
ORIGINAL ARTICLE

Integration of data fusion and reinforcement learning techniques
for the rank-aggregation problem

Amir Hosein Keyhanipour1 • Behzad Moshiri1 • Masoud Rahgozar1 •

Farhad Oroumchian2 • Ali Asghar Ansari1

Received: 28 January 2015 / Accepted: 8 October 2015 / Published online: 20 October 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Rank-aggregation or combining multiple

ranked lists is the heart of meta-search engines in web

information retrieval. In this paper, a novel rank-aggrega-

tion method is proposed, which utilizes both data fusion

operators and reinforcement learning algorithms. Such

integration enables us to use the compactness property of

data fusion methods as well as the exploration and

exploitation capabilities of reinforcement learning tech-

niques. The proposed algorithm is a two-steps process. In

the first step, ranked lists of local rankers are combined

based on their mean average precisions with a variety of

data fusion operators such as optimistic and pessimistic

ordered weighted averaging (OWA) operators. This

aggregation provides a compact representation of the uti-

lized benchmark dataset. In the second step, a Markov

decision process (MDP) model is defined for the aggre-

gated data. This MDP enables us to apply reinforcement

learning techniques such as Q-learning and SARSA for

learning the best ranking. Experimentations on the

LETOR4.0 benchmark dataset demonstrates that the pro-

posed method outperforms baseline rank-aggregation

methods such as Borda Count and the family of coset-

permutation distance based stage-wise (CPS) rank-aggre-

gation methods on P@n and NDCG@n evaluation criteria.

The achieved improvement is especially more noticeable in

the higher ranks in the final ranked list, which is usually

more attractive to Web users.

Keywords Rank-aggregation � Data fusion �
Reinforcement learning � Markov decision process

1 Introduction

It is estimated that by the end of December 2014, about 60

billion Web pages are indexed by major Web search

engines such as Google, Yahoo and Bing [37]. For the

moment, Web retrieval systems, especially Web search

engines are main access points for Web users to this vast

ocean of information. Web information retrieval has

become a crucial and challenging task. Based on the

available statistics, almost all of Web users use Web search

engines in order to locate their required data and services

[14]. Also, most of the traffic of Web sites is originated

from Web search engines [41]. On the other hand, most of

the users of search engines, visit only the top items of the

results pages of their queries [11, 25]. In such a circum-

stance, one may consider ranking as the heart of search

engines. Although significant research works have been

accomplished on the ranking problem, there is still con-

siderable room left for improvements.

This paper is devoted to a special kind of ranking

method which is called rank-aggregation. Rank-

& Amir Hosein Keyhanipour

keyhanip@ut.ac.ir

Behzad Moshiri

moshiri@ut.ac.ir

Masoud Rahgozar

rahgozar@ut.ac.ir

Farhad Oroumchian

farhadoroumchian@uowdubai.ac.ae

Ali Asghar Ansari

ansari@ut.ac.ir

1 Control & Intelligent Processing, Center of Excellence,

School of ECE, University of Tehran, No. 5, Zolfaghary

Alley, Shadmehr Street, SattrKhan Avenue, Tehran, Iran

2 Faculty of Engineering & Information Sciences, University

of Wollongong in Dubai, Dubai, UAE

123

Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145

DOI 10.1007/s13042-015-0442-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0442-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0442-6&domain=pdf

aggregation is extensively used in Web meta-search engi-

nes as well as in many other decision making tasks. The

aim of the rank-aggregation method is to combine a set of

ranked lists provided by local rankers based on their own

ranking strategies and provide a more precise ranking of

the underlying data items. These ranked lists might be

noisy, incomplete or even disjoint. Obviously, it is required

to aggregate such locally ranked lists in order to achieve

more precise view of the appropriate data. By having such

a general definition of the rank-aggregation problem, the

task of ranking could also be considered as an aggregation

of some local rankings. Especially, such a definition is

useful in the context of learning to rank which is a

promising solution for the ranking problem [20, 21].

In the rank-aggregation problem, we encounter with the

dynamic and sophisticated information needs of Web users.

On the other hand, as the quality of Web information

resources are constantly changing, local rankers need to use

complicated ranking mechanisms. Moreover, due to the

commercial competitions of Web search engines, their

ranking algorithms are unknown to rank-aggregation sys-

tems. This dynamic and complex environment has moti-

vated us to look at the problem as a learning problem,

where the exhaustive exploration–exploitation capability of

methods such as reinforcement learning could be useful in

finding near-optimal solutions. This paper proposes a novel

rank-aggregation method with two sequential steps. In the

first step, for each query, ranked lists of local rankers are

aggregated based on their mean average precisions (MAP)

values by a variety of data fusion operators. This step

produces a compact representation for the benchmark

dataset. Then, in the second step, a Markov decision pro-

cess (MDP) model is learned by a reinforcement learning

(RL) method. This model assigns the best relevance label

to each query-document pair based on similarly viewed

items.

Major contributions of this research could be listed as:

• Proposition of a novel rank-aggregation method by

combining information fusion theory and reinforcement

learning techniques.

• Combination of decisions of local rankers based on

their MAPs by a variety of data fusion operators

especially the family of exponential ordered weighted

averaging (OWA) operators.

• Designation of a reinforcement learning model for the

rank-aggregation problem and application of temporal-

difference (TD) learning methods as the solution.

The rest of this paper is organized as follows: Sect. 2

provides a brief overview of rank-aggregation methods. In

Sect. 3, fundamental ideas of the proposed rank-aggrega-

tion method and a review of utilized techniques will be

described. Then in Sect. 4, the evaluation of the proposed

method as well as the analytical discussion about the

results will be presented; and finally, Sect. 5 concludes the

research work and gives some further research directions.

1.1 Notation

For the abbreviation, in this paper we will use the fol-

lowing acronyms; ‘WA’ for weighted averaging, ‘WMV’

for weighted majority voting, ‘OWA_Opt’ for optimistic

version of ordered weighted averaging and ‘OWA_Pess’

for the pessimistic ordered weighted averaging. These data

fusion techniques are described in Sect. 3.

2 Survey on related works

The rank-aggregation problem broadly refers to a variety of

techniques in which different ranking lists received from

multiple ranking systems are combined in order to obtain a

better ranking list. The problem of rank-aggregation has its

roots in the social fair election demand in the eighteenth

century [13]. However, in recent decades, rank-aggregation

techniques have been applied in various applications

including: Bioinformatics [18, 30], Meta-search engines [6,

9, 16, 19, 28], and Web spam detection [3, 32].

In the context of Web information retrieval, rank-ag-

gregation could be considered from two points of view:

score-based and order-based. Algorithms of the former

category, take as input, scores assigned to data items by

local rankers, while in the latter category, orders of data

items are used as input. Although score-based methods

have shown better performance, but lack of score within

local lists in real-world situation, has made these methods

ineffective in practice [28].

A number of score-based rank-aggregation techniques

have been proposed such as [4, 35] and coset-permutation

distance based stagewise (CPS) [27]. CPS is a probabilistic

model over permutations, which is defined with a coset-

permutation distance and models the generation of a per-

mutation as a stage-wise process.

The order-based methods exploit only relative positions

of data items in the ranked lists to perform the aggregation,

thus they are also called positional methods. Borda Count

[29] is a notable example of such algorithms. The final rank

of a given data item in Borda Count is related to the

number of items, which locate below that item in all locally

ranked lists [7]. Another example of order-based method is

the Median rank-aggregation, in which the final position of

each item is calculated as the median of occurrence posi-

tions of that item in all the local lists [8]. Another approach

is taken by assuming the existence of a Markov chain on

items. In this model the Markov transition model learns

and predicts the order of data items in the ranked lists [6].

