0.6], [0.6, 0.71})

Ay

(52, {[0.5, 0.6], [0.7, 0.8]}, {[0.1, 0.2]}) (s5, {[0.5, 0.71}, {[0.1, 0.2], [0.2, 0.3]})

(s4, {[0.3, 0.4], [0.4, 0.5]}, {[0.4, 0.5]1})

Az
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0.8234
0.7699
0.6797
0.7644
0.7309
0.9243
0.8016
Sup® = Sup®* = | 0.5455
0.6487

0.9077
0.7615
0.8096
0.7446
0.7891
0.9065
0.8268
0.8354
0.8361

0.8387
0.4285
0.7319
0.8222
0.4909
0.7536
0.7109
0.9278
0.7895

0.7849
0.8449 |,
0.7812
0.798
0.7738
0.7333
0.9214
0.717
0.8391

Sup]2 — SMPZI —

Sup13 _ Sup31 —_

Step I-3 Calculate support degree T(?f;-) of ?f;. by ?ﬁj(l =
1,2,3;1+# k) using Eq. (43). We denote T(?f;) by T as
follows,

0.4763
0.4502
0.4812
0.5698
0.4716
0.4665
0.5462
0.456
0.5643

0.4957
0.4652
0.5148
0.6111
0.5552
0.5747
0.5459
0.5663
0.6134

0.4983
0.2758
0.4456
0.5487
0.4497
0.5296
0.5422
0.4747
0.5383

0.4749
0.4856 |,
0.4543
0.5904
0.5531 |,
0.5642
0.5956
0.5246
0.545

T' =

T° =

Step 1-4 Utilize Eq. (44) to calculate the weights &;(k =
1,2,3) associated with r{.‘i, we denote (§§)3X4 by & as
follows,
0.3871
¢'=103978
0.3945
0.3087
& = 0.3027
0.293
0.3041
& =10.2995
0.3125

0.3871
0.3849
0.3878
0.3128
0.3064
0.3024
0.3001
0.3086
0.3098

0.3926
0.3678
0.3859
0.3044
0.3134
0.3062
0.3031
0.3188
0.3079

0.3817
0.3916 |,
0.3841
0.3087
0.307 |,
0.3098
0.3097
0.3014
0.306

Step I-5 Suppose /4 = 2, then aggregate individual decision

_k
matrices R = (?2)3X4(k =1,2,3) into group decision

matrix R = (r;j);,, by WGIVDHFLPA operator as shown
in Table 6, or RC = (’"5) 34 by WGIVDHFLPGA operator,
as shown Table 7.

Step 1-6. Calculate support degrees Sup(ry,ri) (i =
1,2,3:j,p=1,2,3,4;j # p) by Eq. (47), and Sup(ri?,rg)
by Eq. (48). Here, we denote Sup(r;,ri,) by Supj,, and
Sup(rg , rg
jth row and pth row in R and RS, respectively. We have

) by Supg,, referring to support degrees between

@ Springer

0.8998
0.8281 |,
0.636
0.7138
0.909 |,
0.7014
0.9098
0.8647 |;
0.6511
0.6199
0.8352 |,
0.923
0.9301
0.7178 |,
0.9696
0.6462
0.8715 |;
0.9376

Sup, = Supy =

Supz = Supz =

Sup14 = Supsy =

Suprz = Supz, =

Supys = Supy =

Supss = Supyz =

and

0.8299
0.8577 |,
0.6345
0.7461
0.8586 |,
0.6499
0.8791
0.8261 |,
0.6248
0.585
0.9501 |,
0.9477
0.8889
0.7455 |,
0.961
0.6398
0.7793
0.9592

Sup?2 = Supgl =

Sup?3 = Sl,tpg;1 =

Sup?4 = Supf1 =

Supgy = Sup) =

Supgy = Supg =

SupsG4 = Supf3 =

Step I-7 Calculate support degree T'(r;) of r; by ry(p =
1,2,3,4;p #j) according to Eq. (49), and support degree
TC(ry) of ri by ri(p=1,2,3,4;p #j) according to
Eq. (50). Here, we denote (T(ry))s,4 and (TC(ry))5,4 by

T and TY, respectively. Then we have
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Table 6 Group decision matrix R yielded by WGIVDHFLPA operator

G1 GZ

G

Gy

Ay (61432, {10.2252, 0.4027],
[0.2443, 0.4194]},
{[0.1925, 0.3016],
[0.2198, 0.334]})

Ay (sss107, {[0.527, 0.7133],
[0.5781, 0.7355]},
{[0.1311, 0.2645]})

[0.2391, 0.35611})

Az (592096, {[0.5953,
0.74411}, {[0.1361,
0.24241], [0.1463,
0.25591})

{[0.234, 0.34571})

(s3.1721, {[0.4922, 0.61751}, {[0.1301,
0.2332], [0.1602, 0.2634], [0.1617, 0.2647],
[0.2, 0.3], [0.1506, 0.2583], [0.1859,
0.29251], [0.1876, 0.294], [0.2332, 0.3343]})

(sa017, {[0.3759, 0.50131}, {[0.157, 0.307],

(543066, 1[0.5297, 0.6343], [0.5501, 0.6543]},

(Sg‘9385, {[0216, 0.354],
[0.2638, 0.3937]},
{[0.4268, 0.5269],
[0.4477, 0.5475]})

(s6.4504, {[0.4357,
0.6259]}, {[0.2459,
0.3602], [0.2582,
0.37411})

[0.5798, 0.70591},
{[0.1381, 0.2446],
[0.1711, 0.27751})

(s5.5426, {[0.4792, 0.6112],

(84053, {[0.4731, 0.6522],
[0.5369, 0.7049]}, {[0.1233,
0.256], [0.1719, 0.29511})

(582156, {[0.5092, 0.6315]},
{10.1817, 0.3204]})

(548062, {[0.4913, 0.6362]},
{[0.1234, 0.278], [0.1496,
0.29497, [0.161, 0.3271],
[0.1962, 0.3479]})

Table 7 Group decision matrix R® yielded by WGIVDHFLPGA operator

G G

G;

G4

A] (*96.037, {[01865, 03441],
[0.2332, 0.3954]},
{[0.2446, 0.3397],
[0.3369, 0.4308]})

[0.2443, 0.3432]})

Ay (sse0s1. {[0.4633, 0.6885],
[0.5229, 0.7259]},
{[0.1485, 0.27411})

0.4075], [0.3684, 0.4631})

Az (s9.1796, {[0.5476,
0.6729]}, {[0.1848,
0.2772], [0.2378,
0.3271]})

(510545, {[0.4385, 0.5386], [0.4977,
0.5963]}, {[0.3083, 0.4037]})

(523537, {[0.2737, 0.54621}, {[0.1474,
0.2443], [0.1753, 0.2732], [0.1763,
0.2744], [0.2, 0.3], [0.2044, 0.2973],
[0.2249, 0.3207], [0.2257, 0.3217],

(sa.0108, {[0.3157, 0.44881}, {[0.3012,

(sg.8713, {[0.1813, 0.32],
[0.1958, 0.3398]},
{[0.434, 0.5341],
[0.4759, 0.57691})

(s2.4118, {[0.3397,
0.4795]1}, {[0.3603,
0.4555], [0.4232,
0.5205]})

(s4.5825, {[0.3838, 0.5896],

[0.4241, 0.6473]},
{[0.1877, 0.2801],
[0.2105, 0.30581})

(s3.7682, {[0.4184, 0.622],
[0.4363, 0.6461]}, {[0.1391,
0.2669], [0.2112, 0.35391})

(58.02393 { [04201 N 05617] },
{[0.2164, 0.35431})

(s4.1146, {[0.4424, 0.571]},
{[0.1393, 0.3064], [0.2432,
0.3537], [0.1758, 0.3351],
[0.2649, 0.378]})

