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Abstract Resource-constrained project scheduling prob-

lem is to make a schedule for minimization of the make-

span subject to precedence and resource constraints. In this

paper, we consider an uncertain resource-constrained pro-

ject scheduling problem (URCPSP) in which the activity

durations, with no historical data generally, are estimated

by experts. In order to deal with these estimations, an

uncertainty-theory-based project scheduling model is pro-

posed. Furthermore, a genetic algorithm integrating a

99-method based uncertain simulation is designed to search

the quasi-optimal schedule. Numerical examples are also

provided to illustrate the effectiveness of the model and the

algorithm.

Keywords Resource-constrained project scheduling �
Uncertain duration � Genetic algorithm � Uncertainty
theory � Renewable resource

1 Introduction

The resource-constrained project scheduling problem

(RCPSP) has been a widely studied optimization problem

since it was initiated. The problem considers the mini-

mization of the makespan while schedules the project

subject to precedence and resource constraints [1]. As a

job-shop generalization, RCPSP is NP-hard which was

proved by Blazewicz et al. [2]. Most literature about

RCPSP has based on the deterministic assumption that

complete information of resource usage and deterministic

activity duration are given in advance in which a feasible

baseline schedule, i.e., a list of activity starting times and a

definite makespan, can be determined as a result. During

project execution, however, this simplification may lead to

poor performance since project activities are usually sub-

ject to considerable disruptions such as unavailable

resources, delayed delivery of materials, absent workers

etc. [3]. Stochastic resource-constrained project scheduling

problem (SRCPSP) has been developed to deal with the

variability in activity durations [4–10]. In these researches,

the execution of a project is viewed as a dynamic decision

process in which activity durations are represented as

random variables. Aiming at the minimization of the

expected makespan, different scheduling policies are pro-

posed to schedule the activities with random durations;

these policies define which activities to start at each deci-

sion point (the start of project and the completion times of

activities).

Considering the uniqueness of each project in real

world, it is not uncommon that its activities are seldom or

even never have been executed before. As a result, the

activity durations cannot be depicted by probability dis-

tributions for the lack of historical data. In this case, belief

degrees given by experienced project managers or experts

can be employed to estimate distributions of the durations.

Surveys have shown that these human beings’ estimations

generally possessed much wider range of values than the

real ones [11]. Therefore, these indeterminacies cannot be

treated as fuzziness [12, 13], probability [14, 15], rough-

ness [16], ambiguity [17] or entropy [18]. Instead, uncer-

tainty theory, initiated by Liu [19, 20], can be a useful tool

to deal with these belief degrees. So far, the new theory has

been successfully applied in various problems: option

pricing problem [21, 22], production control problem [23],
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inventory problem [24], assignment problem [25], supply

chain pricing problem [26] etc. In project scheduling field,

Zhang and Chen [27] built an uncertain model to minimize

the expected project makespan under chance constraint of

the total cost. Ji and Yao [28] considered an uncertain

project scheduling problem to make a schedule for allo-

cating the loans so that the total cost and the completion

time of project are balanced. Ding and Zhu [29] considered

two types of models for uncertain project scheduling

problems to satisfy different management requirements.

Based on genetic algorithm, Ke [30] proposed a hybrid

approach to solve a project time-cost trade-off problem

with uncertain measure, and also further studied this trade-

off problem in uncertainty and randomness coexisting

environment [23, 31].

However, no research deal with the RCPSP with

uncertain durations and renewable resource constraints,

this paper will fill the gap and explore this uncertain

resource-constrained project scheduling problem. Spe-

cially, the activity durations whose distributions are esti-

mated by professional managers or experts are

characterized as uncertain variables. Furthermore, an

uncertain serial project generation scheme (US-SGS) is

introduced to produce a schedule from an activity list. An

uncertain simulation based on 99-method is employed to

approximate the uncertain functions, since the calculated

makespan based on the expected value or medium number

of each activity duration is usually less than the real one

[6]. Afterwards, we design a GA-based algorithm to search

for the quasi-optimal schedule.

The reminder of this paper organized as follows: In Sect.