1132 Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145

123

Dwork et al. have experimented with a number of methods

such as MC1, MC2, MC3 and MC4 for computing the

transition matrix for the assumed Markov chain [6].

Most of the above mentioned algorithms implicitly

assume an equal weight for all of local rankers. Obviously,

such assumption may not be realistic. In order to distin-

guish between locally sorted lists, authors in [2] have

introduced a Borda Fuse approach distinguishes local

rankers by their MAP values. Their evaluations showed

that Borda Fuse outperforms Borda Count. Authors of [36]

have also used OWA weights in order to aggregate pref-

erence rankings. Their approach allows the weights asso-

ciated with different ranking places to be determined in

terms of a decision maker’s optimism level characterized

by an Orness degree. In [40], OWA operators are used in

the multi-criteria decision making problem with multiple

priorities, in which priority weights associated with the

lower-priority criteria are related to the satisfactions of the

higher-priority criteria. Another recent related work is [17],

in which, both Optimistic and Pessimistic OWA operators

are used for the aggregation of ranking of the preferences

lists. A recent related research work is [12], which pro-

poses an ensemble strategy for the local information-based

link prediction algorithms using the OWA operator.

In recent years, it is observed that in order to improve

the accuracy of rank aggregation, it is better to employ a

supervised learning approach [22], in which an order-based

aggregation function is learned within an optimization

framework using labeled data. Examples of these methods

are [5, 22]. Another noticeable supervised rank-aggregation

method is QuadRank, which takes into account the meta-

data accompanying each item such as title, snippet and

URL, in addition to their order in local lists [1].

Our proposed technique differs from the above men-

tioned approaches because it combines the data fusion and

reinforcement learning in the context of rank-aggregation.

Considering the dynamic nature of Web information

resources as well as the constantly changing users’ infor-

mation needs, the behavior and quality of the local rankers

could be completely dynamic over time. The proposed

rank-aggregation method, takes advantage of a merit-based

aggregation of the decision of the local rankers based on

their MAP values, which indicates their average precision

in local ranked lists. The proposed method introduces a

Markov decision process model for the rank-aggregation

problem and applies reinforcement learning methods in

order to learn the above mentioned dynamism of the Web

environment. Experimental results show that the proposed

approach outperforms baseline algorithms, especially in the

high ranks, which are the most attractive part of the ranked

lists for Web users.

3 Fundamentals of the proposed approach

In this section, after providing a formal definition of the

rank-aggregation problem, an outline of the proposed

method will be presented along with its information fusion

operators and the reinforcement learning framework.

Afterwards the two steps of the proposed rank-aggregation

method will be described in detail.

3.1 Formal definition of the rank-aggregation

As mentioned earlier, ranking is the heart of the web

information retrieval systems. Recently, a new area called

learning to rank has emerged in the intersection of machine

learning, information retrieval, and natural language pro-

cessing. We may consider learning to rank as the appli-

cation of machine learning technologies in the ranking

problem. In the learning to rank, the input space X consists

of lists of feature vectors and the output space Y contains a

list of grades (relevance labels). Assuming x is a member

of X which represents a list of feature vectors and y is an

element of Y, which represents a list of grades, F(.) is a

ranking function that maps a list of feature vectors x to a

list of scores y. Having m training instances such as: (x1,

y1), (x2, y2), …, (xm, ym); the goal of learning to rank is to

automatically learn an acceptable approximation G(.) of

the ranking function F(.) [20].

In a general view, learning to rank methods could be

categorized into two different categories: rank-aggregation

and rank-creation algorithms. Rank-aggregation is actually

a process of combining multiple ranking lists into a single

ranking list, which is better than any of the original ranking

lists. The rank-creation algorithm generates ranking based

on features of queries and documents [20].

This research deals with the rank-aggregation problem.

The rank-aggregation problem can be defined as following:

Given a set of entities S, let: V � S and assume that there is

a total order among the entities in V. s is called a ranking

list with respect to S, if s is a list of the entities in

V maintaining the same total order relation, i.e., s = [d1,

���, dm], if d1 C ��� C dm, di [, i = 1, ���, m, where C

denotes the ordering relation and m = |V| (here, we draw

heavily on the notation of [22]). If V equals S, s is called a

full list, otherwise, it is called a partial list. Let s1, ���, sl
denote the ranking lists with respect to S and n denotes the

number of entities in S. The aggregation function is defined

as W: s1, ���, sl 7! x, where x denotes the final score vector

of all entities. That is, if x = (s1, ���, sl), then all the entities

are ranked by the scores in x. In this context, finding a

suitable aggregation function is what the rank-aggregation

algorithms deal with.

Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145 1133

123

3.2 Outline of the proposed rank-aggregation

method

As mentioned before, the proposed method consists of two

consecutive steps. In the first step, information fusion

techniques are used in order to provide a combination of

local rankers’ decisions based on their MAP values. Then,

in the second step, a MDP model including States, Actions

and Rewards will be built over the output of the previous

phase. Figure 1 demonstrates what happens inside the

proposed rank-aggregation method. Details of this process

will be described in Sect. 3.5.

At the end of the learning process, the optimal action

for each state is learned. In other words, based on the

learned Markov model, one can identify the appropriate

relevance label for any input query-document pair. In this

regard, each input which is a query-document pair, is

mapped into a state of the proposed MDP model. There-

after, based on the learning process of the proposed

algorithm, which is summarized in the Action-Value

table, the most appropriate relevance label will be

assigned to the input query-document pair. This process is

illustrated in Fig. 2. In this figure, each input query-doc-

ument pair is represented by a feature vector hRelevance,
qID, v1, v2, …, vN, docIDi, in which vi’s are features

extracted from the qID-docID pair.

3.3 The ordered weighted averaging

The ordered weighted operators (OWA) operators were

introduced by Yager [38]. These aggregation operators are

based on the arithmetic average. Due to their ability in

modeling different aggregation scenarios, the family of

OWA operators have been widely used in different com-

putational intelligence applications. Formally, an OWA

operator of dimension n is a mapping f : Rn ! R, that has

an association with weighting vector W ¼ w1 w2 . . .wn½ �T
such that:

X
i
wi ¼ 1; wi 2 0; 1½ �; and : f a1; . . .; anð Þ ¼

Xn

j¼1
wjbj

In the above, bj is the jth largest element of the collec-

tion of n aggregate objects a1, a2, …, an. The function

value f(a1, …, an) determines the aggregated value of

arguments, a1, a2, …, an. Having n weights w1, w2, …, wn

corresponding to decadently sorted objects b1, b2, …, bn,

the Orness is defined as follow [10]:

Orness Wð Þ ¼ 1

n� 1

Xn

i¼1
n� ið Þwi

In fact, the Orness characterizes the degree to which the

aggregation is like the OR (Max) operation.

One important issue in the definition of OWA aggre-

gation operators, is how to determine the associated

weights. In fact, a number of approaches have been sug-

gested for obtaining OWA weights [39]. One of the earliest

methods was introduced by O’Hagan [26]. O’Hagan’s

approach calculates the vector of the OWA weights for a

predefined level of Orness. However, the computational

cost of this method is high; because it involves the solution

of a constrained nonlinear programming problem. Another

approach for finding OWA weights is the exponential

OWA operators.