0.666 0.5519 0.458 0.6549

T =1 0.6941 0.5597 0.6067 0.6497 |,
0.5314 0.598 0.6047 0.7024
0.6486 0.5193 0.4527 0.6344

T¢ = [ 0.6801 0.6057 0.6126 0.6227

0.5103 0.6034 0.6061 0.701

Step I-8 Use Eqgs. (51) and (52) to calculate weighting

vectors: wy(i =1,2,3;5=1,2,3,4) and w9 associated

i
with r;; and rf, respectively. Here, we denote (w;);,, and

(W )34 by w and wO. Then we have

0.2126 0.2971 0.2791 0.2112
0.2093 0.2891 0.2978 0.2038 |,
0.1905 0.2982 0.2995 0.2118
0.213 0.2944 0.2815 0.2111
wl =1 02067 02962 0.2975 0.1996
0.1882 0.2997 0.3002 0.2119

w =

Step  I-9  Use

WGIVDHFLPA

operator or

WGIVDHFLPGA operator to aggregate all the evaluations
ri(i=1,2,3;j=1,2,3,4) or r(i=1,2,3;j=1,2,3,4)

)

to overall evaluation values r;(i = 1,2,3) or r%(i = 1,2,3)
corresponding to each alternative A;, where

ri = (S6.0648, {[0.3849, 0.5333], [0.4045, 0.5516],
[0.3923, 0.5397], [0.4114, 0.5576], [0.3871, 0.5356],
[0.4065, 0.5538], [0.3945, 0.542], [0.4134, 0.5597]},
{[0.1906, 0.3099], [0.2049, 0.3197], [0.1926, 0.3125],
[0.2072, 0.3224], [0.2032, 0.322], [0.2186, 0.3322],
[0.2054, 0.3247], [0.221, 0.3351], [0.2037, 0.3225],
[0.2192, 0.3328], [0.206, 0.3252], [0.2217, 0.3356],
[0.2173, 0.3352], [0.234, 0.346], [0.2197, 0.3381],
[0.2366, 0.349], [0.1994, 0.32], [0.2145, 0.3302],
[0.2015, 0.3227], [0.2168, 0.333], [0.2126, 0.3326],
[0.2289, 0.3433], [0.2149, 0.3354], [0.2314, 0.3463],
[0.2132, 0.3331], [0.2295, 0.3439], [0.2155, 0.336],
[0.232, 0.3468], [0.2275, 0.3464], [0.2451, 0.3577],
[0.23, 0.3494], [0.2479, 0.3608], [0.196, 0.3167],
[0.2108, 0.3267], [0.1981, 0.3193], [0.2131, 0.3295],
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[0.209, 0.3291], [0.2249, 0.3397], [0.2113, 0.3319],
[0.2274, 0.3426], [0.2096, 0.3296], [0.2256, 0.3402],
[0.2119, 0.3324], [0.2281, 0.3431], [0.2236, 0.3427],
[0.2409, 0.3538], [0.2261, 0.3456], [0.2436, 0.3569],
[0.205, 0.3271], [0.2207, 0.3376], [0.2073, 0.3299],
[0.2231, 0.3404], [0.2187, 0.34], [0.2355, 0.3511],
[0.2211, 0.3429], [0.2382, 0.3541], [0.2193, 0.3406],
[0.2362, 0.3516], [0.2217, 0.3435], [0.2388, 0.3547],
[0.2341, 0.3542], [0.2524, 0.3659], [0.2367, 0.3573],
[0.2552, 0.3691]}),
r = (sg2718, {[0.4585, 0.6195], [0.4728, 0.6265]},
{[0.1774, 0.3143], [0.1799, 0.3177],
[0.2002, 0.3279], [0.2031, 0.3315]}),

r3 = (S6.0166, 110.5221, 0.6536], [0.5516, 0.6812],
[0.5284, 0.6593], [0.5574, 0.6863]}, {[0.1568, 0.2774],
[0.1634, 0.2809], [0.166, 0.287], [0.173, 0.2906],
[0.1672, 0.2883], [0.1743, 0.2919], [0.1771, 0.2983],
[0.1847, 0.3021], [0.159, 0.2804], [0.1657, 0.2839],
[0.1683, 0.2901], [0.1755, 0.2937], [0.1696, 0.2914],
[0.1768, 0.2951], [0.1796, 0.3016], [0.1873, 0.3054]});

and
rf = (84.6157, {[0.243, 0.4288], [0.2448, 0.4313],
[0.2485, 0.4369], [0.2504, 0.4395], [0.2552, 0.4426],
[0.2571, 0.4453], [0.2611, 0.4511], [0.2631, 0.4539]},
{[0.2814, 0.3782], [0.2902, 0.3922], [0.3026, 0.3994],
[0.3107, 0.4124], [0.2858, 0.3835], [0.2945, 0.3972],
[0.3066, 0.4043], [0.3146, 0.4171], [0.286, 0.3837],
[0.2946, 0.3975], [0.3068, 0.4045], [0.3148, 0.4173],
[0.2903, 0.3889], [0.2988, 0.4024], [0.3108, 0.4093],
[0.3187, 0.4219], [0.2911, 0.3884], [0.2997, 0.4019],
[0.3116, 0.4088], [0.3194, 0.4214], [0.2954, 0.3935],
[0.3037, 0.4067], [0.3155, 0.4136], [0.3232, 0.426],
[0.2956, 0.3937], [0.3039, 0.407], [0.3156, 0.4138],
[0.3234, 0.4262], [0.2997, 0.3987], [0.308, 0.4118],
[0.3195, 0.4185], [0.3271, 0.4307], [0.301, 0.3975],
[0.3092, 0.4106], [0.3207, 0.4173], [0.3283, 0.4296],
[0.3051, 0.4025], [0.3132, 0.4153], [0.3245, 0.422],
[0.332, 0.434], [0.3053, 0.4027], [0.3133, 0.4155],
[0.3246, 0.4222], [0.3321, 0.4342], [0.3093, 0.4075],
[0.3172, 0.4202], [0.3284, 0.4267], [0.3357, 0.4386],
[0.3101, 0.407], [0.318, 0.4197], [0.3291, 0.4262],
[0.3365, 0.4381], [0.314, 0.4118], [0.3218, 0.4243],
[0.3328, 0.4307], [0.34, 0.4424], [0.3142, 0.412],
[0.322, 0.4245], [0.3329, 0.4309], [0.3402, 0.4426],
[0.3181, 0.4167], [0.3257, 0.429], [0.3365, 0.4354],
[0.3437, 0.4469]1}),
rzG = (549005, {[0.3682, 0.5176], [0.3763, 0.5215]},
{10.2834, 0.391], [0.31, 0.4167], [0.3066, 0.4095],
[0.3311, 0.4337]}),
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r$ = (549000, {[0.4384, 0.5825], [0.4524, 0.5983],
[0.455, 0.6013], [0.4698, 0.6182]}, {[0.2238, 0.3279],
[0.2416, 0.3379], [0.2291, 0.3338], [0.2464, 0.3435],
[0.2298, 0.3346], [0.2471, 0.3443], [0.2348, 0.3403],
[0.2518, 0.3498], [0.233, 0.3363], [0.2501, 0.3459],
[0.238, 0.342], [0.2547, 0.3514], [0.2387, 0.3428],
[0.2553, 0.3522], [0.2435, 0.3483], [0.2599,0.3575]}).
Step I-10 Calculate scores s(r;)(i = 1,2,3) and s(r%) of the
above overall interval-valued dual hesitant fuzzy linguistic
values r;(i =1,2,3) and r¢ related to solutions A;(i =
1,2,3), we have

s(r1) = 1.1739,  s(r;) = 1.8052, s(r3) = 2.2481;
s(r%) = —0.0786, s(r$) = 0.4204, s(ry) = 1.1529.

Step I-11 Rank all solutions A;(i = 1,2,3) in accordance
with scores s(r;)(i = 1,2,3) and s(r%)(i = 1,2, 3), then we
can obtain the following ranking orders:

Az > Ap = A; by WGIVDHFLPA operator;
Az > A = A} by WGIVDHFLPGA operator.

Thus we can derive that the most desirable solution is
Aj.

Case II Suppose weighting vectors for decision making
teams and attributes are unknown, for this kind of situa-
tions, we can apply Approach II to select the most appro-
priate emergency solution.

Step II-1 See step I-1.

