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Abstract This paper deals with the issue of projective

synchronization of two distinct fractional-order chaotic

systems with the presence of both uncertain dynamics and

external disturbances. More precisely, this study is an

attempt to investigate a novel fuzzy adaptive controller for

achieving an appropriate projective synchronization of

uncertain fractional-order chaotic systems. The adaptive

fuzzy systems are utilized to online estimate unknown

system nonlinearities. The proposed controller, which is

derived based on a Lyapunov approach, is continuous and

ensures the stability of the closed-loop system and the

exponential convergence of the underlying synchronization

errors to a small residual set. Finally, three simulation

examples are provided to verify the effectiveness of the

proposed synchronization method.

Keywords Adaptive fuzzy control � Fractional-order �
Chaos synchronization � Chaotic systems

1 Introduction

Fractional calculus is an area of mathematics that handles

with differentiation and integration of arbitrary (non-inte-

ger) orders. It can be traced to the early work of Leibniz

and Lhospital in 1695. During the last three decades or so,

it has attracted an increasing attention from physicians,

chemists, and engineers. In fact, it has been found that

many systems in interdisciplinary fields can be correctly

modelled by fractional-order differential equations, such as

viscoelastic systems [2], dielectric polarization [47], elec-

trode–electrolyte polarization [22], finance systems, elec-

tromagnetic waves [19], heat diffusion systems, batteries,

neurons, and so on.

Chaotic systems are nonlinear and deterministic rather than

probabilistic. They are characterized by several special and

important features suchas: (1) theyhave anunusual sensitivity

to initial states (therefore they are not predictable in the long

run, (2) their behaviour is not periodic (3) they have fractal

structures, (4) Such systems are governed by one or more

control parameters. Themain feature used to identify a chaotic

behaviour is the well-known Lyapunov exponent criteria. In

fact, a system that has one positive Lyapunov exponent is

knownas a chaotic system.However, a hyperchaotic system is

characterised as a chaotic system but with more than one

positive Lyapunov exponents. It is worth noting that higher

dimensional chaotic systems with more than one positive

Lyapunov exponent can obviously show more complex

dynamics. It has been recently shown that many fractional-

order systems can exhibit chaotic (or hyperchaotic) beha-

viours, such as fractional-order Duffing system [17], frac-

tional-order Chua’s system [18], fractional-order Lorenz

system [59], fractional-order Chen system [26], fractional-

order Rössler system [24], fractional-order Liu system [50],

fractional-order Arneodo system [34], to name a few.
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Synchronization issue consists in designing a system

(slave system) whose behavior mimics another one (master

system). The latter drives the slave system via the trans-

mitted signals. In the literature, various types of the chaos

synchronization have been revealed, such as complete

synchronization (CS) [8, 11, 48], phase synchronization

(PS) [39, 44], lag synchronization (LS) [9, 25], generalized

synchronization (GS) [58], generalized projective syn-

chronization (GPS) [23, 27, 29], and so on. However, all

these synchronization methods focus on integer-order

chaotic systems, which is a very special case of the non-

integer (i.e. fractional-order) chaotic systems. In addition,

it has been assumed in [8, 9, 11, 23, 25, 27, 29, 39, 44, 48,

58] that models of the chaotic systems are almost known.

Therefore, it is very interesting to extend these funda-

mental results to uncertain fractional-order chaotic systems

and to incorporate an online function approximator (such

as adaptive fuzzy system) to deal with model uncertainties.

During the past years, fuzzy theories have developed

very rapidly [55–57]. Specially, fuzzy logic systems have

been found to be particularly power full tool for synchro-

nizing and controlling uncertain chaotic systems with

integer order [6, 12, 21, 32, 42, 43, 51, 52], due to their

universal approximation properties [54]. In these fuzzy

control schemes, the fuzzy systems are used to online

estimate the uncertain functions. The stability analysis of

the corresponding closed-loop control system has been

carried out via a Lyapunov approach. The robustness issues

with respect to the inevitable fuzzy approximation errors

and the possible external disturbances have been improved

by appropriately adding a robust control term to the main

fuzzy adaptive control term. This robust control term can

be conceived by a sliding mode control approach [6, 12,

42, 43], an H? control approach [21, 51, 52] and a quasi-

sliding mode control approach [32]. However, it is should

be noted that the above results [6, 12, 21, 32, 42, 43, 51,

52] are limited to uncertain chaotic integer-order systems.