Step1: “Fusion of local decisions” Step2: “MDP Model Creation”

Fusion of local rankers’
decisions

States

Normalization and Discretization
of fused decisions

Actions

Rewards

Fig. 1 The process view of the

proposed rank-aggregation

method

Map input to the
corresponding

state

Lookup for the
appropriate action

in the Action-Value
table Q(s,a)

Query-Doc pair
Relevance qID v1 v2 … vN docID Relevance Label

The Proposed Rank-Aggregation Method

State s

Fig. 2 A black-box view of the

proposed rank-aggregation

method

1134 Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145

123

Assuming we have n items to be aggregated, Optimistic

Exponential OWA weights are computed as follow [10]:

w1 ¼ a;w2 ¼ a 1� að Þ;w3 ¼ a 1� að Þ2; . . .;wn�1
¼ a 1� að Þn�2;wn ¼ 1� að Þn�1 Optimistic OWAð Þ

In the above formulae, a belongs to the unit interval,

0 B a B 1. It is proven that in the Optimistic Exponential

OWA, the Orness is a monotonically increasing function of

a [10]. Furthermore, they have shown that for n = 2, the

Orness value of this operator is always equal to a, and for

n[2, it is higher than a. For this reason, the OWA

operator associated with these weights is called as Opti-

mistic Exponential OWA operator.

An alternative related OWA operator can be derived by

considering the following OWA weights [10]:

w1 ¼ an�1;w2 ¼ 1� að Þan�2;w3 ¼ 1� að Þan�3; . . .;wn�1
¼ a 1� að Þ;wn ¼ 1� að Þ Pessimistic OWAð Þ

Contrary to the previous case, for a fixed a, the Orness

of this aggregation decreases as n increases. Furthermore, it

can be shown that for n = 2, the Orness value of this

aggregation is always equal to a and for any value of

n[2, it is lower than the value of the parameter a. Due to
this situation, the OWA operator associated with these

weights is named as Pessimistic Exponential OWA

operator.

In this research, OWA weights are calculated based on

both optimistic and pessimistic exponential OWA

operators.

3.4 Reinforcement learning framework

Reinforcement learning (RL) is referred to a category of

learning approaches in which the model of the environment

is gradually built based on the interactions of the learning

agent with the surrounding environment. During the

learning process, in each state of the environment, the RL

agent tries to maximize its cumulative reward by selecting

the most appropriate action according to its current esti-

mation of values of possible actions [33]. The cumulative

reward is usually a numerical signal received based on the

configuration of the environment. The environments which

are explored by reinforcement learning methods are usually

defined by a set of states, a number of actions and a reward

function which maps actions that are taken in a given state

into a numerical reward. Such environments need to fulfill

the constraints of MDPs. An MDP environment is a dis-

crete time stochastic process. Being in state s at a moment,

the learning agent is able to select action a 2 A, where A is

the set of all possible actions. Actually, the agent selects

the action which maximizes its expected reward. The MDP

environment responds to agent’s action at the next time

step by randomly moving into a new state s’ based on the

state transition function Pa(s,s
0) and gives the learning

agent a corresponding reward Ra(s,s
0). Therefore, the next

state s’ depends on the current state s and the selected

action a, but conditionally independent of all previous

states and actions [34].

SARSA and Q-learning are two most powerful rein-

forcement learning algorithms. Both algorithms are from

the temporal-difference (TD) learning family, but they

differ in the updating mechanism of their estimations on

the value of possible actions in different states of the

problem’s environment. Briefly, Q-learning is an off-policy

TD, while SARSA is an on-policy TD [33]. Assuming

Q(s,a) represents the estimated value of taking action a in

the state s under a given policy, and state s’ as the next state

that the reinforcement-learning agent will change into after

the state s and action a, Q(s0, a0) is the estimation of the

value of performing action a0 in state s0. Based on the

goodness of the value of Q(s0, a0), the learning agent needs

to update its estimation of the goodness of performing the

action a in the state s or Q(s0, a0). The SARSA algorithm

dose this updating by:

Q s; að Þ Q s; að Þ þ b r þ c Q s0; a0ð Þ � Q s; að Þ½ �

Updating mechanism for the Q-learning algorithm is

done through the following function:

Q s; að Þ Q s; að Þ þ b r þ cmax
a0

Q s0; a0ð Þ � Q s; að Þ
� �

In the above formula, r is the reward obtained after

transition from state s to s0 or Ra(s,s
0); a0 is the accom-

plished action in state s0; b is a constant step-size parameter

and c is discount rate which is 0� c� 1. Based on the

above updating mechanisms, Q-learning is called an off-

policy learning method, while SARSA is an on-policy one.

In off-policy methods, behavior policy differs from the

estimation policy, but they are same in on-policy learning

methods. The policy used to generate the behavior of the

RL agent, called the behavior policy, may in fact be

unrelated to the policy that is evaluated and improved,

called the estimation policy.

In this investigation, in order to provide the maximum

of exploration, Q(s,a) values are initialized according to

the ‘‘Optimistic Initial Values’’ approach, in which initial

values of Q(s,a) are set to a very large positive number

[33]. Whichever actions are initially selected, the reward

is less than the starting estimates; thus the learner

switches to other actions, being disappointed with the

rewards it is receiving. Although this exploration may

reduce the performance of the RL agent in the beginning

of its learning process, however all actions are tried

several times before the convergence of the estimated

action-values [33].

Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145 1135

123

3.5 Details of the proposed method

The proposed method uses the exploration and exploitation

capabilities of reinforcement learning methods besides the

compressing ability of data fusion models to provide a

novel approach in dealing with the rank-aggregation

problem. Generally, in its first step, the proposed method

provides a combination of local rankers by utilizing data

fusion operators such as min, max, average, weighted

average, and optimistic/pessimistic exponential ordered

weighted averaging. In the second step, our algorithm

builds a MDP representation of the rank-aggregation task.

This model is constructed by defining the set of states,

possible actions and the reward function. By having such a

model, the proposed method learns to assign an appropriate

relevance label to each query-document pair.

Formally, by having N different local rankers such as

v1; v2; . . .; vN and considering if M different relevance

levels could be assigned to each query-document pair, the

aggregation function F is defined as:

F di; qj
� �

¼ F v1 di; qj
� �

; v2 di; qj
� �

; . . .; vN di; qj
� �� �

ð1Þ

According to the above equation, for any document di
and any query qj, the aggregation is accomplished on the

votes of N local rankers on this query-document pair. In our

experimentation, different aggregation functions such as

min, max, average, weighted average, and optimistic/pes-

simistic ordered weighted averaging are investigated. In

this work, for aggregation of the local rankers is accom-

plished according to the mean average precision (MAP)

values of their relevance judgments in comparison with

ground truth relevance labels of investigated documents.

Then, the min–max normalization process [23] will be

done on aggregated votes.

F0 di; qj
� �

¼
F di; qj
� �

�min
k

F dk; qj
� �� �

max
k

F dk; qj
� �� �

�min
k

F dk; qj
� �� � ð2Þ

Normalized aggregated decisions of local rankers are

passed through a discretization process which is formally

described in Eq. 3. Here, for each query-document pair, the

normalized and aggregated votes of local rankers will fall

into one of M possible relevance levels.