2, formulations of the URCPSP are detailed. An uncertain

expected value model is established and transformed into a

crisp form in some special cases in Sect. 3. Furthermore,

Sect. 4 proposes a hybrid algorithm integrating 99-method

and genetic algorithm. Section 5 presents numerical

examples to illustrate the effectiveness of the model and

the algorithm. Relevant conclusions and some prospective

extensions are discussed in Sect. 6. Specially, some basic

concepts in uncertainty theory are introduced in appendix.

2 Problem description

The URCPSP considered in this paper is described as an

activity-on-the-node network G(N, A), where N is the set of

activities and A is the set of pairs of activities between

which a zero-lag finish-start precedence relationship exists.

Dummy activities i ¼ 1 and i ¼ N þ 2 respectively mark

the beginning and the end of the project. The duration of

each activity ~di is assumed to be an uncertain variable

whose distribution is given by experts’ or managers’ belief

degrees, and the resource requirement of resource k is

indicated by rik. For renewable resource k, the availability

Rk is a constant, which is constrained throughout the pro-

ject. Each activity is executed in exclusive one mode and

preemption is not allowed in this paper.

The execution of a project in uncertain context can be

regarded as a dynamic decision process. At each decision

time (the start of the project and the completion times of

activities), the manager makes decisions about which

activities to start subject to the precedences and resource

constraints. Therefore, the solution of URCPSP is an

activity order list which depicts the priority of each

activity. Due to the uncertainty, the actual activity duration

can only be attained after its entire processes completed,

and meanwhile, the decision maker can merely apply

partial information which is available before or at the time

he makes the decision. So the schedule generation

scheme (SGS) used in deterministic condition may not

always be feasible. In this paper, we develop a new pro-

cedure denoted as US-SGS to decode the activity list k,
which works as the Serial SGS, but adds the side constraint

siðkÞ� max
k j\ki

�
sjðkÞ

�
ð1Þ

where ki is the position of activity i in activity list k and si
is the starting time of activity i.

The US-SGS works as follows:

0: Given a network G(N, A). k:= activity list; ki:=ac-
tivity in position i; d:= duration; A:= underway activity set;

U:= unexecuted activity set; S:= starting time; F:= finish

time; T:= Time point; num: number of the activities;

K:=the number of renewable resources; rik: demand of

activity i for resource type k; Rk:= available amount of

resource i.

1: A ¼ £; U ¼ ½1; 2; . . .; num�; F ¼ ½inf ; inf ; . . .; inf �;
S ¼ ½0; 0; . . .; 0�
2: im ¼ 1, T ¼ 0

3: While is empty ðUÞ ¼ 0

4: Skim ¼ max
i\im

Ski _ max
ðj;kimÞ2A

Fj

5: if
P
i2A

ðrikÞ þ rimk �Rk; k ¼ 1; 2. . .K& Skim � T

6: FðkimÞ ¼ T þ dðkimÞ
7: Put kim into A

8: im ¼ imþ 1

9: else

10: T ¼ min
i2A

ðFðiÞÞ
11: Take out i from A and U if: FðiÞi2A � T

12: end

13: end

14: Return S and F
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3 The expected value model

The URCPSP aims at minimizing the expected total project

duration (makespan), equivalent to the start time of activity

N þ 2, denoted as snþ2, since it is a dummy end. Therefore

the makespan Ft is:

Ft ¼ snþ2

The mathematical model of the URCPSP can be estab-

lished as follows:

min E½Ft�
subject to:

si þ di � sj; 8ði; jÞ 2 AP
i2Pt

rik �Rk; k ¼ 1; 2. . .K; Pt ¼ fi j si � t\si þ dig

8>>>>><
>>>>>:

In the above model, the objective function is to minimize

expected makespan. The first constraint ensures that the

earliest start time of activity j is forbidden to be smaller

than the finish time of its predecessor activity i. The second

constraint guarantees, for each time point t and resource

type k, the resource demand should be below the resource

limitation. Note that Pt represents the set of underway

activities at time t, rik is the demand of activity i for

resource type k, and Rk is the given available amount of

resource k.

