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Abstract With high-throughput technologies applied in

biomedical research, the quantity of biomedical literatures

grows exponentially. It becomes more and more important

to quickly as well as accurately extract knowledge from

manuscripts, especially in the era of big data. Named entity

recognition (NER), aiming at identifying chunks of text

that refers to specific entities, is essentially the initial step

for information extraction. In this paper, we will review the

three models of biomedical NER and two famous machine

learning methods, Hidden Markov Model and Conditional

Random Fields, which have been widely applied in

bioinformatics. Based on these two methods, six excellent

biomedical NER tools are compared in terms of program-

ming language, feature sets, underlying mathematical

methods, post-processing techniques and flowcharts.

Experimental results of these tools against two widely used

corpora, GENETAG and JNLPBA, are conducted. The

comparison varies from different entity types to the overall

performance. Furthermore, we put forward suggestions

about the selection of Bio-NER tools for different

applications.

Keywords Biomedical named entity recognition �
Machine learning � HMM � CRF

1 Introduction

With the widespread application of high-throughput tech-

niques and the burst of gene and protein analysis, the

number of biomedical literatures is growing at an expo-

nential speed. Moreover, benefiting from the Open Access,

collections of manuscripts, ranging from very general and

highly distributed ones to very specific and localized ones,

are publicly available. For instance, the PubMed Central

literature database contains over 3.3 million references to

full-text journal papers, covering a wide range of

biomedical fields. Owing to the large number of literatures,

it is of great difficulty for biologists to keep up with the

new development of this research area, even in a very

specialized area such as gene regulation and protein

structure prediction. Therefore, effective management of

large amount of information and the accurate knowledge

extraction from large volume literatures becomes much

more vital. Considering manual annotation with biomedical

experts is time-consuming and expensive, it is urgent to

develop an automatic text mining method, which may help

the biologists and doctors to well organize and structure

these materials.

As one of the fundamental biomedical text mining tasks,

Named Entity Recognition (NER), aiming at identifying

chunks of text referring to specific entities of interest, plays

a key role in disease-treatment relation extraction [1], gene

function identification [2] and semantic relation extraction

between concepts in a molecular biology ontology [3]. In

general domain, such as newswire domain, the task of

named entity recognition is to recognize the name of pla-

ces, persons, organizations [4]. However, in biomedical

domain, biologists and doctors pay much more attention to

the entities like genes, proteins, DNA, RNA and so on.

Recently, several attempts have been performed to
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transform existing named entity recognition systems in

general domain into biomedical area [5–8]. However, due

to the non-standard nomenclature in biomedical research,

few of them achieved satisfactory performance, thus

biomedical named entity recognition (Bio-NER) continues

to be a challenging task.

Comparisons of naming conventions between biomedi-

cal and newswire domain has already been discussed in [9–

14], which is summarized as follows: (1) naming an entity

descriptively raises great difficulty to identify the entity

names’ boundaries. For example, ‘‘specific immunoglobu-

lin E’’ or ‘‘immediate-early gene’’ is named with multiple

words. Zhou et al. found that nearly 18.6 % of biomedical

entity names in the GENIA V3.0 corpus contained at least

four words [9]. Figure 1 depicts the results. (2) There are

conjunctions and disjunctions. Two or more entity names

may share the same prefix noun by using conjunction or

disjunction; for example, ‘‘mouse and human U6 DNA’’

indicates two entity names, which are ‘‘mouse U6 DNA’’

and ‘‘human U6 DNA’’, respectively. In GENIA V3.0,

about 2.06 % of biomedical entity names fall into this form

[9]. (3) There are no strict naming conventions in

biomedical literatures. The capitalization and hyphen are to

some extent casually used, e.g. Cholesterol, 5-Cholesten-

3beta-ol and (3beta)-cholest-5-en-3-ol is the same chemical

substance. The non-standardized names may result in low

Recall and coverage of dictionaries [10, 11]. (4) Massive

amount of abbreviations. Plenty of entities in biomedical

domain have abbreviated names. The abbreviations could

lead to ambiguity, which makes it difficult to classify them

against the existing dictionary. For example, ‘TCF’ may

refer to ‘Tcell Factor’ or ‘Tissue Culture Fluid’ in different

articles. Chang et al. have shown that, in MEDLINE

abstracts, 42.8 % of abstracts have at least one abbreviation

and 23.7 % of abstracts have two or more [12]. Liu et al.

showed that 81.2 % of the abbreviations are blurred and

each abbreviation has 16.6 senses in MEDLINE abstracts

on average [13]. (5) Cascaded construction. It is common

to find that one biomedical entity name is embedded in

another entity name. In [9], Zhou et al. pointed out that

16.57 % of biomedical entity names have such cascaded

construction in GENIA V3.0.