G di; qj
� �

¼

0

1

. . .
M � 1

if F0 di; qj
� �

\1=M
if 1=M�F0 di; qj

� �
\2=M

. . .
; else

8
>><

>>:

ð3Þ

The above mentioned process forms the first step of the

proposed rank-aggregation algorithm. Using the result of

the first step, within the second step of the proposed

algorithm, a MDP model will be suggested for the rank-

aggregation problem, which includes states, possible

actions and expected rewards. In this MDP model, the set

of all possible states are defined as:

S ¼ NNV ; G d; qð Þð Þf g ð4Þ

In the above formulation, NNV is the number of local

voters which their votes were not null for a given query-

document pair (d,q). In this definition, each state consists of

two integers: the first part indicates the number of local

voters, which their votes were not null for a corresponding

query-document pair, and the second part, is a discretized

aggregation of the votes of local rankers for the mentioned

query-document pair. In this way, there may be different

pairs of queries-documents, which are mapped to the same

state. The mapping of different pairs of queries-documents

to a single state, is the generalization property of the pro-

posed algorithms, which makes it possible to predict suit-

able relevance labels for unseen query-document pairs. In

fact, the proposed definition for the set of states, is a

compact and lossless representation of the data associated

with each pair of query-document. The intuition behind

mapping query-document pairs to states is that the RL

agent encounters with different states (different pairs of

queries-documents) and needs to select appropriate actions

(relevance labels). As it would be described later in Sect. 4,

a data item of the rank-aggregation benchmark dataset,

includes the truth relevance of the corresponding query-

document pair and votes of different voters. The voters

output NULL if the specified document does not exist in

their ranked results for the given query. Regarding the

probable noise in the votes of the voters, the aggregation of

their votes, is used in the representation of the corre-

sponding state.

Also, the set of all possible actions in a given state, is

defined as M different relevance degrees which could be

assigned to any query-document pair, which are: 0 (irrel-

evant), 1 (a little relevant), … and M-1 (completely rele-

vant). The learning agent is designed to select the right

action (assign the right relevance label) to each query-

document pair, therefore we have:

A ¼ 0; 1; . . .;M � 1f g ð5Þ

In the same way, the reward function is considered as:

r d; qð Þ ¼ � actionðd; qÞ � G d; qð Þj j ð6Þ

In this formulation, action(d,q) stands for the relevance

label which is predicted by the proposed method for a

query-document pair such as (d,q). The RL agent learns to

estimate the relevance label of each document query pair

based on current state. The above mentioned reward

function motivates the learning agent to predict the rele-

vance label of a given query-document pair based on the

aggregated votes of the local rankers. That is because it is

1136 Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145

123

assumed the aggregation of the votes of local rankers could

reduce the possible noises in the decisions of individual

rankers.

By having such a RL definition of the rank-aggregation

problem, each given a query-document pair, is mapped to

the set of possible states. In each state, the learning agent

can select different actions, which are possible relevance

labels that could be assigned to the corresponding query-

document pair. By selecting an action, the agent receives a

numerical reward, which indicates the distance between the

true relevance label of the corresponding query-document

pair and the label, which was selected by the agent during

its most recent action. For this MDP model, we can per-

ceive that the Markov property, which is about the inde-

pendence of receiving a reward at a particular state from

the previous states and actions, is established [33]. For-

mally, we have:

Pr stþ1 ¼ s0; rtþ1 ¼ r st; at; rt; st�1; at�1; . . .; r1; s0; a0jf g
¼ Pr stþ1 ¼ s0; rtþ1 ¼ r st; atjf g

In the above equation, st stands for the state of the agent

at time t, at is the accomplished action at time t and rt is the

received reward at time t by doing the action at at the state

st. Since data items are selected from the training set by a

uniform distribution probability, therefore the Markov

property holds in the proposed MDP model. In fact, for the

proposed MDP model, the state-transition model is:

8s; s0 2 S; 8a 2 A : Pa s; s0ð Þ ¼ 1

Sj j

Availability of the Markov property in the proposed

MDP model lets the learning agent to utilize temporal-

difference learning methods such as Q-learning and

SARSA during its interactions with this environment.

As an explanatory example, suppose there are only two

documents corresponding to the query ‘q1’, which are lis-

ted in Table 1. In each row, the first column is the rele-

vance label of this query-document pair, which is either 0

(non-relevant) or 1 (relevant). The second column is query

ID, and following columns are ranks of the document in

local lists of four different local rankers, and the document

ID is at the end of the row. Also suppose that the arithmetic

mean is utilized as the aggregation operator during the

fusion of local rankers’ votes.

In this way, based on Eqs. 1–3, we have:

F d1; q1ð Þ ¼ Mean 1; 3; 8; 0ð Þ ¼ 4;

F d2; q1ð Þ ¼ Mean 2; 7; 4; 11ð Þ ¼ 6;

F0 d1; q1ð Þ ¼ 0; F0 d2; q1ð Þ ¼ 1;

G d1; q1ð Þ ¼ 0; G d2; q1ð Þ ¼ 1;

Therefore, according to Eq. 4, the first query-document

pair will correspond with state (3, 0), while the second

query-document pair matches with state (4, 1). Based on

Eqs. 4 and 5, in this example, there are two different rel-

evance levels, so there will be two different possible

actions in each state. Also, as there are four voters, so the

number of non-null voters could be either: 0, 1, 2, 3 or 4.

So:

Aj j ¼ 2; NVVmax ¼ 5; Sj j ¼ 10

Therefore, at the end of the learning process, the RL

agent has its own estimations about values of possible

actions in each state. In fact, the result of agent’s learning

could be represented in an action-value table like Table 2.

At the end of the learning process, while being in an

arbitrary state, the RL agent selects the action with maxi-

mum action-value from the list of all possible actions. As it

is presented in the Sect. 5, using this MDP model, the

proposed rank-aggregation method outperforms well-

known algorithms based on the evaluation criteria.

4 The evaluation framework

4.1 Benchmark dataset

For the evaluation of our method, we used a subset of the

LETOR4.0 dataset [24]. This version of the LETOR

dataset was released by the Microsoft Research Center at

China, in 2009. The subset of LETOR 4.0 dataset that was

used is called MQ2008, which is prepared for the ‘‘Rank-

Table 1 An example rank-aggregation dataset

…
0 qid:q1 voter#1:1 voter#2:3 voter#3:8 voter#4:NULL docid = d1

1 qid:q1 voter#1:2 voter#2:7 voter#3:4 voter#4:1 docid = d2

…

Table 2 An example of the action-value table

Actions

a1 a2

States

s1 e1,1 e1,2

s2 e2,1 e2,2

… …

s10 e10,1 e10,2

Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145 1137

123

aggregation’’ task. There are 800 queries in MQ2008 with

labeled documents.

In this setting, every query is associated with a number

of ranked lists. Each ranked list is assumed to be the output

of a search engine. The task of rank-aggregation is to

prepare a better final ranked list by aggregating the mul-

tiple input lists. A row in this dataset indicates a query-

document pair. Some sample rows of the utilized bench-

mark dataset are presented in Table 3.

In each row, the first column is the relevance label of

this query-document pair, which could be either as {0, 1,

2}: ‘Relevant or 2’, ‘Moderate or 1’ and ‘Non-relevant or

0’. The second column is query ID, the following columns

are ranks of the document in the input ranked lists, and

finally at the end of the row, there are some comments

about the pair, including ID of the document. In the above

example, 2:30 in the first row means that the rank of the

document is 30 in the second input list (the output of

second search engine). Note that large ranks mean top

positions in the input ranked list, and ‘NULL’ means the

document does not appear in a ranked list. The larger the

relevance label, the more relevant the query-document pair

[24]. There are 25 input lists from 25 search engines in

MQ2008 dataset.

MQ2008 dataset, also includes the results of a few

baseline rank-aggregation methods such as: Borda Count

and three extensions of the CPS algorithm which are CPS-

KendallTau, CPS-SpearmanFootrule and CPS-Spear-

manRankCorrelation. Borda Count is a popular aggrega-

tion method which simply computes the ranking score of

an object based on the number of objects that are ranked

below it in all of the ranking lists [7]. Specifically, in Borda

Count method, each candidate (or alternative) gets one

point for each last place vote received, two points for each

next-to-last point vote, etc., all the way up to N points for

each first-place vote (where N is the number of candidates/

alternatives). The candidate with the largest point total

wins the election. For instance, in a four candidate election,

each 4th place vote is worth one point, each 3rd place vote

is worth two points, each 2nd place vote is worth three

points, and each 1st place vote is worth four points.