Because of the uncertain durations, the finish time of

each activity is changeable and the makespan is an

uncertain variable as well. Given the activity list k, the
finish time of each activity can be attained as follows:

~fiðkÞ ¼ si þ ~di

The critical problem is to determine the starting time of

activity i. If resource constraint is eliminated, the si, which

is an uncertain variable as well, can be computed by

siðkÞ ¼ max
ðj;iÞ2A

�
sjðkÞ þ edj

�
ð2Þ

where k is an activity list depicting the priority of each

activity.

When resource constraint is considered, however, this

formula is no longer valid. Since activity may be feasible

in terms of precedence relation when all of its predeces-

sors have been finished, while simultaneously infeasible

for the lack of resource. In other words, one activity has

predecessors in both precedence relation logic and

resource logic. Besides, a side constraint is added to

decode the activity list. To address this problem, similar

with Artigues and Roubellat [32], we define an extended

precedence relation set as GðN;A�Þ by adding extra

resource flow network into the original activity-on-the-

node network G(N, A). The resource flow network exists if

there is a resource flow between two activities without

precedence relations. Then the starting time of activity i,

the function of activity list k and uncertain durations, can

be attained by

siðkÞ ¼ max
k j\ki

�
sjðkÞ

�
_ max

ðj;iÞ2A�

�
sjðkÞ þ edj

�
: ð3Þ

where ki is the position of activity i in activity list k.
Given an activity list k, one can attain that siðkÞis

monotone increasing function of edj where k j\ki or

ðj; iÞ 2 A�. Therefore, referring to Lemma 3, we have

Theorem 1 Suppose that the duration of activity i has

regular distribution Ui and inverse uncertainty distribution

U�1
i ðaÞ. Given the activity list k, siðkÞ has an inverse

uncertainty distribution W�1
i ðk; aÞ a 2 ð0; 1�, we can get

W�1
i ðk; aÞ ¼ max

k j\ki

�
W�1

j ðk; aÞ
�
_ max

ðj;iÞ2A�

�
W�1

j ðk; aÞ þ U�1
j ðaÞ

�

With Theorem 1, we can attain that the a-value of the

makespan can be calculated by d ¼ ðU�1
d1
ðaÞ;U�1

d2
ðaÞ; . . .;

U�1
dnþ2

ðaÞÞ. Therefore, referring to Lemma 4, we have

Theorem 2 The expected makespan, depicting by the

starting time of dummy end activity, can be attained as

follows:

E½Ft� ¼
Z 1

0

W�1
nþ2ðk; aÞda

The equivalent form of the uncertain model can be

transformed as follows:

min
R 1

0
W�1

nþ2ðk; aÞda
subject to:

si þ di � sj; 8ði; jÞ 2 AP
i2Pt

rik �Rk; k ¼ 1; 2. . .K; Pt ¼ fi j si � t\si þ dig

8>>>>><
>>>>>:

With the crisp-form of the expected model, 99-method can

be applied to make approximation of the expected

makespan.

min
P99
m¼1

W�1
nþ2ðk;m=100Þ=99

subject to:

si þ di � sj; 8ði; jÞ 2 AP
i2Pt

rik �Rk; k ¼ 1; 2. . .K; Pt ¼ fi j si � t\si þ dig

8>>>>>>><
>>>>>>>:
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4 GA-based algorithms

In RCPSP with uncertain durations, the expected duration

or medium number is usually employed to replace the

random or uncertain numbers and then the deterministic

model is applied. However, the optimal solution attained

from the deterministic model may perform very poor in

real context. Meanwhile, the expected value of calculated

makespan, based on the expected value of each activity

duration, is often less than the real one. Stork [6] presented

that the expected makespan is more than 4 % larger than

the deterministic makespan with instances containing 20

activities. Moreover, coherently, Ballestin [7] revealed that

this variation may extend to more than 10 % when the

number of activities increases to 120.

Even just for precedence constrained jobs without any

resource restrictions, the computation of the expected length

of a critical path is NP-complete, if each activity processing

time distribution has two (discrete) values. Similar to the

researches in stochastic cases, uncertain simulation is

essential for approximation of the expected makespan.