In short, the entity names in biomedical domain are

much more complex than those in the general domain (such

as newswire). However, it is a crucial step to explore more

evidential features and effective methods to extract

knowledge from biomedical literatures. In this paper, an

introduction to three fundamental models of the Bio-NER,

which are Dictionary-based, Rule-based and Machine

Learning based models, is firstly given. We then introduce

six effective Bio-NER tools, drawing a comparison

between programming languages, features used, underlying

models and post-processing techniques etc. Subsequently,

we present the corpora used, the evaluation criteria and the

results. Ground on analysis, we finally put forward the

suggestions for biologist, doctors and computer scientists

about the selection of Bio-NER tools.

2 Biomedical named entity recognition models

Due to the complex naming conventions and its priority in

biomedical domain, several Biomedical Named Entity

Recognition (Bio-NER) systems have been developed to

recognize the entities in biomedical texts. The models used

in these Bio-NER systems fall into three categories, they

are Rule-based methods, Dictionary-based methods and

Machine Learning based methods.

2.1 Dictionary-based methods

Dictionaries are large collections of names, serving as

entries for a specific entity class. Matching entries exactly

against text is simple and precise, but it gives the way to

low recall. To solve this problem, the user can either use

incomplete matching techniques, or fuzzify the dictionary

by generating typical spelling alternatives for each entry

automatically. Compared with the rapid increasing amount

of biomedical literatures, it becomes impossible to con-

struct a dictionary that can cover all categories of different

entities. Thus, it is impractical to imply dictionary-based

methods to achieve high F-Score. However, dictionary-

based methods can be integrated with other Bio-NER tools,

which can improve the accuracy of the hybrid algorithm.

For example, Tsuruoka and Tsujii et al. annotated proteins

in GENIA V3.01 with a combination of dictionary and

Naive Bayes, achieving an F-score of 66.6 % [15]. Yang

et al. improves the recognition performance through the

bio-entity name dictionary expansion, including Pre-key-

word and Post-keyword expansion, POS expansion, merge

of adjacent bio-entity names and the exploitation of the

contextual cues [16].

2.2 Rule-based methods

Rule-based model employs plenty of rules to separate

different classes. Handcrafted rules are used to describe the
Fig. 1 Distribution of the number of words in biomedical entity

names (GENIA V3.0) [9]
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composition of named entities and their context in early

rule-based systems. For example, Fukuda et al. employed

surface clues (capital letters, symbols, digits) to extract

candidates for protein names [10]. Though these rule-based

methods seemed promising initially, they failed to perform

on larger datasets. For example when Proux et al. evaluated

their performance on a larger corpus of 25,000 MEDLINE

abstracts by sampling, the precision fell to 70 % [17].

Moreover, it is impossible for these systems to identify new

named entities that never discovered before and cost a lot

to discover new classes of entity.

2.3 Machine learning based methods

Machine Learning based Bio-NER model integrates vari-

ous complex steps to incorporate different processing

procedures, it performs better than the other two genre

solutions [14]. With machine learning based algorithms,

researchers do not have to compose the complex rules

manually. In addition, these algorithms can also identify

new named entities and classes excluded in standard dic-

tionaries. In [11], Nobata et al. first experimented with

three identification and two classification methods to rec-

ognize ten entity classes, including protein, DNA, RNA,

cell type etc., achieving an F-measure between 58.98 and

66.24 % on 100 annotated MEDLINE abstracts using

decision trees. Most of the machine learning models can be

generally categorized as based on Supported Vector

Machine (SVM), Hidden Markov Model (HMM) or Con-

ditional Random Fields (CRFs). Considering the time-

consuming of SVM, the SVM-based tools are not com-

pared in this paper although they perform very well in

classification and regression.