The CPS is a well-known probabilistic model over

permutations, which is defined with a coset-permutation

distance and models the generation of a permutation as a

stage-wise process. The CPS model has rich expressiveness

as well as low complexity. This is due to the stage-wise

decomposition of the permutation probability and the

efficient computation of most coset-permutation distances

[27]. There are many well-defined metrics to measure the

distance between two permutations, such as Spearman’s

rank correlation, Spearman’s Footrule and Kendall’s tau,

which lead to different extension of CPS model, which are

CPS-KendallTau, CPS-SpearmanFootrule and CPS-Spear-

manRankCorrelation, respectively [27].

In order to apply the proposed method on MQ2008

dataset, in the first step of the algorithm, by taking into

account three relevance labels of {0,1,2} for each query-

document pair, equations (Eqs. 1, 2, 3) have been per-

formed in order to create an aggregation of the base data.

Then, during the second step of the proposed rank-aggre-

gation method, a MDP model was prepared for using

equations (Eqs. 4, 5, 6). Specifically, considering the

structure of the LETOR4.0 MQ2008 benchmark dataset

which includes votes of 25 local ranker on each query-

document pair and consideration of three relevance levels,

we have:

NNVmax ¼ 26; Sj j ¼ 26 � 3 ¼ 78

The action space for this MDP model is defined with the

given three relevance levels, as:

A ¼ f0; 1; 2g) Aj j ¼ 3

4.2 Evaluation metrics

There are many measures for evaluation of the perfor-

mance of a search engine such as Kendall-Tau [15], P@n,

NDCG@n and Mean Average Precision (MAP) [23]. In

this paper, the following evaluation criteria are used:

• Precision at position n (P@n) indicates the ratio of the

relevant documents in a list of n retrieved documents.

The main aim of this metric is to calculate the precision

of retrieval systems from users’ perspective. As users

visit only top documents from the list of results, the

evaluation measures usually just consider n top docu-

ments. Suppose we have binary judgments about the

relevance of documents with respect to a given query.

In this way, each document may be either be relevant or

irrelevant with a specified query. Then, P@n is defined

as:

•

P@n ¼ #relevant docs in top n results

n

• Mean Average Precision (MAP) For a single query q,

Average Precision (AP) is defined as the average of the

P@n values for all relevant documents.

Table 3 Sample of LETOR4.0 MQ2008 benchmark dataset

0 qid:10002 1:1 2:30 3:48 4:133 5:NULL… 25:NULL

#docid = GX008 inc = 1 prob = 0.086622

0 qid:10002 1:NULL 2:NULL 4:NULL 5:NULL… 25:NULL

#docid = GX037 inc = 0.00358 prob = 0.0852

2 qid:10032 1:6 2:96 3:88 4:NULL 5:NULL… 25:NULL

#docid = GX029 inc = 0.01198 prob = 0.13984

1138 Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145

123

AP qð Þ ¼
P Dqj j

j¼1 rj � P@j
� �

Rq

�� ��

• In this formulation, rj is the relevance score assigned to

a document dj with respect to a given query q. rj is one,

if the document is relevant and zero otherwise; Dq is the

set of retrieved documents and Rq is the set of relevant

documents for the query q. Then, MAP would be the

mean of average precisions of all queries of the

benchmark dataset used in the experiment as:

MAP ¼
P Qj j

q¼1 AP qð Þ
Qj j

Normalized Discount Cumulative Gain at position n

(NDCG@n) Evaluation criteria such as P@n and MAP

consider only binary degrees of relevance in the eval-

uation of query-document pairs. Therefore, their anal-

ysis may not be precise or satisfactory. Assuming

different levels of relevance degrees for data items, the

NDCG of a ranked list at position n (NDCG@n), would

be calculated as follows:

NDCG@n ¼ 2r1 � 1þ
Xn

j¼2

2rj � 1

log 1þ jð Þ

In this formulation, rj stands for the relevance degree of

the jth document in the ranked list.

5 Experimental results

We have utilized the LETOR’s Eval-Tool [22] for calcu-

lating all the above mentioned measures in all of our

experiments. All reported results are based on the usage of

Fold1 of training set of LETOR4.0 MQ2008 benchmark

dataset. In this investigation, we have experimented with

Q-learning and SARSA reinforcement learning methods

for the second step of our model. The best configuration

parameters for these methods which are achieved in trials,

are listed in Table 4.

As mentioned before, b is a constant step-size parameter

and c is the discount rate. In the implementation of

Q-learning and SARSA techniques, the e-greedy action

selection policy is used [33]. Within this policy, in each

state, the action with the highest Q(s,a), is selected with the

probability of 1-e, but in order to preserve the exploration,

the learning agent may select among the rest of possible

actions with the probability of e. The learning agent applies

the SARSA and Q-learning methods on the proposed MDP

model to learn the best action for each state of the MDP.

For the first step of our model, we have experimented

with the following techniques as our rank-aggregation

function (F):

1. Weighted majority voting (WMV), in which the

weights associated with local rankers are their MAP

values.

2. Optimistic OWA, with a = 0.9. In this case, ordering

of local rankers is based on their MAP values.

In this work, a variety of data fusion operators such as

min, max, average, WMV and optimistic OWA are

implemented and tested.

Table 4 Configuration parameters used for Q-learning and SARSA

b = 0.1, c = 0.1, e = 0.01, Number of iterations = 10,000, Episode

length = 100

Fig. 3 Comparison of local

rankers of LETOR4.0 MQ2008

benchmark dataset based on

their MAP values

Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145 1139

123

Figure 3 illustrates the quality of the local rankers based

on the MAP measure.

Table 5 gives a comparison of different implementa-

tions of the proposed methods with the baseline rank-ag-

gregation algorithms based on the MAP measure. For the

ease of tracking, in the following tables, results of the best

implementations of the proposed rank-aggregation method

are set to bold. As it could be observed, the Q-learning

implementation of the proposed method in combination

with weighted majority voting (WMV) as the aggregation

function, outperforms other configurations of the proposed

approach by about 6.01 %. Based on the MAP evaluation

criterion, this configuration of the proposed method, also

has achieved an improvement of about 14.8 % in com-

parison with the best baseline rank-aggregation algorithms.

Table 6 provides a comparison of different implemen-

tations of the proposed algorithm with other rank-aggre-

gation methods based on the P@n criterion. As it could be

seen, the configuration based on Q-learning as the learning

agent and the Optimistic OWA as aggregation function,

has demonstrated a noticeably higher performance on P@n

criteria. Since most users of Web search engines, often

focus on top three items of the results set [31], our method

which produces the better performance on top two items

would have an edge over other approaches. For P@1 cri-

terion, this improvement is 15.71 % in comparison with

the best baseline method. For P21 criterion the improve-

ment is about 7.97 % compared to the best conventional

aggregation method.

Table 7 presents similar comparison based on the

NDCG@n criterion. Again, one can observe that the

combination of Q-learning and Optimistic OWA function

has produced the best performance. The improvement for

NDCG@1 is about 13.93 % in comparison to the best

baseline method and about 16.55 % in comparison with

best conventional aggregation method. However, similar to

baseline rank-aggregation algorithms, the proposed

method, suffers from a sharp fall within NDCG@9 and

NDCG@10 values in comparison with other values of n in

NDCG@n criterion.

In order to gain more insight into the behavior of the

Optimistic OWA and WMV aggregation functions, we

have looked into accumulated average of achieved rewards

during the learning process for Q-learning and SARSA

methods. As illustrated in Figs. 4 and 5 the Optimistic

OWA method, can achieve more accumulated average

with a higher convergence rate of about 1.3 in comparison

with the WMV as the aggregation function.