_a(k) ~a(k) _o(k) .
Step 1I-2 We denote (r; )3, by R, where 7, is kth

largest IVDHFLN of all the IVDHFLNs ?;(k =1,2,3).
—a(k)
R (k=1,2,3) are shown in Tables 8, 9 and 10. Then

calculate  support  degrees Sup(?;.(k),?;(l)) (k,1,i=

1,2,3;j=1,2,3,4;k #1) by Eq. (55), referring to the
—a(l)

—a(k)
support degrees between R and R . We denote

Sup('fg.(k), ?;(1)) by Sup*! for clarity, then
0.8234 0.8268 0.8387 0.7849
Sup'? = Sup* = | 0.7699 0.7891 0.9278 0.7738 |,
0.9243 0.8361 0.7536 0.7333
0.6273 0.6979 0.7109 0.798
Sup"® = Sup®' = | 0.5455 0.7615 0.4285 0.717 |,

0.6487 0.8096 0.7895 0.7812
0.6822 0.8671 0.8222 0.9214
0.7309 0.8354 0.4909 0.8449
0.6797 0.9065 0.7319 0.8391

Sup™ = Sup®? =
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Table 10 The reordered interval-valued dual hesitant fuzzy linguistic decision matrix R

Gy

G3

Gy

G

(s4, {[0.3, 0.5]}, {[0.1, 0.3], [0.3, 0.5]})

(s10, {[0.3, 0.51}, {[0.3, 0.41})

(ss, {[0.1, 0.2]}, {[0.5, 0.6], [0.6, 0.71})
(s10, {[0.2, 0.31}, {[0.5, 0.6], [0.6, 0.71})

(s7.5, {10.2, 0.511}, {[0.3, 0.4]})

(s12s, {[0.1, 0.4]}, {[0.2, 0.3], [0.3, 0.4]})

(ss, {[0.2, 0.31}, {[0.5, 0.6]})

(s7, {[0.2, 0.4]}, {[0.3, 0.4], [0.5, 0.6]})

Ay

(s2, {[0.4, 0.6], [0.6, 0.71}, {[0.1, 0.31})

A

(ss, {[0.3, 0.4]}, {[0.2, 0.4], [0.4, 0.5]})

(ss, {[0.3, 0.4], [0.4, 0.5]}, {[0.4, 0.5]1})

(s10, {[0.4, 0.5]}, {[0.3, 0.4], [0.4, 0.5]})

Az

(k)

Step II-3 Calculate support degree T(?;(k)) of ?; by
~a(l)

ri (I=1,2,3;1 # k) according to Eq. (56). We denote
T(?;(k))(k =1,2,3) by T*, then we have
1.4507 1.5247 1.5496 1.583
T'= | 13153 1.5506 1.3563 1.4908 |,
1.573 1.6457 1.5431 1.5145
1.5056 1.6939 1.6609 1.7064
72 = | 1.5007 1.6245 1.4187 1.6187 |,
1.604 1.7425 1.4855 1.5725
1.3095 1.565 1.5331 1.7194
T° = | 1.2764 1.5969 0.9195 1.5619
1.3284 1.7161 1.5214 1.6203

Step 1I-4 Let g(x) = x?, then utilize Eq. (34) to calculate
weights wg associated with the kth largest IVDHFN ?Z We
denote (W§)3x4 by wh(k = 1,2,3), then
0.1138 0.1052 0.1084 0.104
w! =] 0.1066 0.1077 0.1239 0.1054 |,
0.1175 0.1066 0.1135 0.1064
0.3516 0.3443 0.3444 0.3322
w? = | 03545 0.3357 0.3849 0.3382 |,
0.3583 0.3355 0.3302 0.3292
0.5347 0.5505 0.5472 0.5638
w? =] 0.5389 0.5566 0.4912 0.5564
0.5242  0.558 0.5564 0.5644

Step 1I-5 Let 1 = 2, then use GIVDHFLPOW A operator to

aggregate all individual decision matrices R =

~k . . . .
(7i)3xa(k=1,2,3) into group decision matrix R =
(7i7)354> as shown in Table 11; or use GIVDHFLPOWGA
operator to obtain group decision matrix R® = (rg )34, S
collected in Table 12.
Step II-6 Calculate support degrees Sup(riq(j), Tio(p)) (i =
1,2,3;j,p=123,4j#p) by Eq(59), and
Sup(ricgg),rg(m) by Eq. (60). We denote Sup(ris(j) Fis(p))
and Sup(rl.GJ(].), rg(p)) by Supj, and Supjﬁ, referring to sup-
port degrees between jth row and pth row in R and RO,
respectively. Then we have
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Table 11 The group decision matrix R obtained by GIVDHFLPOWA operator

Gl G2 G3

Gy

Ay (s62705, {[0.1883, 0.3618],
[0.2141, 0.3835]},
{[0.2623, 0.3671],
[0.3368, 0.44611})

(S4.6003, {[0.4511, 0.6668],
[0.5586, 0.7132]},
{[0.1273, 0.2868]})

Az (s9.4536, {[0.5305,
0.6863]}, {[0.1747,
0.2836], [0.1994,
0.3137]})

(523753, {[0.4316, 0.5734]}, {[0.1457,
0.2491], [0.1798, 0.2888], [0.1855, 0.287],
[0.2304, 0.3345], [0.1567, 0.26], [0.1937,
0.3019], [0.2, 0.3], [0.2491, 0.3503]})

(51646 {[0.286, 0.423]}, {[0.2306, 0.4071],
[0.3782, 0.4883]})

(ss.4087, {[0.1713, 0.3104],
[0.1942, 0.3277]},
{[0.4505, 0.5505],
[0.4927, 0.5922]})

(57.3049, {[0.3644, 0.541},
{[0.3258, 0.4353],
[0.3493, 0.46]})

(%.11925 {[03936, 05646],
[0.506, 0.6608]},
{[0.1809, 0.2899],
[0.1961, 0.3041]})

Ay

(S4.796, {[0.4452, 0.5472], [0.483, 0.5852]},
{[0.3079, 0.4148]})

(83701, {[0.3817, 0.6051],
[0.407, 0.6234]}, {[0.1253,
0.2872], [0.2318, 0.3766]})

(38.93467 {[04083, 0553] },
{10.2309, 0.36941})

(54.4254, {[0.4539, 0.5693]},
{[0.1471, 0.3356], [0.2107,
0.3763], [0.1584, 0.3517],
[0.2277, 0.395]1})

Table 12 The group decision matrix R® obtained by GIVDHFLPOWGA operator

Gy G, G;

Gy

Al (s6.1304, {[0.1628, 0.3161],
[0.2091, 0.3688]},
{[0.285, 0.3836],
[0.4141, 0.51241})

(S3,4486, {[04207, 06487],

[0.5197, 0.7088]},
{[0.144, 0.2912]})

(s1s361, {[0.2067, 0.4997]}, {[0.1632,
0.2605], [0.2342, 0.3287], [0.1921, 0.2913],
[0.2546, 0.35261, [0.1726, 0.2703], [0.2407,
0.3362], [0.2, 0.3], [0.2605, 0.3595]})

(s4.9332, {[0.2503, 0.3775]}, {[0.3896,
0.4976], [0.4442, 0.5431})

(s3.4527, {[0.1418, 0.27],
[0.1457, 0.2756]},
{10.4588, 0.5589],
[0.5255, 0.6267]})

(852087, {[0.2922,
0.4241]}, {[0.4047,
0.5028],
[0.4759,0.57591})

(ss.0879, {[0.2964, 0.5482],
[0.3205, 0.5898]},
{[0.2353, 0.3298],
[0.2422, 0.3378]})

Ay

Az (894156, {[0.4855,
0.60441}, {[0.2297,
0.3239], [0.3028,
0.39561})

(S4.644, {[0.3814, 0.4824], [0.453, 0.5526]},
{[0.3492, 0.4474]})

(535022, {[0.3513, 0.5711],
[0.3551, 0.5764]}, {[0.1417,
0.2914], [0.256, 0.4236]})

(83_7381 N { [03561 5 05202] },
{[0.2552, 0.3848]})

(53.7869, {[0.3886, 0.4961]},
{[0.1645, 0.3539], [0.3125,
0.4236], [0.1739, 0.3608],
[0.3172, 0.4291]})