2.3.1 HMM based methods

Hidden Markov Model (HMM) is a generative type of

sequence-based model [18]. Suppose x refers to the input

token sequence and y is the output tag sequence. Genera-

tive models find the best tag sequence by computing the

probability p(x, y). In HMM model, the probability of

p(y|x) can be represented as a calculation utilizing its

generative form p(x, y) according to the Bayes rules:

p yjxð Þ ¼ p x; yð Þ
p xð Þ ð1Þ

Assuming the current tag yi depends on the previous tag

yi-1, and the current token xi depends on the current tag yi,

then p(x, y) turns to be:

pðx; yÞ ¼
Yn

i¼1

pðyi�1jyiÞ �
Yn

i¼1

pðxijyiÞ ð2Þ

where n is the number of tokens in x. Because the objective

function is to find the best p(y|x), and p(x) is a priori

probability that remains the same for each possible tag

class, it only needs to compare the probability of p(x, y).

To solve the data sparseness problem caused by p(xi|yi)

in Eq. (2), sufficient training data are required for every

possible value of xi in order to calculate p(xi|yi). However,

in reality, the training data used to compute accurate

probabilities is not enough when decoding new corpus.

This problem is often solved using the Naı̈ve Bayes. The

decomposition of p(xi|yi) is as follows:

pðxijyiÞ ¼
Y

j

pðfijjyiÞ ð3Þ

where fij is the value of the jth feature of xi.

Even with the above solution, HMMs suffer from

another two limitations. The first one derives from the

Naı̈ve Bayes assumption against standard NER rules,

which would benefit from a richer representation of

observations in terms of many overlapping features, such

as capitalization, affixes, part-of-speech (POS) tags, and

surface word features. However, these features depend on

each other, which violate the Naı̈ve Bayes assumption. The

second problem with HMM is that it sets its parameters to

maximize the likelihood of the observation sequence, but

the task is to predict the state sequence. Namely HMM

inappropriately uses a generative joint model to solve a

conditional problem [18].

2.3.2 CRFs based methods

Named entity recognition can be considered as a sequence

segmentation problem which means each word is a token in

a sequence to be assigned a label. Conditional Random

Fields (CRFs) are undirected statistical graphical models, a

special case of which is a linear chain that corresponds to a

conditionally trained finite state machine. It is widely

applied in many areas, including computer vision [19],

shallow parsing [20] and biomedical named entity recog-

nition [21]. Several famous tools such as NERSuite, Gimli,

etc. are all based on CRF. Its mathematical model can be

depicted as follows.

x denotes random variables over data sequences to be

labeled, and y denotes the random labels over corre-

sponding label sequences. In an undirected graph G = (V,

E), a node v [ V corresponding to each of the random

variables representing an element yv of y. (y, x) is a con-

ditional random fields when each random variable yv obeys

the Markov property, which means p(yv|x, yw,

w = v) = p(yv|x, yw, w * v). During modeling sequences,

the most common graph structure is that the nodes
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corresponding to elements of y from simple first-order

chain, as illustrated in Fig. 2.

A conditional model p(y|x), which is the probability of a

particular label sequence y given observational sequence x

can be defined as a normalized product of potential func-

tions. A transition feature function of potential function is

exp
X

j

kjtjðyi�1; yi; x; iÞ þ
X

k

lkskðyi; x; iÞ
 !

ð4Þ

where tj(yi-1 ,yi, x, i) is a transition feature function of both

the observation sequence, the labels at position i and i - 1

in the label sequence. sk(yi, x, i) is a state feature function

of the label at position i and the observation sequence. kj
and lk are parameters to be predicted from training data.