As it can be observed, in Fig. 4, the average reward falls

down in the beginning of the reinforcement learning pro-

cess. This is mainly due to the utilization of the ‘‘Opti-

mistic Initial Values’’ method for initializing Q(s,a) values.

In fact, this method encourages the RL agent to do T
a
b
le

5
C
o
m
p
ar
is
o
n
o
f
d
if
fe
re
n
t
im

p
le
m
en
ta
ti
o
n
s
o
f
th
e
p
ro
p
o
se
d
m
et
h
o
d
w
it
h
so
m
e
co
n
v
en
ti
o
n
al

ag
g
re
g
at
io
n
m
et
h
o
d
s
as

w
el
l
as

b
as
el
in
e
al
g
o
ri
th
m
s
b
as
ed

o
n
th
e
M
A
P
cr
it
er
io
n

R
an
k

ag
g
re
g
at
io
n

m
et
h
o
d

C
o
n
v
en
ti
o
n
al

ag
g
re
g
at
io
n

m
et
h
o
d
s

D
if
fe
re
n
t
im

p
le
m
en
ta
ti
o
n
s

o
f
th
e
p
ro
p
o
se
d
al
g
o
ri
th
m

B
es
t
b
as
el
in
e
al
g
o
ri
th
m
s

M
A
X

W
A

B
o
rd
a

C
o
u
n
t

W
M
V

Q
-l
ea
rn
in
g
_

W
M
V

S
A
R
S
A
_

W
M
V

Q
-l
ea
rn
in
g
_

O
W
A
-O

p
t

Q
-l
ea
rn
in
g
_

B
o
rd
aC

o
u
n
t

C
P
S
-

K
en
d
al
lT
au

C
P
S
-S
p
ea
rm

an

fo
o
tr
u
le

C
P
S
-S
p
ea
rm

an

ra
n
k
co
rr
el
at
io
n

M
A
P
v
al
u
e

0
.3
7
9
4

0
.3
3

0
.3
4
1

0
.3
8
4
3

0
.4
6
2
3

0
.4
3
6
1

0
.3
8
6
6

0
.3
8
0
6

0
.4
0
4
9

0
.3
8
5

0
.4
0
0
7

1140 Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145

123

T
a
b
le

6
C
o
m
p
ar
is
o
n
o
f
d
if
fe
re
n
t
im

p
le
m
en
ta
ti
o
n
s
o
f
th
e
p
ro
p
o
se
d
m
et
h
o
d
w
it
h
o
th
er

ra
n
k
-a
g
g
re
g
at
io
n
al
g
o
ri
th
m
s
b
as
ed

o
n
th
e
P
@
n
cr
it
er
io
n

A
g
g
re
g
at
io
n

m
et
h
o
d

C
o
n
v
en
ti
o
n
al

ag
g
re
g
at
io
n
m
et
h
o
d
s

D
if
fe
re
n
t
im

p
le
m
en
ta
ti
o
n
s
o
f
th
e
p
ro
p
o
se
d
al
g
o
ri
th
m

B
es
t
b
as
el
in
e
al
g
o
ri
th
m
s

W
M
V

O
W
A
_
O
p
t

S
A
R
S
A
_

W
M
V

Q
-l
ea
rn
in
g
_

W
M
V

S
A
R
S
A
_

O
W
A
_
O
p
t

Q
-l
ea
rn
in
g
_

O
W
A
_
O
p
t

C
P
S
-K

en
d
al
lT
au

C
P
S
-S
p
ea
rm

an

fo
o
tr
u
le

C
P
S
-S
p
ea
rm

an

ra
n
k
co
rr
el
at
io
n

P
@
1

0
.2
8
0
3

0
.3
1
8
5

0
.2
6
9
6

0
.3
3
9
7

0
.2
4
8
4

0
.3
4
3
9

0
.2
9
7
2

0
.2
6
3
3

0
.2
9
7
2

P
@
2

0
.2
7
4
9

0
.3
1
5
3

0
.2
7
1
8

0
.3
2
2
7

0
.2
5
6
9

0
.3
3
1
2

0
.3
2
2
7

0
.2
9
1
9

0
.3
1
4
2

P
@
3

0
.2
5
8
3

0
.3
1
0
7

0
.2
6
6
1

0
.3
0
5

0
.2
5
4
8

0
.3
1
1
4

0
.3
1
2
8

0
.2
8
9
5

0
.3
1
6
3

P
@
4

0
.2
5
6
4

0
.3
0
1

0
.2
5
2
1

0
.2
9
7
8

0
.2
5
1
6

0
.3
0
5
2

0
.3
1
1

0
.2
9
5
6

0
.3
1
1

P
@
5

0
.2
5
1

0
.2
9
1
3

0
.2
4
4
2

0
.2
8
6
6

0
.2
5
1
8

0
.2
9
5
1

0
.2
9
8
1

0
.2
8
7

0
.3
0
7
4

P
@
6

0
.2
4
8
1

0
.2
7
4
6

0
.2
4
2

0
.2
7
5
7

0
.2
4
5
9

0
.2
8
3
4

0
.2
8
6
6

0
.2
7
9
9

0
.2
9
5
8

P
@
7

0
.2
4
1
4

0
.2
6
4
5

0
.2
4
0
2

0
.2
6
4
8

0
.2
3
6
9

0
.2
7
4
8

0
.2
7
7
2

0
.2
6
9
6

0
.2
8
1
2

P
@
8

0
.2
2
8
2

0
.2
4
9
7

0
.2
3
4
1

0
.2
5
1
9

0
.2
2
8
2

0
.2
5
9
3

0
.2
6
0
4

0
.2
5
5
8

0
.2
6
4
1

P
@
9

0
.2
1
5
4

0
.2
3
1
7

0
.2
1
8
9

0
.2
3
5
4

0
.2
1
3
7

0
.2
4
3
2

0
.2
4
6

0
.2
4
1
8

0
.2
4
6
3

P
@
1
0

0
.2
0
5
3

0
.2
1
9
1

0
.2
0
6
8

0
.2
2
2
3

0
.2
0
2
1

0
.2
2
9
1

0
.2
3
2
5

0
.2
2
9
5

0
.2
3
2
3

T
a
b
le

7
C
o
m
p
ar
is
o
n
o
f
d
if
fe
re
n
t
im

p
le
m
en
ta
ti
o
n
s
o
f
th
e
p
ro
p
o
se
d
m
et
h
o
d
w
it
h
o
th
er

ra
n
k
-a
g
g
re
g
at
io
n
al
g
o
ri
th
m
s
b
as
ed

o
n
th
e
N
D
C
G
@
n
cr
it
er
io
n

A
g
g
re
g
at
io
n

m
et
h
o
d

C
o
n
v
en
ti
o
n
al

ag
g
re
g
at
io
n
m
et
h
o
d
s

D
if
fe
re
n
t
im

p
le
m
en
ta
ti
o
n
s
o
f
th
e
p
ro
p
o
se
d
al
g
o
ri
th
m

B
es
t
b
as
el
in
e
al
g
o
ri
th
m
s

W
M
V

O
W
A
_
O
p
t

S
A
R
S
A
_

W
M
V

Q
-l
ea
rn
in
g
_

W
M
V

S
A
R
S
A
_

O
W
A
_
O
p
t

Q
-l
ea
rn
in
g
_

O
W
A
_
O
p
t

C
P
S
-K

en
d
al
lT
au

C
P
S
-S
p
ea
rm

an

fo
o
tr
u
le

C
P
S
-S
p
ea
rm

an

ra
n
k
co
rr
el
at
io
n

N
D
C
G
@
1

0
.2
1
2
3

0
.2
4
7
7

0
.2
2
0
1

0
.2
7
7
4

0
.1
9
1
8

0
.2
8
8
7

0
.2
4
6
3

0
.2
1
0
9

0
.2
5
3
4

N
D
C
G
@
2

0
.2
4
9
6

0
.2
8
7

0
.2
4
8
8

0
.3
0
1
5

0
.2
2
7
9

0
.3
2
2
4

0
.3
0
5
7

0
.2
6
8
9

0
.3
0
8

N
D
C
G
@
3

0
.2
6
9
1

0
.3
1
8
7

0
.2
7
1
3

0
.3
2
3

0
.2
5
7
4

0
.3
4
3
3

0
.3
2
9

0
.3
0
3
1

0
.3
3
7
6

N
D
C
G
@
4

0
.2
9
0
3

0
.3
4
2
8

0
.2
8
6
3

0
.3
5
0
6

0
.2
8
4

0
.3
6
9
6

0
.3
6
2
7

0
.3
3
9
8

0
.3
6
5
2

N
D
C
G
@
5

0
.3
1
4
2

0
.3
6
7
7

0
.3
0
6
9

0
.3
6
9
2

0
.3
1

0
.3
9
1
9

0
.3
8
2

0
.3
6
2
2

0
.3
9
2
1

N
D
C
G
@
6

0
.3
3
6

0
.3
8
1
3

0
.3
2
9
1

0
.3
8
5
5

0
.3
2
8
1

0
.4
0
8
3

0
.4
0
0
9

0
.3
7
8
7

0
.4
0
7
1

N
D
C
G
@
7

0
.3
5
1
5

0
.3
9
4
3

0
.3
4
3
1

0
.3
9
7
5

0
.3
3
9
9

0
.4
2
1

0
.4
1
5
8

0
.3
9
2
6

0
.4
1
7
7

N
D
C
G
@
8

0
.3
2
7
6

0
.3
6
7
4

0
.3
2
9
2

0
.3
7
8
5

0
.3
2
5
5

0
.3
9
9
1

0
.3
9
1
6

0
.3
7
2
8

0
.3
9
1
9

N
D
C
G
@
9

0
.1
4
0
2

0
.1
7
2
6

0
.1
4
0
5

0
.1
7
3
4

0
.1
3
8
4

0
.1
8
9
4

0
.1
8
1
5

0
.1
6
6

0
.1
8
5
1

N
D
C
G
@
1
0

0
.1
4
7
2

0
.1
7
8
1

0
.1
4
6
2

0
.1
7
9
9

0
.1
4
3
9

0
.1
9
4
2

0
.1
8
7
2

0
.1
7
3

0
.1
8
9
9

Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145 1141

123

sufficient exploration in the action-space at the beginning