The synchronization of fractional-order chaotic systems

remains undoubtedly as a challenging research topic [13,

20, 30, 31, 36, 37, 53]. In [13], Chen et al. have researched

the synchronization of a class of fractional-order chaotic

neural networks. In [53], a local stability criterion for

synchronization of incommensurate fractional-order chao-

tic systems has been derived. An active pinning control for

synchronization and anti-synchronization of uncertain

unified chaotic systems with fractional-order has been

reported by Pan et al. [36]. In addition, the author of [37]

has designed a synchronization system of two identical

fractional-order chaotic systems using a linear error feed-

back control. Hosseinnia et al. [20] have designed a linear

sliding surface with its corresponding switching control

law for synchronization of two identical uncertain frac-

tional-order chaotic systems. In [31], an adaptive fuzzy

sliding mode control for synchronization of uncertain

fractional-order chaotic systems with time delay has been

proposed. In [30]. An adaptive fuzzy logic controller has

been designed for achieving an H? synchronizing for a

class of uncertain fractional-order chaotic systems. How-

ever, the fundamental results of [30, 31] are already

questionable, because the stability analysis has not been

derived rigorously in mathematics [1, 49].

In this paper, a novel chaos synchronization scheme is

proposed for two different uncertain chaotic systems with

fractional-order. A fuzzy adaptive controller is designed to

achieve a practical projective synchronization. By using

some coordinate transformation on the synchronization

error, the stability analysis as well as the control design are

simplified. A Lyapunov approach is adopted to carry out

the design of the adaptation laws and the stability analysis

of the corresponding closed-loop system. To show the

effectiveness of the proposed synchronization system, three

illustrative examples will be presented. Compared to the

existing works [13, 20, 30, 31, 36, 37, 53], the principal

contributions of this study can be summarized as:

1. By designing a fuzzy adaptive controller, a practical

projective synchronization is appropriately achieved

for a class of uncertain fractional-order chaotic

systems. To the best of authors knowledge, the design

of a fuzzy adaptive control for fractional-order

systems has not been previously considered in the

literature, except some preliminaries works in [30, 31].

However, these works are already questionable, as

stated in [1, 49].

2. Unlike the previous works [13, 20, 30, 31, 36, 37, 53],

the slave chaotic system is assumed to be subject to

unknown dynamic disturbances and the model of this

master–slave structure is considered to be completely

unknown (i.e. the controller designed is free of the

models of both master and slave systems). In fact, the

adaptive fuzzy systems incorporated in this synchro-

nization structure permits to estimate online the

ouncertain functions.

3. Unlike the closely related works [30, 31], the stability

analysis of the closed-loop system is rigorously estab-

lished in this paper, by using some properties of the

Caputo fractional-order derivative [10, 16, 28, 40, 45, 60].

2 Basic definitions and preliminaries
for fractional-order systems

As the Caputo fractional operator is more consistent than

another ones, then this operator will be employed in this

paper. Also, a modification of Adams–Bashforth–Moulton

algorithm proposed in [14, 15] will be used for computer
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numerical simulation of the Caputo fractional-order dif-

ferential equations.

The Caputo fractional derivative of a function x tð Þ with
respect to t is defined as follows [40]:

Da
t x tð Þ ¼ 1

Cðm� aÞ

Z t

0

ðt � sÞ�aþm�1
xðmÞ sð Þds ð1Þ

where m ¼ a½ � þ 1, a½ � is the integer part of a, Da
t is called

the a� order Caputo differential operator, and C :ð Þ is the
well-known Eulers gamma function:

C Pð Þ ¼
Z 1

0

tP�1e�tdt with C Pþ 1ð Þ ¼ PC Pð Þ ð2Þ

This function can be seen as an extension of the factorial

to real number arguments.