In order to solve URCPSP, a heuristic algorithm integrated

by 99-method and GA is introduced in this section. The

chromosome is denoted by the activity list k in which activ-

ities are arranged in different orders on the premise that the

precedence relationship is satisfied. Then, with a specific

schedule generation scheme, a feasible solution can be

gained. Besides, the most essential part of the algorithm is the

process of decoding in accordance with different schedule

generation schemes, which will be highlighted in this part.

The structure of the hybrid algorithm is as follows:

Step 1: Initialization

The first step is to randomly generate initial population

with size Popsize as parent population. Individual creations

rely on a list of chromosome representation: an activity

order list (k) in which activities are arranged randomly on

the premise that the precedence relationship is satisfied.

Step 2: Crossover

Crossover is the main operation to produce the new

chromosomes, simultaneously expanding the population. In

this paper, we implement one point crossover. The cross-

over points are randomly generated as well as the randomly

chosen mother and father chromosomes. Taking the posi-

tion denoted by crossover point as divide, the left positions

inherit exactly the same activity order from the mother.

Subsequently, the remaining right positions are filled

according to the father by left-to-right scan on the premise

that the precedence relationship is satisfied, skipping the

activities already taken from the mother.

Step 3: Mutation

Mutation is significant for the purpose of population

diversity. For the activity order list, mutation begins with

randomly selecting the activity which will be mutated.

Mutation applied to the activity order list is built to keep list

precedence feasible. It determines the predecessor and suc-

cessor of the selected activity first, taking their positions as

bound, and then randomly chooses and inserts in a position in

the range to generate a feasible child chromosome.

Step 4: Decoding

In this step, we employ the US-SGS to decode the

activity list k and approximate the fitness of each chro-

mosome by uncertain simulation based on 99-method,

initiated by [20] and successfully applied in project

scheduling by [27].

The uncertain simulation based on 99-method for E½Ft�
is presented in Algorithm 1.

Algorithm 1 (Uncertain simulation for E½Ft�)
1: Given an activity list k;
2: Generate dm1 ; d

m
2 ; . . .; d

m
n according to the inverse

uncertainty distributions of activities’ durations U�1
d1
;

U�1
d2
;...;U�1

dn
; and denote dm¼ðU�1

d1
ðm=100Þ;U�1

d2
ðm=100Þ;

...;U�1
dn
ðm=100ÞÞ, m¼1;2;...;99, respectively;

3: Decode the activity list k by using US-GSG for each

dm, m ¼ 1; 2; . . .; 99. Then the start time sm and finish time

fm can be attained;

4: f mt ¼ smn , m ¼ 1; 2; . . .; 99;

5: E½Ft�=
P99
m¼1

f mt =99:

Step 5: Selection

With the purpose of keeping the population size con-

sistent, new parent population requires to be selected from

the combined population. This paper employs the genetic

roulette wheel selection, in which individuals with better

fitness value are awarded with larger probability to be

selected in the roulette wheel. Additionally, the top-5

Start

Initialization

Crossover

Mutation

Selection

End

Yes

Terminating condition

D
ecoding

(99-m
ethod)

Fig. 1 Outline of the hybrid GA algorithm
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best-to-now chromosomes are specifically preserved in the

population. As a consequence, selection process guaran-

tees the high quality of population, and meanwhile avoids

the local optimum.

The framework of the algorithm is presented in Fig. 1.

5 Numerical examples

In this section, we consider a project scheduling problem

containing 30 activities (J30) and 4 renewable resources.

Specially, the durations are estimated by experts and

characterized as uncertain variables. Interested readers can

consult [11] for more details about how to use experts’

belief degrees to estimate uncertain distributions.

Information of the numerical instance including durations,

resource utilizations and successor activities is presented in

Table 1, and correspondingly, the structure of the project is

provided in Fig. 2.