A set of real-valued features g(x, i) of the observation

can be defined as feature functions in order to describe

some characteristics of the empirical distribution of the

training data. Below is an example:

g x; ið Þ ¼ 1

0

�
ð5Þ

When the current state (in the case of a state function) or

previous and current states (in the case of a transition

function) take on particular values, the feature function will

take on the value of 1. The state function s(yi-1, yi, x, i) and

transition function t(yi - 1, yi, x, i) can be denoted with

fi(yi-1, yi, x, i), thus the Fj(y, x) can be defined as:

Fj y; xð Þ ¼
Xn

i¼1

fi yi�1; yi; x; ið Þ ð6Þ

With the function Fj(y, x), the probabilities of a label

sequence y on the observation sequence x can be expressed

as:

p yjx; kð Þ ¼ 1

ZðxÞ exp
X

j

kjFj y; xð Þ
 !

ð7Þ

where Z(x) is a normalization factor.

The conditional nature of CRF is its main advantage,

which resulting in the relaxation of the independence

assumptions required by HMMs in order to ensure tractable

inference. Moreover, CRF is a discriminatively trained

model for labeling and segmenting sequence. It also

combines arbitrary, overlapping and agglomerative obser-

vation features from both the past and the future. CRF

methods can benefit from efficient training and decoding

based on dynamic programming. The parameter estimation

guarantees that the global optimum can be found.

3 Comparisons on the Bio-NER tools

To deeply understand the current situation and future

development of the Bio-NER tools, six excellent Bio-NER

tools are introduced with the purpose of comparing their

performance, which are ABNER [22], LingPipe [23],

BANNER [24], NERSuite [25] and Gimli [26], GENIA

Tagger [27]. Table 1 presents an overview of their char-

acteristics, supported corpora, feature sets, mathematical

models and post-processing techniques. Functions of the

six tools overlap with each other, we are going to find out

which tool performs best overall and which tool is suitable

for specific entity type like DNA or RNA.

3.1 ABNER

A Biomedical Named Entity Recognizer (ABNER) is open

source software which is capable of analyzing molecular

biology text that can be used to recognize DNA, RNA,

protein, Cell Line and Cell type. It employs conditional

random fields with a variety of orthographic and contextual

features. It has a presentative graphical interface and con-

tains two modules for tagging entities (e.g. protein and cell

line) trained on standard corpora.

This tool is written in Java and employs graphical

window objects in the Swing library. The CRFs methods

are implemented using a quasi-Newton method named as

L-BFGS, which could help to find the optimal feature

weights. ABNER employs a deterministic finite-state

scanner using the Jlex tool for tokenization. It provides a

Java application interface which allows users to incorpo-

rate ABNER into their own systems and train models on

new corpora [22].

3.2 GENIA tagger

With optimization for biomedical text, such as MEDILINE

abstracts, GENIA tagger functions well in biomedical

domain. It’s a good option to extract information from

biomedical documents because it is trained on three corpus,

the Wall Street Journal corpus, the GENIA corpus and the

PennBioIE corpus [28], respectively. The developers apply

the bidirectional algorithms and achieved equivalent per-

formance compared with other machine learning models.

y1 y2 y3 yn-1 yn

x = x1,x2,x3,…,xn-1,xn
Fig. 2 Graphical structure of a chain-structured CRF
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The algorithm finds the highest probability sequence and

the corresponding decomposition structure in polynomial

time among all the possible enumerated decomposition

structures. The tagging result of GENIA Tagger contains

five entities, which are protein, DNA, RNA, Cell Line and

Cell type.

3.3 LingPipe

LingPipe is a tool kit for processing text using computa-

tional linguistics. It is originally used to find the names of

people, organizations or locations in news. Its confidence-

based chunkers are first-order hidden Markov methods with

emission probabilities estimated by Character Language

Models. Using a generalized form of best-first search over

the lattice that produced by the forward–backward algo-

rithm, these chunkers are able to iterate an arbitrary num-

ber of chunks in confidence-ranked order.

LingPipe’s architecture is efficient, scalable, reusable

and robust. It also equips a Java API with source code and

unit tests and could deal with multi-lingual, multi-domain

and multi-genre corpus and mine new data for new tasks

[23]. LingPipe contains a model trained on GENETAG

[29] corpora, which makes it capable of recognize named

entity like proteins, genes, etc. in biomedical text.