The following three properties of the Caputo fractional-

order derivative will be used in the sequent sections [10,

28, 40]:

Property 1 Let 0\q\1, then

Dx tð Þ ¼ D1�q
t Dq

t x tð Þ; where D ¼ d

dt
: ð3Þ

Property 2 The Caputo fractional derivative operator is

a linear operator:

Dq
t mx tð Þ þ ly tð Þð Þ ¼ mDq

t x tð Þ þ lDq
t y tð Þ; ð4Þ

where m and l are real constants.

Especially, D
q
t x tð Þ ¼ D

q
t x tð Þ þ 0ð Þ ¼ D

q
t x tð Þ þ D

q
t 0;

then, we have D
q
t 0 ¼ 0:

Property 3 Consider a Caputo fractional nonlinear

system [16, 45, 60]:

Dq
t x tð Þ ¼ f x tð Þð Þ; with 0\q\1 ð5Þ

If one assumes that f ðx tð ÞÞ satisfies the Lipschiz

condition with respect to x, i.e.,

jjf ðxðtÞÞ � f ðx1 tð ÞÞjj � ‘jjxðtÞ � x1ðtÞjj; ð6Þ

where ‘ is a positive constant. Without loss of generality,

one also assumes that f ðxÞ satisfies f xð Þ ¼ 0 at x ¼ 0.

It follows that:

jjf ðxðtÞÞjj � ‘jjxðtÞjj: ð7Þ

Remark 1

1. It should be noted that the definition of Caputo

fractional integration is similar to that of Reimann–

Liouville (RL) fractional integration.

2. The major advantage of the Caputo definition is that

the initial conditions for fractional-order differential

equations take on a similar form as for integer-order

differential equations.

3. In the literature, the Caputo definition is sometimes

referred as a smooth fractional derivative.

3 Problem statement and fuzzy logic systems

3.1 Problem statement

As already mentioned in Sect. 1, our main motivation

consists in designing a fuzzy adaptive control system

which properly realizes a projective synchronization

between two different fractional-order chaotic systems, as

shown in Fig. 1, while all the signals in the derived closed-

loop system remain bounded.

Consider the following class of uncertain fractional-

order chaotic master systems:

Dq
t X ¼ F1 Xð Þ; ð8Þ

where D
q
t ¼ dq

dtq
; 0\q\1 is the fractional derivative order,

with X ¼ ½x1; . . .; xn�T 2 Rn is the overall state vector of the

master system which is assumed to be measureable, and

F1ðXÞ ¼ ½f11ðXÞ; . . .; f1nðXÞ�T 2 Rn is a vector of smooth

unknown nonlinear functions.

The uncertain fractional-order chaotic slave system can

be given as:

Dq
t Y ¼ F2 Yð Þ þ Guþ K t; Yð Þ; ð9Þ

where Y ¼ ½y1; . . .; yn�T 2 Rn is its state vector which is

also assumed to be available for measurement. F2 Yð Þ ¼
½f21 Yð Þ; . . .:f2nðYÞ�T 2 Rn is a vector of smooth unknown

nonlinear functions, G ¼
g11 . . . g1n

..

. . .
. ..

.

gn1 . . . gnn

2
64

3
75 2 Rn�n is an

unknown constant control-gains matrix, u ¼ ½u1; . . .; un�T 2
Rn is the control input vector, and K t; Yð Þ ¼ ½K1 t; Yð Þ; . . .;
Kn t; Yð Þ�T 2 Rn denotes the unknown dynamic disturbance

vector.

Assumption 1 Without loss of generality, we assume that

the matrix G is symmetric and positive-definite.

Remark 2 The systems (8) and (9) considered in this

paper represent a relatively large class of uncertain frac-

tional-order chaotic systems. Note that many chaotic sys-

tems can be described in this considered form, such as:

fractional-order Lorenz system, fractional-order unified

chaotic system, fractional-order Chen system, so on.