To minimize the expected makespan, the following

model can be applied.

min E½F32�
subject to:

si þ di � sj; 8ði; jÞ 2 AP
i2Pt

rik �Rk; k ¼ 1; 2. . . 4; Pt ¼ fi j si � t\si þ dig

8>>>>><
>>>>>:

The algorithm is coded by MATLAB and runs on a PC

with core i3 with 2.3GHz clock speed and 2G RAM. The

Table 1 The information of the

test instances
Activity Duration Expected duration R1 R2 R3 R4 Successors

1 0 0 0 0 0 0 2, 3, 4

2 Zð5; 8; 10Þ 7.75 4 0 0 0 6, 11, 15

3 Lð3; 5Þ 4 10 0 0 0 7, 8, 13

4 Zð4; 6; 7Þ 5.75 0 0 0 3 5, 9, 10

5 Lð2; 4Þ 3 3 0 0 0 20

6 Zð6; 8; 9Þ 7.75 0 0 0 8 30

7 Zð3; 5; 6Þ 4.75 4 0 0 0 27

8 Zð7; 9; 13Þ 9.5 0 1 0 0 12, 19, 27

9 Lð1; 3Þ 2 6 0 0 0 14

10 Zð6; 7; 9Þ 7.25 0 0 0 1 16, 25

11 Zð5; 9; 11Þ 8.5 0 5 0 0 20, 26

12 Lð7; 9Þ 8 0 7 0 0 14

13 Zð4; 6; 7Þ 5.75 4 0 0 0 17, 18

14 Zð2; 3; 6Þ 3.5 0 8 0 0 17

15 Zð6; 10; 12Þ 9.50 3 0 0 0 25

16 Zð7; 11; 12Þ 10.25 0 0 0 5 21, 22

17 Zð3; 6; 7Þ 5.5 0 0 0 8 22

18 Zð3; 5; 6Þ 4.75 0 0 0 7 20, 22

19 Zð1; 3; 4Þ 2.75 0 1 0 0 24, 29

20 Zð5; 7; 8Þ 6.75 0 10 0 0 23, 25

21 Zð1; 2; 4Þ 2.25 0 0 0 6 28

22 Zð5; 7; 8Þ 6.75 2 0 0 0 23

23 Zð2; 3; 5Þ 3.25 3 0 0 0 24

24 Zð11; 13; 14Þ 12.75 0 9 0 0 30

25 Zð1; 3; 4Þ 2.75 4 0 0 0 30

26 Zð5; 7; 8Þ 6.75 0 0 4 0 31

27 Zð6; 8; 11Þ 8.25 0 0 0 7 28

28 Zð1; 3; 4Þ 2.75 0 8 0 0 31

29 Zð5; 7; 8Þ 6.75 0 7 0 0 32

30 Zð10; 12; 13Þ 11.75 0 7 0 0 32

31 Zð10; 12; 13Þ 11.75 0 0 2 0 32

32 0 0 0 0 0 0

1, 32 are dummy activity, the limits of the four resource are (12, 13, 4, 12)
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quasi-optimal schedules attained from experiments are

presented in Table 2, resulting from 10 times’ run of the

hybrid intelligent algorithm with 1000 cycles for the

expected models under different parameter settings.

Similar to [33, 34], the quality of solution can be

obtained via the deviation of the worst solution from the

optimal solution attained in the 10 times’ run and the

results are presented in Table 3. The results reveal that the

deviation denoted by percent error does not exceed 5%,

which implies the effectiveness of the algorithm integrating

uncertain simulations.

Additionally, some other computational experiments are

presented. Our test instances are all come from the

benchmark library PSPLIB http://www.om-db.wi.tum.de/

psplib/data.html initiated by [35] in which different char-

acteristics of the deterministic RCPSP are presented. Since

Table 2 The top 10 quasi-optimal schedules

Seq Popsize pc pm Quasi-optimal schedules Expected makespan

1 20 0.8 0.4 1,3,4,2,8,10,13,7,18,11,12,5,16,9,27,14,15,19,20,26,17,21,22,29,6,25,23,28,31,24,30,32 65.9300

2 30 0.7 0.4 1,3,4,8,7,2,13,10,9,18,11,16,19,12,27,26,5,14,21,15,20,17,22,6,28,31,29,23,24,25,30,32 66.1130

3 20 0.8 0.3 1,4,3,8,2,13,5,10,18,7,11,16,12,9,27,26,14,21,19,15,20,17,22,28,29,31,25,23,24,6,30,32 66.1130

4 20 0.8 0.4 1,3,4,13,8,2,10,18,7,11,16,12,27,9,26,14,5,21,15,19,20,17,22,28,31,6,29,23,24,25,30,32 66.1130