3.4 BANNER

BANNER is implemented in Java and based on CRFs

model. It is designed to maximize domain independence by

neither employing brittle semantic features nor rule-based

models [24]. BANNER’s processing can be divided into

three steps, which is depicted in Fig. 3. Raw sentences are

tokenized, converted to features, and labeled. The Dragon

toolkit [30] and Mallet [31] are used for part of the

implementation. The stream of tokens is converted to

features, each of which is a name pair. All of the infor-

mation about the token is encapsulated by the set of fea-

tures. The stream of features is labeled so that each token is

given the corresponding label. BANNER can extract gene

and protein entities from molecular biology text efficiently.

BANNER flowchart is shown Fig. 3 [24]:

3.5 NERSuite

NERSuite is designed as a pipe-lined system to facilitate

research experiments using the various combinations of

different NLP applications [25]. It is written in C?? and

contains a tokenizer, a modified version of the GENIA

tagger and a named entity recognizer and each of them is

an independent module. For a given text in sentence-bag

model (each sentence as a vector) document file, NERSuite

Table 1 Overview of the six

Bio-NER tools
ABNER GENIA tagger LingPipe BANNER NERSuite Gimli

Release year 2005 2005 2007 2008 2010 2011

Programming language Java C ?? Java Java C ?? Java

Features

Linguistic

Normalization H H H

Chunking H H H H

POS H H H

Orthographic

Symbols H H H H

Counting H H H

Capitalization H H H H

Word class H H H

Morphological

Char n-grams H H H H

Suffix and prefix H H H H

Word shape H H H

Lexicons

Target names H H H

Trigger names H H

Model CRF MEMM HMM CRF CRF CRF

Post-processing

Parentheses H H H

Abbreviation H H H
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firstly split each sentence into tokens, and computes the

detailed positions of each token. The modified GENIA

tagger performs POS-tagging, lemmatization and chunk-

ing. Finally, with a pre-trained model [25] or user-trained

model, NERSutie can deal with biomedical text containing

DNA, RNA, protein, Cell Line or Cell type. Figure 4

shows the flowchart of NERSuite.

3.6 Gimli

Gimli provides a trained and optimized model for

recognition of biomedical entities like DNA, RNA, pro-

tein, Cell line and Cell type from scientific text. It is

implemented with Java and can be used as a command

line tool. It offers rich functionalities, including training

new models, customization of the feature set and

parameters’ adjustment through a configuration file.

Gimli takes advantage of various publicly available tools

and resources. The implementation of CRF is provided

by MALLET. GDep is employed for tokenization and

linguistic processing, i.e. lemmatization, POS tagging,

chunking and dependency parsing [32]. In terms of lex-

ical resources, it adopts BioThesaurus and BioLexicon as

the resource for biomedical domain terms [33]. Recently,

it becomes a state-of-the-art solution for biomedical

NER, contributing to faster and better research results.

Figure 5 shows the flowchart of Gimli, presenting the

workflow of the required steps, tools and external

resources [26].

4 Evaluation of the six tools

4.1 Datasets

To compare the BioNER tools in detail, we select GEN-

ETAG [29] and JNLPBA [34] to evaluate these six Bio-

NER tools. These two benchmark datasets are most widely

used in biomedical named entity recognition domain [26,

29, 34, 35].

4.1.1 GENETAG

GENETAG is composed of 20,000 sentences extracted

from MEDLINE abstracts, not being focused on any

specific domain [26]. It contains the annotations of pro-

teins, DNAs and RNAs (grouped in only one semantic

type). Experts of biochemistry, genetics and molecular

biology provided the annotations. This corpus was used in

the BioCreative II gene mention challenge [35], providing

15,000 sentences for training and 5000 sentences for

testing.

4.1.2 JNLPBA

The JNLPBA corpus contains 2404 abstracts extracted

from MEDLINE with the MeSH terms like ‘‘human’’,

‘‘blood cell’’ and ‘‘transcription factor’’. The manual

annotation was based on five classes of the GENIA

Fig. 3 BANNER’s flowchart [24]

Fig. 4 NERSuite’s flowchart [25]
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ontology, namely protein, DNA, RNA, Cell Line, and Cell

type. It was used in BioNLP/NLPBA 2004 [34], providing

2000 abstracts for training and the remaining 404 abstracts

for testing.