= ( ) + + ( , )

Slave system 

= ( )

Master system 

Fuzzy adaptive 

controller 
( ) ( )

+

( )

M

Fig. 1 The proposed synchronization scheme
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Remark 3 The master-salve structure described by (8) and

(9) has been considered in many literatures, e.g. [13, 16,

20, 36, 37, 53, 60]. But, in these works, the model of this

structure is assumed to be known or partially known or

without dynamic disturbances. Unlike in [13, 16, 20, 36,

37, 53, 60], in this paper, the model of the master–slave

system is completely unknown and with uncertain dynamic

disturbances. Hence, the results of [13, 16, 20, 36, 37, 53,

60] cannot be applied to the considered master–slave

system.

Remark 4 Assumption 1 is considered for sake of sim-

plicity, not restrictive and common in the literature [13, 16,

20, 36, 37, 53, 60]. By using the matrix decomposition as in

[3, 4], this assumption can be relaxed.

Our main objective is to design a fuzzy adaptive control

law ui (for all i ¼ 1; . . .; nÞ achieving an appropriate pro-

jective synchronization between the master system (8) and

the slave system (9), while assuring the boundedness of all

variables involved in the closed-loop system as well as the

practical convergence of the associated synchronization

errors to an adjustable residual set.

In order to quantify this objective, one defines the syn-

chronization errors as follows:

e1 ¼ y1 � k1x1;

..

.

en ¼ yn � knxn;

ð10Þ

where ki is a non-zero scaling factor that defines a pro-

portional relation between the synchronized systems.

Therefore, the complete synchronization and anti-syn-

chronization are the special cases of a projective synchro-

nization when ki takes the values þ1 and �1, respectively.

The vector of the synchronization errors can be

expressed as follows:

E ¼ ½e1; . . .; en�T ¼ Y �MX: ð11Þ

where M ¼ diagðk1; k2; . . .; knÞ is the projective syn-

chronization matrix.

In order to facilitate the design of the control system and

the stability analysis, now one introduces a new variable

S ¼ ½S1; . . .; Sn�T as follows:

D1�q
t S ¼ E; ð12Þ

According to Property 1 of the Caputo fractional

derivative operator, one can rewrite (12) as:

Dq
t D

1�q
t S ¼ _S ¼ Dq

t E ¼ F2 Yð Þ þ Gu�MF1 Xð Þ þ K t; Yð Þ:
ð13Þ

Posing G1 ¼ G�1, one has

G1
_S ¼ G1 F2 Yð Þ �MF1 Xð Þ½ � þ uþ G1K t; Yð Þ: ð14Þ

The dynamics of S can be arranged as

G1
_S ¼ a X;Y ;Kð Þ þ u; ð15Þ

with

a X; Y ;Kð Þ ¼ ½a1 X; Y;Kð Þ; . . .; an X; Y ;Kð Þ�T
¼ G1½F2ðYÞ �MF1ðXÞ� þ G1K t; Yð Þ: ð16Þ

Thereafter, (16) will be exploited in the development of

the proposed fuzzy controller and the corresponding sta-

bility analysis.

Remark 5 The transformation (12) permits us to obtain a

non fractional-order dynamics (15) for the synchronization

error S. Thus, the corresponding stability analysis and the

controller design will be further simplified.

Remark 6 Since the nonlinear function aðX; Y ;KÞ is

unknown, the design of a control system to practically

stabilize the dynamics (15) is difficult. Thereafter, to

overcome such a problem, one will use later an adaptive

fuzzy system to approximate a functional upper-bound of

aðX; Y ;KÞ.

Remark 7 From (12) and according to Properties 1, 2 and

3 of the Caputo fractional derivative operator [16, 45, 60],

one can easily show the existence of a positive real number

j, such that jjEjj � jjjSjj. Hence, S ¼ 0 implies that E ¼ 0;

and the boundedness of S implies that of E.

3.2 Description of the fuzzy logic system

The configuration of a fuzzy logic system basically consists

of a fuzzifier, a fuzzy knowledge-base, an inference engine

and a defuzzifier [3, 4, 54]. The fuzzy inference engine,

being considered as an important part in this reasoning

system, uses a set of fuzzy If–Then rules to perform a

mapping from an input xT ¼ ½x1; . . .; xn� 2 Rn to an output

f̂ 2 R: The ith fuzzy rule is in following form:

RðiÞ : if x1 is A
i
1 and . . . and xn is A

i
n then f̂ is f

i; ð17Þ

where Ai
1;A

i
2; . . .:: and Ai

n are fuzzy sets and f i is a fuzzy

singleton for the output in the ith rule.