5 30 0.7 0.4 1,4,3,2,8,7,10,13,18,11,19,12,5,16,9,27,14,15,20,17,22,29,21,26,23,28,31,6,24,25,30,32 66.1440

6 30 0.7 0.4 1,3,4,2,8,10,13,7,18,9,5,16,12,11,27,14,15,20,19,17,22,29,25,21,26,23,28,31,24,6,30,32 66.1440

7 30 0.6 0.3 1,4,3,7,2,13,8,10,5,11,18,16,19,12,9,27,14,15,20,17,22,21,29,26,23,25,28,31,24,6,30,32 66.1500

8 20 0.8 0.3 1,3,4,8,2,13,10,11,7,18,12,16,27,9,14,5,15,19,20,17,22,25,26,29,21,23,28,31,6,24,30,32 66.1500

9 30 0.6 0.2 1,4,3,13,2,8,10,18,7,11,16,9,12,5,27,14,15,21,20,26,17,19,22,28,6,31,29,23,25,24,30,32 66.2120

10 30 0.6 0.2 1,3,4,2,13,8,5,10,7,18,11,16,12,27,9,14,15,21,20,17,26,19,22,28,31,29,23,6,24,25,30,32 66.2120

Table 3 The effectiveness of

the GA
Gen Popsize pc pm The best The worst Average Error (%)

1000 30 0.6 0.2 66.212 68.019 66.7959 2.73

1000 30 0.6 0.3 66.150 69.415 67.5808 4.94

1000 30 0.7 0.4 66.113 69.160 66.5831 4.61

1000 20 0.7 0.2 66.445 68.458 67.2897 3.03

1000 20 0.8 0.3 66.113 67.890 66.9114 2.69

1000 20 0.8 0.4 65.925 67.793 66.7275 2.83

Error (%) = The worst�The best
The best

� 100%

Fig. 2 The activity-on-the-node

network of the project
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the uncertain simulation is the time-consuming task, this

paper only considers four instances with 30, 60, 90 and 120

activities under 4 renewable resource constraints. The

uncertain distributions of the activity processing times are

generated by Zðdi �
ffiffiffiffi
di

p
; di; di þ

ffiffiffiffi
di

p
Þ with the deter-

ministic di as expectation. After running each instance 10

times, the results are presented in Table 4. Referring to

Table 4, we can find that the deviation denoted by percent

error does not exceed 10%.

6 Conclusion

In this paper, an uncertain model was proposed to deal with

uncertain resource constrained project scheduling problem

(URCPSP), in which the durations, with no historical data

generally, were described as uncertain variables. Further-

more, an uncertain serial schedule generation scheme (US-

SGS) was introduced to process the activities with uncer-

tain durations. Besides, a GA-based hybrid algorithm

integrating uncertain simulation was designed to search the

quasi-optimal schedule. Numerical examples were pro-

vided to illustrate the effectiveness of model and the

algorithm as well.

Meanwhile, there are some limitations in this paper.

First of all, this paper involves merely one type of inde-

terminacy, while the real world project might be compli-

cated that randomness (activity duration estimated by

historical data) and uncertainty (activity duration estimated

by experts’ experienced data) might co-exist. Future

research can extend the RCPSP to twofold indeterminacy

and correspondingly uncertain random variable can be

applied. Secondly, this paper assumed that each activity

was executed with one mode, multi-mode RCPSP in

uncertain environment can be taken into consideration in

further development.
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Appendix

In this section, some concepts and theorems of uncertainty

theory are introduced to lay the foundation for the

URCPSP modeling. Uncertainty theory is a branch of

axiomatic mathematics for subjective uncertainty model-

ing, which has been well developed and applied in a wide

variety of real problems.

Let C be a nonempty set, L a r-algebra over C, and
each element K in L is called an event. Uncertain measure

is defined as a function from L to [0, 1]. In detail, the

concept of uncertain measure is pioneered by [19] and

redefined by [20]. Uncertain measure M is a set function

defined over the following four axioms.

Axiom 1 (Normality Axiom) MfCg ¼ 1.

Axiom 2 (Duality Axiom) MfKg þMfKcg ¼ 1 for any

event K.