4.2 Evaluation measures

The evaluation was performed by comparing the six tools’

output, in terms of the precision (p), recall (r) and their

harmonic mean, the F-measure. They are based on the

number of true positives (TP), false positives (FP) and

false negative (FN) returned by the system:

TP denotes the number of correctly found name entity

chunks; FP denotes the number of found name entity

chunks which do not exist in the corpus; FN denotes the

number of found name entity chunks that are not found by

the Bio-NER tools.

4.3 Performance analysis

GENETAG, having more heterogeneous annotations than

JNLPBA, is not focused on any specific biomedical

domain. In order to find which system is more appropriate

for widely application in biology and medicine, we first

conduct our experiment on GENETAG. The results are

presented in Table 2 and the best results achieved by all the

six tools are in boldface. As one of the tools, Dingare et al.

combined Maximum Entropy Markov Model and limited

Memory Quasi-Newton maximizier together to perform

Named entity task. Moreover, they take advantage of

Google web-querying technique, the TnT POS tagger, a

gazetteer and other external resources to improve the

overall performance of their system [36].

To sum up, Gimli performs better than all the other five

tools on GENETAG corpus, achieving the accuracy of

90.22 % and F-measure of 87.17 %, which are 1.56 and

0.74 % improvement over the second best tool, BANNER,

respectively. Compared with NERSuite, Gimli is of 1.72 %

higher on F-measure. Although LingPipe ranks number

five in all the six systems generally, it achieves a highest

recall of 88.49 %. From Table 2 we can find that LingPipe

is constructed on HMM method, and other four systems all

constructed on CRFs method except Dingare’s tool. If we

can modify the HMM method to compensate the Ling-

Pipe’s results on precision, it will be an effective method.

Compared with GENETAG, JNLPBA focused more on

specific biomedical domain, thus a model trained on the

JNLPBA corpus may provide annotations optimized for

research on human blood cell transcription factors.

JNLPBA splits various types into different semantic

groups. Because LingPipe and BANNER do not support

JNLPBA corpus, the comparison for results of ABNER,

NERSuite, Gimli and GENIA Tagger are shown in Table 3

and the best results achieved by all the six tools are in

boldface. Instead of supervised machine learning, Zhang

et al. tackle the problem with a stepwise unsupervised

solution. Their approach is independent from hand-built

rules or examples of annotated entities, which makes it

possible to adapt their system to different semantic cate-

gories and text genres easily [37].

Except Zhang’s tool, it can be seen that the other five

tools’ overall performance is similar to each other. For all

Fig. 5 Gimli’s flowchart [26]
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the five categories of biomedical name entities, Gimli

achieves the highest F-measure, which is 0.86 and 116 %

higher than the other ones in top 3. For ‘‘Cell Type’’,

GENIA Tagger is 2.2 and 2.31 % higher than NERSuite

and ABNER, separately. All the rest six performs poorly

with no one higher than 60 %. Moreover, for ‘‘DNA’’ and

‘‘RNA’’ name entities, Gimli and Dingare’s tool performs

best, repectively. However, all the systems’ performances

range from 55 to 70 %.

The difference between NERSuite and Gimli lies on

‘‘Protein’’ and ‘‘Cell Line’’ comparisons. Gimli achieves

1.94 and 2.53 % higher performance than NERSuite cor-

respondingly. Although Zhang’s tool doesnot perform well

on JNLPBA corpus, it exceeds other tools considering

generalization, which makes it a good option to deal with

diverse group of text.

Because of the complex solutions that include the

application of linguistic, lexicon features and the combi-

nation of various CRF methods, Gimli outperforms the

other five tools and achieves the highest overall perfor-

mance, again. All the six tools do not perform well in

recognizing ‘‘Cell Line’’ names. None of them gets a result

over 60 %, this bottom field apparently decreases the

overall performance.

4.4 Speed analysis

Besides the comparison of F-measure, we regarded the

processing speed as a critical evaluation criterion consid-

ering the burst amount of recently published literature. We

recorded the tagging time when use these tools to tag 5000

sentences in a machine with two processing cores @

3.20 GHz and 8 GB of RAM running Linux. The details

for the speed of each tool can be found in Table 4. In our

experiment, ABNER is the fastest system; however it

performs worst on GENETAG corpus. BANNER is not as

fast as ABNER, but it ranks first considering speed and

F-measure, thus it is a suitable option for biomedical

named entity recognition. Gimli can obtain highest

F-measure on two corpuses, but it is the slowest. We can

clearly find that the promotion of F-measure is obtained by

a more sophisticated software framework and longer pro-

cessing time.