of the learning process. Besides, this phenomenon is more

observable in the learning curve of the Q-learning method.

Actually, as Q-learning is an off-policy learning approach,

sometimes its behavior leads to the selection of non-opti-

mal actions. This situation will be more noticeable in the

beginning of the learning process where the estimations of

the values of actions in different states are not precise.

Also the ‘‘Percentage of selecting the Optimal Action’’

during the learning process, is an important factor which

demonstrates the internal behavior of the learning method.

This data which is shown in Figs. 6 and 7, indicates that by

utilizing Optimistic OWA method as the aggregation

function, the RL agent selects the optimal action about

10 % more often than while the Weighted Majority Voting

method is employed. Also, it could be observed that based

Fig. 4 Accumulated average

reward for WMV method

Fig. 5 Accumulated average

reward for optimistic OWA

algorithm

1142 Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145

123

Fig. 6 Percentage of optimal action selection for WMV method

Fig. 7 Percentage of optimal action for optimistic OWA algorithm

Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145 1143

123

on the percentage of optimal action selection, both

Q-learning and SARSA methods, have relatively similar

performance during the learning process.

All of the above mentioned experiments were done with

a Pentium 5 PC containing a CPU of 2.62 GHz and 3 GB

RAM. A comparison of the convergence rate of the pro-

posed algorithm implemented with SARSA and Q-learning

is presented in Table 8.

It must be noticed that by using the fixed low discount

rate (c = 0.1), the RL agent becomes too myopic. This

limitation could be resolved by using other discount rates,

especially those which are descending along the time. In

this way, in the beginning of the reinforcement learning

process, the agent pays more attention to the immediately

received rewards, while at the end of the learning, it notices

more to the accumulated rewards.

6 Discussion and further works

This paper presents a novel rank-aggregation method

which integrates the capabilities of data fusion operators

and reinforcement learning techniques. The main idea of

the proposed method is to build a MDP model for the rank-

aggregation problem and apply reinforcement learning

techniques upon the aggregated list of the local rankers.

We have experimented with different data fusion operators

such as Min, Max and Optimistic and Pessimistic OWA for

creating an aggregated list for each query from the ranked

lists provided by local rankers. This aggregation process

was guided by the precision of local rankers signified by

their MAP values. Then, a MDP model is constructed upon

the aggregated list of the local rankers. This model enables

us to assign a suitable relevance label to a given query-

document pair based on the average of rewards received

from doing so, for similar items.

The comparison of the proposed method with well-

known rank-aggregation techniques on LETOR benchmark

dataset demonstrated that the proposed method outper-

forms baseline algorithms based on P@n and NDCG@n

evaluation criteria, especially on the top ranks that are of

particular interest to Web users. It was also noted that the

Q-learning approach due to its off-policy nature which

enables it to have a better generalization of the problem

environment, has shown better performance than SARSA

approach with its on-policy learning approach.

As the future work, we plan to investigate the usefulness

of the proposed method in situations where more data are

available besides local ranked lists such as URL of the

ranked items, title of corresponding documents, and their

textual snippets. Another direction for further work is to

extend the proposed method for the learning to rank

problem in which, different features of query-document

pairs could be assumed as local rankers. In such a setting,

the quality of the proposed method could be compared with

the state-of-the-art learning to rank algorithms.

Acknowledgments This work is supported by the University of

Tehran (Grant Number 8101004/1/02). The authors thank the Editor-

in-Chief and four anonymous reviewers for their helpful comments

and suggestions, which were very helpful in improving the paper. We

also give special thanks to Ms. Maryam Piroozmand and Dr. Kambiz

Badie for their helps and inspiring discussions.

References

1. Akritidis L, Katsaros D, Bozanis P (2011) Effective rank-aggre-

gation for meta-searching. J Syst Softw 84(1):130–143

2. Aslam JA, Montague M (2001) Models for metasearch. In: 24th

annual international ACM SIGIR conference research and

development in information retrieval, pp 276–284

3. Becchetti L, Castillo C, Donato D, Leonardi S, Italia R (2008)

Web spam detection: link-based and content-based techniques.