Axiom 3 (Subadditivity Axiom) For every countable se-

quence of events fKig, we have:

M
[1
i¼1

Ki

( )
�

X1
i¼1

MfKig:

Axiom 4 (Product Measure Axiom) Let ðCk;Lk;MkÞ be
uncertainty spaces for k ¼ 1; 2; . . ., the product uncertain

measure M is an uncertain measure satisfying

M
Y1
k¼1

Ak

( )
¼

1̂

k¼1

MkfAkg

where Ak are arbitrarily chosen events from Lk for

k ¼ 1; 2; . . ., respectively.

Definition 1 [19] An uncertain variable is a measurable

function n from an uncertainty space ðC;L;MÞ to the set

of real numbers, i.e., for any Borel set B of real numbers,

the set

fn 2 Bg ¼ fc 2 C
�� nðcÞ 2 Bg

is an event.

The uncertainty distribution is indispensable to establish

the practical uncertain optimization problems model.

Table 4 The results of the

computational experiments
Instances Gen Popsize pc pm The best The worst Average Error (%)

J301 1 1000 30 0.6 0.2 46.929 49.242 48.197 4.93

J601 1 1000 30 0.6 0.2 79.348 84.843 82.303 6.93

J901 1 1000 30 0.6 0.2 91.091 97.465 94.559 7.00

J1201 1 1000 30 0.6 0.2 141.130 153.062 147.420 8.53

Error (%) = The worst�The best
The best

� 100%
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Definition 2 [19] The uncertainty distribution U of an

uncertain variable n is defined by

UðxÞ ¼ Mfn� xg

for any real number x.

An uncertainty distribution U is confirmed to be regular

if its inverse function U�1ðaÞ exists uniquely for each

a 2 ½0; 1�.

Definition 3 [19] Let n be an uncertain variable. The

expected value of n is defined by

E½n� ¼
Z þ1

0

Mfn� rgdr �
Z 0

�1
Mfn� rgdr

provided that at least one of the above two integrals is

finite.

Lemma 1 [20] Let n be an uncertain variable with

uncertainty distribution U. If the expected value exists,

then

E½n� ¼
Z þ1

0

ð1� UðxÞÞdx�
Z 0

�1
UðxÞdx:

Lemma 2 ([20]) Let n be an uncertain variable with

regular uncertainty distribution U. If the expected value

exists, then

E½n� ¼
Z 1

0

U�1ðaÞda:

Example 1 The expected value of the zigzag uncertain

variable n ¼ Zða; b; cÞ is:

E½n� ¼
Z 0:5

0

ðð1� 2aÞaþ 2abÞdaþ
Z 1

0:5

ðð2� 2aÞb

þ ð1� 2aÞcÞda ¼ aþ 2bþ c

4
:

ð4Þ

Lemma 3 [20] Let n1; n2; . . .; nn be independent uncer-

tain variables with regular uncertainty distributions

U1;U2; . . .;Un, respectively. A function f ðx1; x2; . . .; xnÞ
which is strictly increasing with respect to x1; x2; . . .; xm
and strictly decreasing with respect to xmþ1; xmþ2; . . .; xn.
Then the n ¼ f ðn1; n2; . . .; nnÞ is an uncertain variable with

inverse uncertainty distribution

W�1ðaÞ ¼ f ðU�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1ð1� aÞ; . . .;

� U�1
n ð1� aÞÞ:

ð5Þ

Lemma 4 [36] Let niði ¼ 1; 2; :::; nÞ be independent

uncertain variables with regular uncertainty distributions

U1;U2; . . .;Un respectively. If a function f ðx1; x2; . . .; xnÞ is
strictly increasing with respect to x1; x2; . . .; xm and strictly

decreasing with respect to xmþ1; xmþ2; . . .; xn , respectively,
then the expected value of uncertain variables n ¼
f ðn1; n2; . . .; nnÞ has an expected value as follows:

E½n� ¼
Z 1

0

f ðU�1
1 ðaÞ; . . .;U�1

m ðaÞ;U�1
mþ1ð1� aÞ;U�1

n ð1� aÞÞda

ð6Þ

provided that the expected value E½n� exists.
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