If one uses a singleton fuzzifier, product inference, and

center-average defuzzifier, the output of this fuzzy logic

system can be expressed as

f̂ ðxÞ ¼
Pm

i¼1 f
i
Qn

j¼1 lAi
j
ðxjÞ

� �
Pm

i¼1

Qn
j¼1 lAi

j
ðxjÞ

� � ¼ hTwðxÞ; ð18Þ

where lAi
j
ðxjÞ is the membership function of the fuzzy set

Ai
j; m is the number of fuzzy rules, hT ¼ ½f 1; . . .; f m� is the

adjustable parameter (consequent parameters) vector, and

wT ¼ ½w1w2. . .wm� with
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wiðxÞ ¼
ðPn

j¼1lAi
j
ðxjÞÞPm

i¼1

Qn
j¼1 lAi

j
ðxjÞ

� � ; ð19Þ

being the fuzzy basis function (FBF).

Throughout the paper, it is assumed that the FBFs are

appropriately selected so that [54]:Xm

i¼1

Yn

j¼1
lAi

j
ðxjÞ

� �
[ 0 ð20Þ

The fuzzy logic system (18) can approximate any non-

linear continuous function f ðxÞ defined on a compact

operating space to an arbitrary accuracy [3, 4, 54]. Of

particular importance, one assumes that the FBFs, i.e.wðxÞ;
are properly specified in advance by designer. However,

the consequent parameters, i.e. h, are determined by some

adequate estimation algorithms.

4 Design of fuzzy adaptive controller

Hereafter, we need the following mild assumption.

Assumption 2 There exists an unknown continuous

positive function vector �aðYÞ such that:

aðX; Y;KÞÞj j � �a Yð Þ; ð21Þ

where �a Yð Þ ¼ ½�a1 Yð Þ; . . .; �an Yð Þ�T .

Remark 8 Assumption 2 is commonly used in the open

control literature, e.g. [3, 4]. It is not restrictive, as the

upper bound function �a Yð Þ is already assumed to be

unknown and the state vector of the master system evolves

in a compact set (an intrinsic property of the (non-con-

trolled) chaotic systems).

The unknown nonlinear function �ai Yð Þ can be approx-

imated, on the compact set XY , by the fuzzy system (18) as

follows:

�̂ai Y ; hið Þ ¼ hTi wi Yð Þ; with i ¼ 1; . . .n; ð22Þ

where wiðYÞ is the fuzzy basis function (FBF) vector,

which is determined a priori by the designer, and hi is the
vector of the adjustable parameters of this fuzzy system.

The optimal value of hi can be defined as follows [54]

h�i ¼ argminhi supY�XY
�aiðYÞ � �̂aiðY ; hiÞ
�� ��� �

ð23Þ

It is worth noticing that the vector h�i is mainly

introduced for analysis purposes. Its value is not needed

when implementing the control system.

Now, let us define

�hi ¼ hi � h�i and

di Yð Þ ¼ �ai Yð Þ � �̂ai Y ; h
�
i

� �
¼ �aiðYÞ � h�Ti wiðYÞ

ð24Þ

as the parameter estimation errors and the fuzzy approxi-

mation errors, respectively.

As in [3, 4, 5, 7, 33, 54], one assumes that the fuzzy

approximation errors are upperly bounded for all Y 2 XY ,

i.e. diðYÞj j � �di; 8Y 2 XY ; with �di is an unknown constant.