In recent years, taking account of unconstrained growth

in thesis and biomedical database, researchers are seeking

for efficient methods to process and extract enormous

information. Granted that there is no need for high

F-measure and ABNER is used for analysis, the tagging

speed is still relatively slow when it comes to Terabytes of

data, let alone other tools. In order to catch up with the

growing speed of literature, Tang et al. proposed a CRFs

based parallel biomedical named entity recognition algo-

rithm employing MapReduce framework, which reduces

the model training time for large-scale training samples

[38]. Li et al. also developed a parallel CRFs algorithm

called MRCRF (MapReduce CRF) containing two parallel

sub-algorithms, MRLB (MapReduce L-BFGS) and MRVtb

(MapReduce Viterbi), respectively. They polish up the

performance significantly without the overmuch decrease

of correctness [39].

5 Conclusion

In our paper, we present a review on the research of

biomedical named entity recognition, especially on the

three fundamental models and six open source Bio-NER

tools. It is clear that to identify and classify the named

entities in biomedical literatures is an extremely sophisti-

cated work. With the help of machine learning algorithms,

Table 2 Results obtained on GENETAG corpus

ABNER (%) LingPipe (%) BANNER (%) NERSuite (%) Gimli (%) Dingare’s tool [36]

Precision 86.93 72.95 88.66 88.81 90.22 82.8

Recall 51.49 88.49 82.34 82.43 84.82 83.5

F-measure 64.88 79.97 86.43 85.45 87.17 83.2

Table 3 Results obtained from JNLPBA corpus

ABNER (%) GENIA tagger (%) NERSuite (%) Dingare’s tool [36] (%) Zhang’s tool [37] (%) Gimli (%)

Protein 72.60 72.79 72.74 72.7 67.2 74.68

DNA 65.10 66.20 68.58 67.9 55.6 69.83

RNA 61.60 64.29 67.23 68.8 55.6 67.24

Cell type 72.00 74.31 72.11 52.4 50.9 70.49

Cell line 56.00 57.81 56.11 69.1 19.9 58.64

Overall 70.50 71.37 71.07 70.1 49.84 72.23
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now we can achieve a result much better than dictionary-

based or rule-based methods. Gimli becomes one of the

state-of-the-art solutions for biomedical named entity

recognition. But facing different applications, the user still

need to consider different tools. The suggestions are as

follows:

(a) For overall performance on common biomedical

corpus, BANNER and Gimli can achieve satisfied

results;

(b) To exactly find out the ‘‘Cell Type’’ entities, GENIA

Tagger or NERSuite will perform well;

(c) Discovery on ‘‘DNA’’ and ‘‘RNA’’ names, we can

choose NERSuite and Gimli;

(d) For ‘‘Protein’’ name entity recognition, Gimli is the

unique candidate.

(e) Dingares’s tool is suitable for ‘‘Cell Line’’

recognition.

(f) BANNER can perform NER task accurately with a

relatively fast speed.

(g) In order to cope with huge amount of data, we need

more paralleled algorithms.

There is no doubt that Gimli could achieve the cham-

pion because it is newly proposed (see Table 1) and inte-

grated more modules than the other tools.

We also find some issues where future research is likely

to be concentrated. Most of current tools are developed

focus on two corpora, GENETAG and JNLPBA. These

tools may be tuned or modified to achieve better results on

the two datasets. However, they may perform badly on real

application. It will be much better if we can do research on

the generalization ability or make the benchmark corpus

update continually. In addition, from the experiments, we

can find that machine learning methods integrated with

biomedical dictionary (such as NERSuite and Gimli) may

transcend the ones without. However, existing dictionary in

real biomedical data may not be well coincide with the

machine learning methods. A successful Bio-NER tool

demands newly compiled biomedical dictionaries covering

different research areas, though it is time-consuming and

costly.
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