0.9159 0.8864
Supi, = Supy = [ 0.7699 |, Sup$, = Sup§, = | 0.7199
0.7331 0.6714
0.868 0.8448
Supy3 = Supz; = | 0.8015 |, Sup$, = Sup§, = | 0.8138
0.6311 0.6088
0.6485 0.6362
Supis = Supyy = | 0.8577 |, Sup$, = Sup§, = | 0.8368
0.6621 0.6796
0.8184 0.7746
Supaz = Supz, = | 0.8964 |, Sup$, = Sup$, = | 0.7992
0.8891 0.9198
0.5998 0.5718
Suprs = Supsp, = | 0.7381 |, Sup$, = Sup$, = | 0.7611
0.9076 0.9385
0.7735 0.7794
Supss = Supsyz = | 0.8208 |; Sup§, = Sup$, = | 0.9495
0.9407 0.9137

and
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Step 1I-7 Calculate support degree T'(r;;) of rjj by rip(p =
1,2,3,4;p # j), and T(ry) of r by ri7(p = 1,2,3,4;p #
j)- We denote (T(ry))s.4 by T, (T(ryj))5,4 by TC, where

24324 23341 24599 2.0218

T=| 24291 2.4044 25187 2.4166

2.0263 2.5298 2.4609 2.5104
23674 2.2328 2.3988 1.9874
23705 2.2802 2.5625 2.5474
1.9598 2.5297 2.4423 2.5318

)

TC =

Step 1I-8 Use Eq. (34) to calculate weights wy(i =
1,2,3;j=1,2,3,4) and wy associated with r; and r{,
respectively. Here, we denote (wij);,, by w, (wg)3X4 by
wC, then

0.0671 0.1937 0.335 0.4042
w=| 0.062 0.1843 0.319 0.4347 |,

0.05 0.1848 0.3134 0.4517

0.0672 0.1911 0.3345 0.4072
wlé=| 006 01736 0.3173 0.4491

0.0483 0.184 0.3118 0.4558

Step I1I-9 For each solution A;(i=1,2,3), use
GIVDHFLPOWA operator to aggregate all evaluations
rij(i=1,2,3;j=1,2,3,4) into overall evaluation values
ri(i=1,2,3), or use GIVDHFLPOWGA operator to
aggregate all evaluations rg-; into overall evaluation values

rS. Then we have

r = (857855, {[0.3309, 0.5126], [0.3435, 0.5229],
[0.3348, 0.5156], [0.3472, 0.5258], [0.3319, 0.5135],
[0.3444, 0.5238], [0.3358, 0.5165], [0.3481, 0.5266]},
{[0.2021, 0.3463], [0.2619, 0.3879], [0.2069, 0.3463],
[0.2683, 0.3879], [0.2108, 0.3571], [0.2736, 0.4005],
[0.2158, 0.3571], [0.2805, 0.4005], [0.2121, 0.3567],
[0.2754, 0.4], [0.2172, 0.3567], [0.2823, 0.4],
[0.2213, 0.3679], [0.2879, 0.4132], [0.2266, 0.3679],
[0.2952, 0.4132], [0.2051, 0.3494], [0.2659, 0.3915],
[0.21, 0.3494], [0.2725, 0.3915], [0.2139, 0.3604],
[0.2779, 0.4043], [0.219, 0.3604], [0.2848, 0.4043],
[0.2153, 0.3599], [0.2797, 0.4038], [0.2204, 0.3599],
[0.2867, 0.4038], [0.2246, 0.3713], [0.2925, 0.4172],
[0.23, 0.3713], [0.2999, 0.4172], [0.2053, 0.3506],
[0.2662, 0.3929], [0.2102, 0.3506], [0.2728, 0.3929],
[0.2141, 0.3616], [0.2782, 0.4058], [0.2193, 0.3616],
[0.2851, 0.4058], [0.2155, 0.3611], [0.28, 0.4052],
[0.2206, 0.3611], [0.287, 0.4052], [0.2248, 0.3726],
[0.2927, 0.4187], [0.2302, 0.3726], [0.3002, 0.4187],
[0.2084, 0.3538], [0.2703, 0.3966], [0.2133, 0.3538],
[0.277, 0.3966], [0.2173, 0.3649], [0.2825, 0.4096],
[0.2225, 0.3649], [0.2896, 0.4096], [0.2187, 0.3645],
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[0.2844, 0.4091], [0.2239, 0.3645], [0.2915, 0.4091],
[0.2282, 0.376], [0.2974, 0.4227], [0.2337, 0.376],
[0.305, 0.4227]}),

s = (s7616, ([0.3784, 0.5378], [0.3885, 0.5428]},
{[0.2471, 0.3893], [0.2523, 0.3958], [0.2699, 0.4018],
[0.2756, 0.4086]1}),

rs = (ss413, ([0.4392, 0.5712], [0.4738, 0.6043],
[0.4467, 0.578], [0.4805, 0.6104]}, {[0.1806, 0.3298],
[0.2128, 0.347], [0.1868, 0.3367], [0.2204, 0.3544],
[0.1852, 0.3349], [0.2184, 0.3525], [0.1916, 0.342],
[0.2262, 0.36], [0.1818, 0.3315], [0.2143, 0.3488],
[0.1881, 0.3385], [0.2219, 0.3563], [0.1864, 0.3366],

[0.2199, 0.3543], [0.1929, 0.3438], [0.2277, 0.362]});
and

rS = (s43165, {[0.2196, 0.4062], [0.2204, 0.4074],
[0.2217, 0.4093], [0.2225, 0.4106], [0.2234, 0.4107],
[0.2243, 0.4119], [0.2255, 0.4139], [0.2264, 0.4152]},
{[0.3058, 0.4115], [0.333, 0.4532], [0.3456, 0.4507],
[0.3692, 0.4876], [0.314, 0.4199], [0.3404, 0.4605],
[0.3527, 0.4581], [0.3757, 0.4941], [0.3088, 0.415],
[0.3357, 0.4563], [0.3482, 0.4538], [0.3716, 0.4904],
[0.3169, 0.4233], [0.343, 0.4635], [0.3552, 0.4611],
[0.378, 0.4968], [0.3067, 0.4126], [0.3338, 0.4542],
[0.3464, 0.4517], [0.3699, 0.4885], [0.3149, 0.4209],
[0.3412, 0.4614], [0.3535, 0.459], [0.3764, 0.4949],
[0.3097, 0.4161], [0.3365, 0.4572], [0.349, 0.4548],
[0.3723, 0.4912], [0.3178, 0.4244], [0.3438, 0.4644],
[0.356, 0.462], [0.3787, 0.4976], [0.3159, 0.4212],
[0.3421, 0.4617], [0.3543, 0.4593], [0.3772, 0.4952],
[0.3238, 0.4293], [0.3493, 0.4688], [0.3612, 0.4664],
[0.3835, 0.5015], [0.3188, 0.4246], [0.3447, 0.4646],
[0.3568, 0.4623], [0.3795, 0.4978], [0.3266, 0.4326]
[0.3518, 0.4717], [0.3636, 0.4693], [0.3858, 0.5041],
[0.3168, 0.4222], [0.3429, 0.4626], [0.3551, 0.4602],
[0.3779, 0.496], [0.3246, 0.4303], [0.35, 0.4696],
[0.3619, 0.4673], [0.3842, 0.5023], [0.3196, 0.4257],
[0.3455, 0.4656], [0.3576, 0.4632], [0.3802, 0.4986],
[0.3274, 0.4336], [0.3526, 0.4726], [0.3644, 0.4702],

[0.3865, 0.50491}),
rS = (s 3849, {10.3168, 0.4642], [0.3202, 0.4659]},

{[0.3321, 0.4436], [0.3633, 0.474], [0.3446, 0.4536],
[0.3745, 0.4831]}),

rg; = (S4.504, {[0.3586, 0.5133], [0.3679, 0.5243],

[0.3695, 0.5264], [0.3792, 0.5378]}, {[0.235, 0.3654],
[0.2951, 0.398], [0.238, 0.3685], [0.2975, 0.4008],
[0.2372, 0.3677], [0.2968, 0.4], [0.2401, 0.3707],
[0.2991, 0.4027], [0.239, 0.3688], [0.2983, 0.4011],
[0.242, 0.3718], [0.3005, 0.4038], [0.2412, 0.371],
[0.2999, 0.403], [0.2441, 0.374], [0.3022, 0.4057]}).

Step 1I-10 Calculate scores s(r;)(i = 1,2,3) and s(r¢) of
the above overall interval-valued dual hesitant fuzzy lin-
guistic values r;(i = 1,2,3) and 7, respectively. Then we
have

k)

—_—— — —
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s(r) = 0.6546,
s(r%) = —0.3781,

s(rp) =1.0041, s(r3) = 1.3587;
s(r§) = —0.1075, s(r{) = 0.539.