Let us denote

�̂a Y ; hð Þ ¼ �̂a1 Y; h1ð Þ; . . .; �̂an Y ; hnð Þ
� �T

¼ hT1w1 Yð Þ; . . .; hTnwnðYÞ
� �T

;

d Yð Þ ¼ d1 Yð Þ; . . .; dn Yð Þ½ �T and �d ¼ �d1; . . .; �dn
� �T

From the previous analysis, one can get the following

expressions:

�̂a Y ; hð Þ � �a Yð Þ ¼ �̂a Y ; hð Þ � �̂a Y ; h�ð Þ þ �̂a Y ; h�ð Þ � �a Yð Þ;
¼ �̂a Y ; hð Þ � �̂a Y ; h�ð Þ � d Yð Þ;

¼ ~h
T
w Yð Þ � d Yð Þ:

ð25Þ

with ~hTw Yð Þ ¼ ½~hT1w1 Yð Þ; . . .; ~hTnwnðYÞ�
T
and ~hTi ¼ hi � h�i ,

for i ¼ 1; . . .; n:
For the master–slave system (8) and (9), we can

consider the following fuzzy adaptive controller:

ui ¼ �qiðtÞTanh qiðtÞSi=eið Þ for i ¼ 1; . . .; n ð26Þ

with qi tð Þ ¼ hTi wi Yð Þ þ k0i þ k1i Sij j
� �

, where k0i is an

adaptive parameter will be designed later, and k1i is a

strictly positive design constant. Tanh(.) denotes the

hyperbolic tangent function and ei is a strictly positive and

small design constant.

Throughout this paper, we will exploit the following

nice lemma with regard to function Tanh(.) [41].

Lemma 1 The following inequality holds for any ei [ 0

and for any z 2 R [41]:

0� zj j � zTanh
z

ei

	 

� �ei ¼ #ei ð27Þ

where # is a constant that satisfies # ¼ e�ð1þ#Þ; i.e.

# ¼ 0:2785:

The system (15) can be rewritten as follows:

STG1
_S ¼ STa X; Y ;Kð Þ þ STu� ST

�� ���a Yð Þ þ STu ð28Þ

Using the control law (26) and Lemma 1, (28) becomes:

STG1
_S� ST

�� ���a Yð Þ �
Xn

i¼1
qi tð Þ Sij j þ

Xn

i¼1
qi tð Þ Sij j

�
Xn

i¼1
qiðtÞSiTanh qiðtÞSi=eið Þ

� �
Xn

i¼1
Sij j~hTi wi Yð Þ þ

Xn

i¼1
Sij j di Yð Þj j

�
Xn

i¼1
k0i Sij j �

Xn

i¼1
k1iS

2
i þ

Xn

i¼1
�ei ð29Þ

The adaptation laws associated to the proposed con-

troller (26) can be designed as
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_hi ¼ chið Sij jwiðYÞ � rhihiÞ; hijð0Þ[ 0 ð30Þ
_k0i ¼ ckið Sij j � rkik0iÞ; k0ið0Þ[ 0 ð31Þ

where chi; rhi; rki and cki are strictly positive design

constants.

On the basis of the previous discussions, the following

theorem can be obtained.

Theorem 1 For the master–slave system (8) and (9), if

Assumptions 1 and 2 are valid, the control law (26) toge-

ther with adaptation laws (30) and (31) can ensure the

following properties:

• All the signals in the closed-loop system are bounded.

• Signals S and E exponentially converge to a residual set

that can be made small by properly adjusting the design

parameters.

Proof of Theorem 1 Define the following Lyapunov

function candidate:

V ¼ 1

2
STG1Sþ

Xn

i¼1

1

2chi
~hTi ~hi þ

Xn

i¼1

1

2cki
~k20i: ð32Þ

with ~k0i ¼ k0i � k�0i, where k�0i ¼ �di.