In: Final workshop for European integrated project dynamically

evolving, large scale information systems, pp 99–113

4. Beg M (2004) Parallel rank-aggregation for the World Wide

Web. Worldw Web 6(1):5–22

5. Chen S, Wang F, Song Y, Zhang C (2011) Semi-supervised

ranking aggregation. Inf Process Manag 47(3):415–425

6. Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank-aggre-

gation methods for the Web. In: 10th international conference on

World Wide Web, pp 613–622

7. Erp MV, Schomaker L (2000) Variants of the Borda Count

method for combining ranked classifier hypotheses. In: 7th

international workshop on frontiers in handwriting recognition,

pp 443–452

8. Fagin R, Kumar R, Sivakumar D (2003) Efficient similarity

search and classification via rank-aggregation. In: 2003 ACM

SIGMOD international conference management of data,

pp 301–312

9. Fang Q, Xiao H, Zhu S (2010) Top-d rank-aggregation in Web

meta-search engine. In: Lee D-T, Chen DZ, Ying S (eds) Fron-

tiers in algorithmics. Lecture Notes in Computer Science, vol

6213. Springer, Berlin, pp 35–44

10. Filev D, Yager RR (1998) On the issue of obtaining OWA

operator weights. Fuzzy Set Syst 94:157–169

11. Granka LA, Joachims T, Gay G (2004) Eye-tracking analysis of

user behavior in WWW search. In: 27th annual international

ACM SIGIR conference on research and development in infor-

mation retrieval, pp 478–479

12. He Y, Liu J, Hu Y, Wang X (2015) OWA operator based link

prediction ensemble for social network. Expert Syst Appl

42(1):21–50

13. Hemaspaandra E, Hemaspaandra LA, Rothe J (1997) Exact

analysis of Dodgson Elections: Lewis Carroll’s 1876 voting

Table 8 Convergence rate for various implementations of the pro-

posed algorithm

Aggregation function Elapsed time for

Q-learning (s)

Elapsed time for

SARSA (s)

Weighted majority voting 0.820574 0.565199

Optimistic OWA 0.824910 0.552102

1144 Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145

123

system is complete for parallel access to NP. J ACM (JACM)

44(6):214–224

14. Kehoe C, Pitkow J, Sutton K, Aggarwal G, Rogers JD (1999)

Results of GVU’s tenth World Wide Web user survey. Graphic,

Visualization, & Usability Center. http://www.cc.gatech.edu/gvu/

user_surveys/survey-1998-10/tenthreport.html. Accessed 15 Jan

2015

15. Kendall MG (1938) A new measure of rank correlation. Bio-

metrika 30(1–2):81–89

16. Keyhanipour AH, Moshiri B, Kazemian M, Piroozmand M,

Lucas C (2007) Aggregation of web search engines based on

users’ preferences in WebFusion. Knowl Based Syst

20(4):321–328

17. Khodabakhshi M, Aryavash K (2015) Aggregating preference

rankings using an optimistic–pessimistic approach. Comput Ind

Eng 85:13–16

18. Kolde R, Laur S, Adler P, Vilo J (2012) Robust rank-aggregation

for gene list integration and meta-analysis. Bioinformatics

28(4):573–580

19. Lam KW, Leung CH (2004) Rank-aggregation for meta-search

engines. In: 13th international conference on World Wide Web,

pp 384–385

20. Li H (2011) Learning to rank for information retrieval and natural

language processing. Morgan & Claypool Publishers, San Rafael

21. Liu TY (2011) Learning to rank for information retrieval.

Springer, Berlin

22. Liu YT, Liu TY, Qin T, Ma ZM, Li H (2007) Supervised rank-

aggregation. In: 16th international conference on World Wide

Web, pp 481–490

23. Manning CD, Raghavan P, Schutze H (2008) Introduction to

information retrieval. Cambridge University Press, New York

24. Microsoft Research Asia (2010) LETOR dataset. http://research.

microsoft.com/en-us/um/beijing/projects/letor//default.aspx.

Accessed 15 Jan 2015

25. Miller M (2012) 53% of organic search clicks go to first link.

http://searchenginewatch.com/article/2215868/53-of-Organic-

Search-Clicks-Go-to-First-Link-Study. Accessed 15 Jan 2015

26. O’Hagan M (1988) Aggregating template rule antecedents in

real-time expert systems with fuzzy set logic. In: 22nd annual

IEEE Asilomar conference on signals, systems and computers,

pp 681–689

27. Qin T, Geng X, Liu TY (2010) A new probabilistic model for

rank-aggregation. In: 24th annual conference neural information

processing systems, pp 1948–1956

28. Randa ME, Straccia U (2003) Web metasearch: rank vs. score

based rank-aggregation methods. In: 2003 ACM symposium on

applied computing, pp 841–846

29. Saari DG (2000) Mathematical structure of voting paradoxes.

Econ Theory 15(1):55–102

30. Sese J, Morishita S (2001) Rank-aggregation method for bio-

logical databases. Genome Inform 12:506–507

31. Slingshot SEO Inc (2011) A tale of two studies establishing

google & bing click-through rates. http://www.slingshotseo.com/

wp-content/uploads/2011/10/Google-vs-Bing-CTR-Study-2011.

pdf. Accessed 15 Jan 2015

32. Spirin N, Han J (2011) Survey on Web spam detection: principles

and algorithms. ACM SIGKDD Explor Newslett 13(2):50–64

33. Sutton RS, Barto AG (1998) Reinforcement learning: an intro-

duction. MIT Press, Cambridge

34. Szepesvari C (2010) Algorithms for reinforcement learning.

Morgan & Claypool Publishers, San Rafael

35. Vogt CC, Cottrell GW (1999) Fusion via a linear combination of

scores. Inf Retr 1(3):151–173

36. Wang YM, Luo Y, Hua Z (2007) Aggregating preference rank-

ings using OWA operator weights. Inf Sci 177:3356–3363

37. World-Wide-Web-Size (2015) The size of the World Wide Web

(the internet). http://www.worldwideWebsize.com. Accessed 15

Jan 2015

38. Yager RR (1988) On ordered weighted averaging aggregation

operators in multicriteria decision making. IEEE Trans Syst Man

Cybern 18(1):183–190

39. Yager RR (1993) Families of OWA operators. Fuzzy Set Syst

55:255–271

40. Yan HB, Huynh VN, Nakamori Y, Murai T (2011) On prioritized

weighted aggregation in multi-criteria decision making. Expert

Syst Appl 38(1):812–823

41. Zeckman A (2015) Organic search accounts for up to 64 % of

website traffic. Search engine watch. http://searchenginewatch.

com/article/2355020/Organic-Search-Accounts-for-Up-to-64-of-

Website-Traffic-STUDY. Accessed 15 Jan 2015

Int. J. Mach. Learn. & Cyber. (2016) 7:1131–1145 1145

123

http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/tenthreport.html
http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/tenthreport.html
http://research.microsoft.com/en-us/um/beijing/projects/letor//default.aspx
http://research.microsoft.com/en-us/um/beijing/projects/letor//default.aspx
http://searchenginewatch.com/article/2215868/53-of-Organic-Search-Clicks-Go-to-First-Link-Study
http://searchenginewatch.com/article/2215868/53-of-Organic-Search-Clicks-Go-to-First-Link-Study
http://www.slingshotseo.com/wp-content/uploads/2011/10/Google-vs-Bing-CTR-Study-2011.pdf
http://www.slingshotseo.com/wp-content/uploads/2011/10/Google-vs-Bing-CTR-Study-2011.pdf
http://www.slingshotseo.com/wp-content/uploads/2011/10/Google-vs-Bing-CTR-Study-2011.pdf
http://www.worldwideWebsize.com
http://searchenginewatch.com/article/2355020/Organic-Search-Accounts-for-Up-to-64-of-Website-Traffic-STUDY
http://searchenginewatch.com/article/2355020/Organic-Search-Accounts-for-Up-to-64-of-Website-Traffic-STUDY
http://searchenginewatch.com/article/2355020/Organic-Search-Accounts-for-Up-to-64-of-Website-Traffic-STUDY

	Integration of data fusion and reinforcement learning techniques for the rank-aggregation problem
	Abstract
	Introduction
	Notation

	Survey on related works
	Fundamentals of the proposed approach
	Formal definition of the rank-aggregation
	Outline of the proposed rank-aggregation method
	The ordered weighted averaging
	Reinforcement learning framework
	Details of the proposed method

	The evaluation framework
	Benchmark dataset
	Evaluation metrics

	Experimental results
	Discussion and further works
	Acknowledgments
	References