Step II-11 Rank alternatives A;(i = 1,2,3) in accordance
with the scores s(r;)(i =1,2,3) or s( 9i=1,2,3), w
have

A3z > Ay >~ A; by GIVDHFLPOWA operator;

Az = Ay = A; by GIVDHFLPGOWA operator.

Thus, Aj is identified as the most desirable solution.

(IVDHFLWA) operator. Based on IVDHFLWA, we then
construct an  aggregation-operator-based = MAGDM
approach as detailed in approach III. Subsequently, we
apply approach III to solve the same case in Sect. 6.1 with
known attribute weights and expert weights.

Definition 6.1 For a collection of IVDHFLNs sd;(j =
1,2,...,n), an interval-valued dual hesitant fuzzy linguis-
tic weighted averaging (IVDHFLWA) operator is a map-
ping S" — S, where

IVDHFLWA(sdy, sdb, . . ., sd,) = & sd” = (sHu
Jj=1 - =%
<S°‘J hy.g;)Esd;
(65)
U {{ [1 STTo - -TTa- u}’)")"] } { [H o 11 (vf)‘“fl }
\ 1

[H],L,yju]eh,-,[vf,vj”]eg"j

6.2 Comparative studies

In this section, we conduct comparative studies to
demonstrate the feasibility and effectiveness of our pro-
posed approach.

6.2.1 Comparison with conventional aggregation-
operator-based MAGDM approach with known
expert weights and attribute weights

Weighted averaging (WA) operator [31], as an effective
aggregation operator, has been widely employed to con-
struct conventional aggregation-operator-based models to
accommodate decision making under different environ-
ments [53]. To compare with traditional aggregation-op-
erator-based MAGDM approach, in the following, we
firstly utilize WA operator to define the interval-valued

dual hesitant fuzzy linguistic weighted averaging
ry = IVDHFLWA(ry, 7y, 7g) = | (
Tk Zk 1 v
(5 M g,,) i

t

M!J "’l_H(l_“u

k=1

(-

z

Suppose @ = (w1, s, . . ., wm)T be the known attribute
weighting vector, 1 = (11, 1y, - - -, 11,) be the known expert
weighting vector. R = (7 ri £ (k= 1,2,...,1) denotes the
decision matrices given by decision maker dk for alterna-
Gj, rk k

tive A; with respect to attribute Gj, rj; (s%_j7 fzf], g{;) takes
the form of IVDHFLNs. Then, based on IVDHFLWA
operator, we here put forward the following Approach III
to support MAGDM under interval-valued dual hesitant

fuzzy linguistic environments.

6.2.1.1 Approach IlI: MAGDM based on IVDHFLWA
operator Step IlI-1 See step I-1.
Step 11I-2 Obtain group decision matrix.

Aggregate all individual decision matrices R =

~k . . . .
(7ii)usxm(k=1,2,...,t) into group decision matrix R =

(7i7)psm 0Y use of IVDHFLWA operator, where

~,U

’/

Lk Uk Lk Lk Uk ok
[ i V€ i Vi€

9

t
s T

k=1
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Step III-3 Calculate
alternatives.

Aggregate all evaluation values r;(i =1,2,...,n;j =
1,2,...,m) into overall evaluation values r; corresponding
to each alternative A; by use of IVDHFLWA operator, we
have

overall evaluation values of

(‘Ya(,j sh/pgi/>€’i/‘

ri = IVDHFLWA(ril’riZa RS
-IJo

({ — 1)1 — f[u—u,?)“’f]},{tf[

rim) = U “"7 U
h Zk 1 u %ij “z/ “z/]

m
ca,
)

€hy, vk vWeg;

fier]})

Step III-4 Calculate scores of alternatives.
Calculate scores s(r;)(i=1,2,...,n) of the above
overall interval-valued dual hesitant fuzzy linguistic values

ri(i=1,2,...,n) of alternatives A; by wuse of
Definition 3.5.
Step III-5 Rank all alternatives A;(i =1,2,....n) in

accordance with the ranking of r;, then and select the most
appropriate one(s).

After applying approach III to solve the case in Sect. 6.1,
we obtain scores of the solutions as: s(r;) = 0.8252,s(r,) =
1.4463 and s(r3) = 1.9927. Thus ranking order of the solu-
tions can be derived as A3 > A, > A;. As can be seen, both
approach I and approach III can significantly differentiate the
three solutions and identify A3 as the best option. Although the
derived ranking orders are the same, there are differences
between the two comparing approaches. Approach III is a
conventional decision approach based on the assumption that
attributes and preferences of decision makers are independent
between one another. While for real decision making prob-
lems, there is always some kind of correlations among attri-
butes or argument values [13, 21, 34]. When the arguments
being aggregated support or reinforce each other [47],
approach I, based on power average operator, can capture the
correlations among arguments so as to provide more versa-
tility in the information aggregation process. And by consid-
ering the correlations, the proposed approach I can utilize
decision information more adequately in supporting
MAGDM with mutually supportive arguments.

@ Springer

6.2.2 Comparison with conventional TOPSIS-based
MAGDM approach with unknown expert weights
and attribute weights

In this subsection, we focus on comparative studies in the
more complex situations where attribute weights and
expert weights cannot be determined in advance. Here we
adopt the TOPSIS [11] method for comparison, because of
its straight mathematical calculation but robustness in
supporting multiple attribute decision making. We here
firstly put forward the following Approach IV by extending
conventional TOPSIS to accommodate group decision
making under interval-valued dual hesitant fuzzy linguistic
environments. Then we apply Approach IV to solve the
same case in Sect. 6.1 when attribute weights and expert
weights are totally unknown.

6.2.2.1 Approach IV: TOPSIS-based MAGDM with inter-
val-valued dual hesitant fuzzy linguistic information Step
1V-1 See step I-1.

Step IV-2 Obtain group decision matrix.

In conventional TOPSIS-based methods for group
decision making, expert weights are treated as undiffer-
entiated when expert weights are unknown. Therefore,
expert weights are configured as equal to 1/¢, where ¢ is the
number of experts. Then we can aggregate all individual

_k .
= () uxm(k =1,2,...,1) into group
Tii by IVDHFLA operator, where
J/nxm y P

decision matrices R¥
decision matrix R =
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-1 2 ~t ~
rij = IVDHFLA(rij, Fijse oo rij) = U s > ae U
~% ~k T2 e Y Lk UK ek [yLk UK e gk
(s dery T e e (68)

1

({r-Tmo-wp- o= L 110t

k=1

)
k=1

Step IV-3 Calculate the separating measure from positive
and negative ideal solutions.

Determine positive ideal solution (PIS) X't =
(ri,ry,..ri,...,r) and negative ideal solution (NIS)
X = (r1_7r2_7-~~7ri_7--~7rn_), where

ri = ({1},{0}), 7 = ({0}, {1}).

Then we can calculate the separating measure from the
PIS and NIS for each alternative according to the distance
measure introduced in Definition 3.6:

m
df = d(ry,r)),
=1

m

di :Zd(rﬁvr;)-

=

(69)

Step 1V-4 Calculate the relative closeness to the ideal
solution.
The relative closeness of the alternative A; with respect
to X* is defined as ¢;:
d:-

R — 70
d- +df (70)

Ci
Step IV-5 Ranking the alternatives according to the
descending order of c;.

After applying approach IV to solve the case in
Sect. 6.1, we obtain the relative closeness of all three
alternatives as: c¢; = 0.5562,¢c, =0.6274 and ¢3 =
0.6690. Thus the ranking order can be derived as Az >
Ay > Ay. Although approach IV can identify the same
final ranking result as that by approach II, assumption
for undifferentiated experts and neglect of attribute
weights obviously make approach IV lack of exploiting
decision information. While the proposed approach II
can objectively determine expert weights and attribute
weights reasonably by modelling supportive relationship
among arguments. Therefore, when resolving MAGDM
problems in which arguments are mutually supportive
and weighing information (i.e., expert weights and
attribute weights) is totally unknown, the proposed
Approach II can derive decision results more reasonably
and objectively.

6.2.3 Comparative study with approach based on dual
hesitant fuzzy linguistic set

In order to further inspect feasibility and effectiveness of
proposed group decision making model, this subsection
presents comparative study with decision making approach
proposed in Yang and Ju [62] most recently under dual
hesitant fuzzy linguistic decision situations.

We take the same case problem used in Yang and Ju [62]
for discussion. That is, suppose that an investment company
wants to invest money in the most appropriate project. There
is a panel with four alternative companies: (1) A; is a car
company; (2) A is a food company; (3) A3 is a computer
company; (4) A4 is an arms company. The investment
company must make a decision according to the following
three attributes: (1) C is the risk factor; (2) C; is the growth
factor; (3) Cs is the environmental impact factor.

In Yang and Ju [62], they defined this investment problem
as a single-person decision making problem with dual hesitant
fuzzy linguistic information. & = (0.35,0.25,0.40)" is the
known weighting vector for attributes. Here for comparison,
we firstly transform original dual hesitant fuzzy linguistic
decision matrix in [62] into interval-valued dual hesitant fuzzy
linguistic preference information. The crisp membership
degrees and nonmembership degrees are mapped into interval
values with equal upper and lower limits (e.g., 0.2 turns out to
be [0.2, 0.2]). Then, we can obtain the interval-valued dual
hesitant fuzzy linguistic decision matrix as shown in Table 13.
Since attribute weighing vector is known, approach I can be
applied to resolve this investment decision problem.

After similar computing steps of approach I detailed in
Sect. 6.1, ranking order of solutions obtained by
WGIVDHFLPA operator is A4 > A} > A3 > A, and
ranking order by WGIVDHFLPGA operator is Ag > Az >
A > A,, which indicates the same best solution (44) and
the worst solution (A;) as those in the ranking order A4 >
A > A3 = A, reported in Yang and Ju [62]. Difference in
ranking order of A; and Az can be ascribed to that the
WGIVDHFLPA and WGIVDHFLPGA additionally con-
sider support degrees among arguments being aggregated.
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In general, when coping with practical decision making
problems of high uncertainty, it is sometimes difficult for
decision makers to provide their assessments using crisp
numbers, while they are more willing to indicate their
preference with certain linguistic term set, additionally,
they may also have difficulty and hesitancy in giving crisp
membership and nonmembership degrees to a linguistic
term. Under these decision environments, the developed
fuzzy tool of interval-valued dual hesitant fuzzy linguistic
set (IVDHFLS) is suitable for decision makers to convey
their preference information more comprehensively, and
the generalized power aggregation operators for IVDHFLS
manage to consider supportive correlations among argu-
ments. Therefore, the proposed approaches I and II, based
on IVDHFLS and its power aggregation operators, can
serve as effective models for MAGDM with mutually
supportive arguments being aggregated.

{[0.1, 0.1, [0.2, 0.2]})
(s, {[0.2, 0.2], [0.5, 0.5], [0.6, 0.6]},

([0.2, 0.2], [0.4, 0.4]})
(s3, {[0.4, 0.4], [0.5, 0.5], [0.7, 0.7]},
([0.2, 0.2], [0.3, 0.31})

(s5, {[0.6, 0.6], [0.7, 0.7]},

(s, {[0.3, 0.3], [0.5, 0.5], [0.6, 0.6]},
{[0.1, 0.1], [0.3, 0.3]})

G

7 Conclusions

Based on a newly defined hybrid fuzzy tool of interval-valued
dual hesitant fuzzy linguistic set (IVDHFLS), we have
developed two effective approaches for MAGDM allowing
arguments being aggregated to support each other. IVDHFLS
manages to attain the flexibility of interval numbers in
assigning membership and nonmembership degrees, as well
as the advantages of linguistic variable and dual hesitant fuzzy
set in depicting fuzzy properties of evaluated objects. For
IVDHFLS, we have put forward a novel distance measure to
overcome irrationality in traditional methodology, i.e. artifi-
cially adding values to mismatching membership or non-
membership degrees. Then to consider supportive correlations
among arguments being aggregated, we have developed
fundamental generalized power aggregation operators,
including WGIVDHFLPA, WGIVDHFLPGA,
GIVDHFLPA, GIVDHFLPGA, GIVDHFLPOWA and
GIVDHFLPOWGA. Their desirable properties, i.e. commu-
tativity, idempotency, boundedness and monotonicity, have
been inspected. Subsequently, two approaches for MAGDM
under interval-valued dual hesitant fuzzy linguistic environ-
ments have been constructed and verified by case studies.

In future research, empirical studies can be carried out
on applying the developed approaches to different areas,
such as supply chain management, operations manage-
ment, and intelligent interactive systems. Decision support
system should be further developed to facilitate resolving
practical problems. When different types of correlations
exist among attributes in complex MAGDM, suitable ag-
gregation operators should be studied for IVDHFLS, such
as operators based on Choquet integral. Other methods,
such as social network analysis, could also be integrated to
tackle situations of high complexity.

{[0.3, 0.3], [0.4, 0.4]})
(52, {[0.5, 0.5], [0.6, 0.6]},
{[0.2, 0.2], [0.4, 0.4]})

([0.4, 0.4], [0.5, 0.5]})
(s3, {[0.2, 0.2], [0.4, 0.4], [0.5, 0.5]},

(s, {10.3, 0.3], [0.5, 0.5]},
{[0.2, 0.2], [0.3, 0.3]})
(s, {[0.4, 0.4], [0.5, 0.5]},

(&)

[0.8, 0.8]}, {[0.1, 0.1], [0.2, 0.2]})

{[0.3, 0.3, [0.4, 0.41})
(s2, {[0.4, 0.4], [0.5, 0.51},
{[0.3, 0.3], [0.4, 0.41})
(s, {[0.5,0.51, [0.7, 0.71},
{[0.2, 0.2, [0.3, 0.31})

(s3, {[0.4, 0.4], [0.5, 0.5], [0.6, 0.6]},
(s4, {[0.4, 0.4], [0.6, 0.6],

Ci

Table 13 Interval-valued dual hesitant fuzzy linguistic decision matrix

Ay
A
Az
Ay
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Alsdy @ sdy) = /1U

{lr + 1 — v + = VT APV}

Appendix 1: Proof of theorem 3.1

Obviously, rules (1) and (2) are correct. For rule (3), we

have

(35 1,81 ) €56y, (55 2,85 ) €5 < Sartons U[uL W)€ [ 1€ ViV g, E Y €

= ~ ~ AW U ~ ~ - -
U(Sul .8y )Efdl 7(Sx2,h2782)63d2 ( Hen+a)) [k wVlehy [ub uY1em, vhyWeg, v vWeg,

[0 = (= (i w = i)' 1= (U= ) = i) IS 0011 |,

mﬁ—U@m@hmGmihw%mm%@HU—U—Mﬁl—U—Wﬂ%WWﬁ@%mg

lSdZ = U(S“Z I gz)esdz ( S U[H W Ehz,[vé,vg]egz {{[1 - (l - 'ué)l’ 1- (1 - 'ug)l]}, {[(Vé)iﬂ (Vg)/]}}>

isdy@dsdy =\, - - U i i
! 2 (s .81 ) €5y (50 o ) sy \ A+ Ik e [k o [ Vg, [ 0¥ €8s

[0 = (1 = G+ b= i)' 1 = (1= (i 0 = W) AI0RE), 0111

= A(sd) @ sdy);

For rule (4),

sﬂL%M@kmewuwmdﬁwmjwﬁﬂwﬁﬁﬁﬂO%ﬁlﬁﬁﬂﬂ)

Sd; = U(ng,ﬂz,gz)ESdz <sx§’ U[Hénué/]ehz [‘L ‘,U]e {{[(Nz) (:ug)/l]}? {[1 - (1 - Vé);L? 1 - (1 - ng]}}),

sd| ® sdr, = U U - ; ;
! 2 (50 11,81 ) Esdy (503 2,82 ) E5dy S0z [k ¥ ehy i ul |eha, [vE WW]eg, vk v ]eg,

a1y ) TH AT +v3 = vy 05 =T},

sdf ® sdé“ =

~ - S 7 U ~ -
U(s,l ,hl‘gl)Exdl,(s%,hz,gz)e.vdg ( (o)™’ [k, ]Gh] b Ulehs, EVleg, v vleg,

G ()T A1 = (1= 0 v = b)) 1= (1= 6F 408 = W))T)))

= (sdy ® sdp)";

For rule (5),
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hsd= | (%ﬂ v {w—a—m%A—u—WWmﬂmewﬂn>
esd b v

(5,h,8) eh[vtvleg

hsd = |J (%ﬁ Y {m—a—MW@—O—MW&HMWmﬁﬂH)mm+@w
esd b

(s0:.8) Vleh, vt avleg

= U 6o U ({01 = (1= "2 = (1= W) {0, (VU)““Z]}})

(s5,h,8)€sd [uL,ul)eh,vEvU]eg

= (4 + A2)sd;
For rule (6)

Sd/ll = U(suﬁ,g)@d (S“)’l ’ U[ML#U]@;_’[VL_VU]G&; {{[(/’LL);Hv (”U)il]}v {[1 - (1 - VL))']’ 1 - (l - VUYW}})»
s =, iyena (920 Ui s G GEOPIAT = (=921 = (10" ),
Sd;Ll ® Sdiz = U(sy.ﬁ,g)ESd (505/11+/227

U posrcipnerea U2 GO 2L ([ = (1= 1= (1)) = s

Appendix 2: Proof of Theorem 4.1

1. When n = 1, obviously, it is right.

WGIVDHFLPA (sd) = (sm U a1 A0 Vf’]}}) :

[t uV)eh,[vE ]eg

2. When n =2,
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i =y, i) (s Unt i i ties {lwnr ey p{[r-a-wri-a-wy] }}>

w1(1 + T(sd
5 1( ( 1)) Sdf" = U(S g )esd| S o] (147T(sd))) o
Zi:] wl(l + T(Sdl)) arbel Zf:] w; (14T (sd;)) !

';1(1+T(rd1)) r;(] T(sdy))
; sd; A e sd;
U[uﬁu?]eﬁ],[vﬁn”]egl {{ [1 — (1= (i) )Z: D — (1 - (uf) )Z’:‘ (HT(M] },

ul<1+/<vd1>> u1<1+:<sd1))
{[(1—(1—v VI T, (1 (1 =y R H})
sdy = U(.az,;zz,gz)esdz (s Ussuticnimotica {{ [(“5)1’ (“gﬂ } { [1 B U vgf)*} }}>

(0)) 1+7T Sd2
2 ( ( ) Sdé = U o e esd S oy (14T(sdp)) )
S22 wi(1 4 T(sdy)) (s ) €scy | "=

ZH wi(14T(sd;))

@y (14T (sdy)) o (14T (sdp))
NS (14T Ny
Ustticins vo]egz{{[l_(l—(ué)’)zﬂ I = (1= (1)) 2 MMH’

) (14T (sd3)) ) (14T(sd3))
. 2 2
{ l(l _ (1 _ vlz‘)/k)zizl u)i(l+T(sd,-))’ (1 o (1 _ Véj)i)zilwi(]+T(x¢Ii))‘| }})7

wi (14 T(sd,) s’ w2 (1 4 T(sdz) sdi = | s
= i < 2 y
Ziz:l (,L)l(l + T(Sd,)) 1 Z?:I (,01(1 + T(Sd,)) 2 (s“l 71117g])esdl,(sj(z,hz,gz)es‘dz ZZU;/(HT(MI/)) y ;
=1 i ;(14+T(sd;))

o) (14T (sd))) ) (14T (sd3))
2

2 Ay Z,: W (4TGd) (1 () LA le: o (147(sd}))
U[uﬁui’]eﬁ].,[#%,uéj]e%lz,[vf,vi’]eﬁl,[véyvéj]egz {{ ll (1= ())& (1= ())& ’

e (HT06d) __(4T0d))
1 — (1 — (,u%/)k)z,z:l “‘i(“"'(»?di))(l _ (#g)/l)zizlmi(l.'r(;d,-))‘| }7

2

(1= (1= ) )Z il () ( —(1— V”@Zf,%“*“”] }})7

wy (14T (sdy)) ) (14T (sdy))
{ l(l —(1- v%)i)z; m,-(1+r(sd,->)(l —(1- VL)A)Z; m,-(1+r(m,-)),

/
T(sd T(sd
< 2 U+ Tlsd) sdi + = —— ’ é) :U(s ivg)esd; | ° v
Zi:l co,-(lJrT(sdi)) Zizl wi(1+T(Sdi)) EA ! 22: (147 (sd})) ()
= Zf:]u)i(l+T(xdi)) !

) n (14T (sd})) 1/ 2 t’t; ) (14T (sd;)) 1/4
} _ _: ;i (14T (sd})) _ .: @; (14T (sd;))
U[A,‘,u,”]ehﬁ[vf,v,-” J€g; H (1 '“J - H (1 '“J )

j=1 j=1

) (147 (sd;)) 1/ 2 i (147(sd;)) 1/%
< H 1 _ V )Z:‘lwimw(yd,-))) ( H 1 _ ] _ v )Zi: w(lw(:d,»)))

Jj=1 J=1
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So when n = 2, Theorem 4.1 also is right.

3. Suppose when n = k, Theorem 4.1 is right, then we have

WGIVDHFLPA,, ;(sdy, sdy, .. ..sdi) = | J s i,
(5458 €50 Zk ) (14+7(sdy) T
7 IZ ;(14+T(sd;))
1/4

X :)j(]ﬂ(sdj) 1/4 L o (l+7‘(vd )
INA 0j(1+T(sd})) X i (14T (sd;))
U =TT = Gy ~TI0 = eoHED 7
l€g; =

[”I U]Eh, [‘ VU j=1 J=1

X o (147 (sd;) 1/4 « ) (147 (sdj) 1/
( H (1—vF )Z | '”“"”) - (1 -[[a-a v]U)A)Z,-,W'”W) ,

J=1

k ;
A jsdj = U IS Ty
(555..8) €56 7 Z (147 (sd;))
{{ l x o (1+T(vl) x o) (1+T(sd)
U H 1_ 'u i: (14T (sd;)) H 1_ 'u nl(H»TVd))‘|}
J J ’
[/1 ]Eh, [» v; Yleg; J=1 J=1
k j (1+T(Ad) @; (147 (sdj)
{ |JH(1 _ (1 _ VJL) o o147 (sd) H 1 _ 1 _ V )Z, o I+T(vd))] }})
=1
Then when n =k + 1,
WGIVDHFLPAwy;L(Sdl, Sdz7 ce ey Sdk+1)

(ko1 +T(sd))) o’ o (1+ T(sdirr)) o, \"/
- <<@ ST on(1 + T(sdy)) df‘) S o1+ T(sdy) d)

- U

s 1/4
Fo~ k+1 ;i (14T (sd;)) R
Sy ,hj,8;)€8d, e ()
(55,5, €5d (E Z?lensd,-»( ;) )
(147 (sd})) kel

kil etan_y 1 ey 1/
U <1 _ H (1— (,ujL);’)Ei1“)’(1+T(’Vd‘))> 7 (1 o H (1— (,ujU))”)Ele w[(H»T(xd[))) ,

a1 [ 18 = =

k+1 oj (1H7(s4)) 1/2 kil (14 7(sd))) 1/
l _ <l _ H (l _ (1 _ V ) )Z ]()(]+T(fd ) , 1 _ (l _ H (1 _ (1 _ vj{])l)zilrt),»(lJrT(,vd,»)))
Jj=1 j=1

So, when n = k + 1, Theorem 4.1 is right too.
According to steps (1), (2), (3), we can conclude that Theorem 4.1 is right for all n.

Appendix 3: Proof of Theorem 4.4

1. When n = 1, obviously, it is right.
2. When n = 2,
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(01 (147(sd})))
2
i (147 (sd;
(isdl)ZH i) — U s o (147(sd))
- -z .
(50 ,11,81) €y oty )lel (147 (sd;))

M u;l(HT(xd‘ )
U {{ |:(] _ (] _ H]L)}L)X:Hw,(PrT(A%)J7 (1 _ (1 _ ﬂ{])i)zllw,(1+r(ﬂ/ﬂ):| }7
leg

TSN

o) (147(sd))) 01 (147(s41)
{ |:] _ (] . (V[]‘)/L)Zizlm,(HT(.m,))’ | — (1 . (vfj)}‘)z’I(ui(l+T(5d,)):| }})7

(0 (14T (s5)))
2
14T (sd;))
(;,sdz)z,:1 @17 () U Ky 0r(14T(sdy)
. = -
(S2y112,87) Esdy (iaz)z,z1 i (147(sd;)

(‘;z( 147 (sd)) u;z( 147 (sdp))
U {{%—u—ﬁmeWW%a—a—ﬁmZ~WWﬂ}
(151 1€z, [ 5 1€
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(2sd))” @ (Jsdy)™ = U

(594 h1.8))€Esdy 3(52y ho.8,)€Esdy
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(i) Dt VT o 0> T [k (1 e 0¥ €8 % Y

o) (14T(sd} ) u;z(H»T(xdz)) o (14T (sd} ) wZz(HT(.\dZ))
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o) (147(sd})) 0 (14T(sd3)) o) (147(sd})) 0 (14T(sd3))
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(9 h1,81) €sdy (5, 12,82 ) Escl
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<w1 iy AT ) Dy HM-») [ e [ s [ 0N I Y e
) (14T(sd})) (14T (sdy)) i
2 2
1AV (14T (sd;)) L\ @ (14T (sd;))
{P—O—u—u—mnin (1= (1= )2 ,

@ (147 (sdy)) @y (14T (sdp)) 7
2 2
1- (1 — (1= (1= ¥y )21 (1 — ugf)*)Z,,mf(H”vdt”) ,

1

@ (14T (sdy)) @) (14T (sd)) 7
<1 . (1 . (V%)Z)Z;m,(1+r(ul,-))(1 . ( é)/i)z'zlm,-<l+r(m,))> 7

(r)l(]vT(vdl)) 11)2(1+T(F112)> 7
- -
1— (1 _ (VU))»)Z::I(u,-(l+T(:d,v))(1 . (vél)),)Zflm,(|+r(m,))>
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L Gsdry™ ® (sd)™)

A
w1 (14T (sdy)) o (14T (sdp)) 5 U
) (b V)€ b w1 €hy Ve wWeg, vE v 1eg,

= U s
2 2
% <(111>le w,-(lJrT(sd,-))(;vaz)Zi:] w;(1+T(sd;))

(59, .8\ )Esdy (59, 2 §r)Esdy

0y (147 (sd)) 7

wp (1+T(sdy))
2 2
l 1 _ (1 _ /‘1) )Z: w,-(l+T(:d,-))(1 . (1 . le‘)/l)z[:lw,-(wr(m,-)) 7
o (1470501 0147 () 1
< 1—l—un>2~““M%1—u—ubﬁz'“wwg ,
o (14T (sd ) op(4T(sd)) N\ ¥
2 2
( ’1)2;:1“"“”(“1"))(] _ (vli)).)zi:lu)i(l+T(.rdi)) 7

o) (14T(sd})) (14T (sdp)) 7
(1 _ (1 _ (vi]yl)z;«);(1+T(cd;))(1 _ (vél)/l)ziz1(:);(I+T(.rd‘-))>

So when n = 2, Theorem 4.4 also is right.
3. Suppose when n = k, Theorem 4.4 is right, then we have

.,Sdk) = U

WG]VDHFLPGA(D,,;(Sdl ,8dy, ..
(53;:17.8)) E5d;
) 0 (147(sd})) 5
2 =
ko 0 (14+T(sd)) [, uV)ehy, v v eg;
I (UXJ_)Z,:, [k 1 Vehy [y v €g;
X oy (147 (sd))) 1/2 ‘ o 1+7() 1/2
(14T (sd;)) T (14T (sdp))
Hl—l—uﬂz' A= {1 =T - — 2 ,
j=1 Jj=1
. (147 (sd)) 1/2 ‘ (147 (sd))) 1/
2 2
A o; sd, A o; sd;
W ) (R Oy >Rerl B PR o FORs S 7
Jj=1 j=1
0 (147(sd;))
k
. 0j(14T(sd;))
®1(ivd )Z,: = s W (1+T(sd) s
J= s 2
(S«] Ah,,gj)esd, Hi (i25) Z’_:] (14T (sd,
‘ (147 (sd)) . w;(147(sd))
(147 (sd;) Wi (147(sd,
SRR I (RIS | e 1
[kl vE vV €g; J=1 J=1
i ) (147 (sd})) B 7 ) (1+7(sd}))
LN\ T (14T sd) B @i T (sd)
=TT a-0pH2e -1Ta 7
J=1 J=1

then when n =k + 1,
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WGIVDHFLPGA,, ) (sd\, sda, . . ., sdys1) = (Zsd; )“’f) ® (Asdis )“’H‘)

Nl =
') =

((f
= U S ©; (147 (sd;)) 5
(g5t \ L TT () Dvms 0700 i o

wj(H»T(sdj)) tuj(l+T(s¢Ij))

1/2 1/2
_ (1 ~TJa-a- Hf)’-)Ef-ﬂ%W”“’f”) 11— <1 ~-T[a-a- ujV)*)ZTwUﬂ(u’ﬂ)) ,

=1 =1
n (/)/(1+T(sc!/)) 1//L n (/)/(1+T(sd/)) l//L
(1 . H (1 . (vf))h)zilwi(1+r(.;di))> , (1 . H (1 B (VJU)A)ZIl(ui(1+r(.;4i))>
=1 =1

So, when n = k + 1, Theorem 4.4 is right too.
According to steps (1), (2), (3), we can conclude that Theorem 4.4 is right for all n.

Appendix 4: Proof of Theorem 4.7

1. Assume that (sdj,sds, . ..,sd)) is any permutation of (sd;,sds, .. .,sd,), then for each sd;, there exists one and only one
sd;; such that sd; = sd and vice versa. And, T(sd;) = T(sd;). Thus, based on Theorems 4.2 and 4.5, we have

- ( (1t T(sd,-»sdf> " (@zl (1+ T(st))st") 1
n Z

GIVDHFLPA,(sdy, sdy, . . ., sd, - L
i1 (1+T(sdy)) >oict (1+T(sd;))

= GIVDHFLPA,(sd} ,sd;, ..., sd’).

147 (sd})
1 14T (s
GIVDHFLPGA;,(sdl,sdz,...,sd,,):—( & (Jsd;)2in d>>>

14T sd* )

1 n " (1+7 (s * * *
218 (Asdk)E: YW = GIVDHFLPGA (sd;,sd, . . ., sd?).

2. Since sd; = sd for all j = 1,2,...,n, thus

GIVDHFLPA (sdy, sdy, .. . sdy) = | ) | sx U {11 A1)
(so,h,8)€Esd (WL ul)eh,vEvU]eg

= sd = GIVDHFLPGA,(sd,sdy, . . .,sdy).

3. Let sd~ = (s;,h,§),sd" = (st h* g*), where s; = = min;(sy,), s; = max;(sy),
- _ - U-1\ _ LU
= U = U ~{Lr<njlr<1nu,~,1r<1r1jlgnu,r]},
(1 1l )eh; [uf ) eh;

hto— L+ U+ — U

= U ~{[ﬂ Y = U ~{[1<,<nﬂf 1Tjai(n ]}
(1 1€ [} el

~ I— U—

& = U N{[V Y ]}_ U ~{|:11111ai(nvj71111132(11‘) :|}
v v/ leg; bjv/leg;

5t Lt U+

8 = U {[V Y ]} [ L/J {|:1r<njlgnvj7lr<njlgnv :|}

yleg vy 1€g,

for all j =1,2,...,n, we have
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1/2 1/2
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" 14T (sdy) 1/2 . 147 (sdj) 1/2
> <1 _ H (1 _ (/VLL)A)Z”U-T(,\J,-))> _|_<1 _ H (1 _ (HU)A)Z”(HT(M,-))) :
j=1 j=1
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=
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Obviously, max;(s,)>s
(s,
havesd™ > GIVDHFLPA (sdy, sdy, . . .,sd,) > sd ™.
Similarly, according to Definitions 3.3, 3.5 and Theorem 4.5, we have

sd* > GIVDHFLPGA;(sd,,sd>, . . .,sd,) > sd ",

which completes the proof.

Appendix 5: Proof of Theorem 4.8

Based on Lemma 4.1, we have
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<1 [T,
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By Definitions 3.3, 3.4 and 3.5, we have . (sdJZ’:‘ <1+T(M’))) 1+7 (sd))

Theorem 4.8.

" (14T (sd;))

)1/,:2 minj(saj), then according to Definitions 3.3, 3.5 and Theorem 4.2, we

sdj> , which completes the proof of
O
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Appendix 6: Proof of Theorem 4.9

Based on Lemma 1, we have
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Appendix 7: Proof of Theorem 4.10
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Theorem 4.10.
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