The time derivative of V results

_V ¼ STG1
_Sþ

Xn

i¼1

1

chi
~hTi _hi þ

Xn

i¼1

1

cki
~k0i _k0i ð33Þ

Substituting Eqs. (29)-(31) into (33) yields

_V � �
Xn

i¼1
k1iS

2
i þ

Xn

i¼1
�ei �

Xn

i¼1
rhi~h

T
i hi

�
Xn

i¼1
rkik0i~k0i: ð34Þ

On the other hand, it can be established that

� rhi ~h
T
i hi � � rhi

2
jj~h2i jj þ

rhi
2
jjh�2i jj

� rkik0i~k0i � � rki
2

~k20i þ
rki
2
k�20i

ð35Þ

Thus, by using (35), (34) results

_V � �
Xn

i¼1
k1iS

2
i �

Xn

i¼1

rhi
2
jj~hijj

2 �
Xn

i¼1

rki
2

~k
2

0i

þ
Xn

i¼1

rki
2
k�20i þ

Xn

i¼1

rhi
2
jjh�i jj

2 þ
Xn

i¼1
�ei

ð36Þ

Consequently, (36) can be written as follows

_V � � gV þ l ð37Þ

with l ¼
Pn

i¼1
rki
2
k�20i þ

Pn
i¼1

rhi
2
jjh�i jj

2 þ
Pn

i¼1 �ei and

g ¼ min k1i
rgmax

; rhichi; rkicki
n o

, where rgmax is the largest

eigenvalue of the matrix G1.

Multiplying (37) by egt, we can obtain

d

dt
egtVð Þ� legt ð38Þ

Integration (38) over 0; t½ �, it follows that

0�V tð Þ� l
g
þ V 0ð Þ � l

g

	 

e�gt ð39Þ

Consequently, all signals in the closed-loop system are

bounded and the error signal S and all parameter estimation

errors exponentially converge to an adjustable residual set.

Since l can be chosen arbitrary and g only depends on the

design parameters (which can be chosen sufficiently large),

the ultimate bounds of the error Si can be made arbitrary

small.

According to Remark 7 and Properties 1–3, the syn-

chronization errors ei are also stable and exponentially

converge to an adjustable residual set.

Remark 9 It is worth noting that the synchronization of

the fractional-order chaotic systems with known or par-

tially known dynamics have been comprehensively studied

in many literatures [13, 16, 20, 30, 31, 36, 37, 53, 60]. But,

to the best of authors knowledge, there are no theoretical or

applied works in the literature on the synchronization of

fractional-order chaotic systems with completely unknown

models and unknown dynamic disturbances, except the

works of [30, 31] which are already questionable (as stated

[1, 49] ). Hence, the results of [13, 16, 20, 30, 31, 36, 37,

53, 60] cannot be directly applied to the considered mas-

ter–slave system.

Remark 10 From Eqs. (39), (37), and the definition of l
and g, it can be seen that the term g depends on the

positive design parameters k1i; rhi; chi; rki and cki and the

term l depends on the control parameters rhi; rki and ei.
Note that if one increase k1i; chi and cki and decreases

rhi; rki and ei, the value of
ffiffiffiffiffiffiffiffi
l=g

p
will be reduced. Then

the ultimate bounds of Sij j and eij j can be made arbitrary

small by properly selecting these design constants. In

simulation experiments, the parameters k1i; chi and cki are
generally chosen to be large enough and rhi; rki and ei
small enough (as we will see in our simulation

examples).

Remark 11 Now, we will show that our proposed

scheme can be easily extended to projective-synchronize

two chaotic systems with different dimensions. For that, let

us consider the following chaotic systems:

The master system:

D
q
t x1 ¼ f11ðXÞ

D
q
t x2 ¼ f12ðXÞ

�
ð40Þ

with X ¼ ½x1; x2�T .
The slave system:
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D
q
t y1 ¼ f21 Yð Þ þ u1 þ K1ðt; YÞ

D
q
t y2 ¼ f22 Yð Þ þ u2 þ K2ðt; YÞ;

D
q
t y3 ¼ f23 Yð Þ þ þu3 þ K3ðt; YÞ;

8<
: ð41Þ

where with Y ¼ ½y1; y2; y3�T .

So that we can demonstrate the synchronization error

convergence, one should add a fictive state ðx3Þ which will

be used to synchronize the state y3. The state x3 can be

chosen as a linear combination of x1 and x2
(i.e.x3 ¼ #1x1 þ #2x2).

The augmented system (40) becomes:

D
q
t x1 ¼ f11ðXÞ

D
q
t x2 ¼ f12ðXÞ

D
q
t x3 ¼ #1f11 Xð Þ þ #2f12ðXÞ

8<
: ð42Þ

Now, from (42) and (41), it is clear that one can use our

fuzzy adaptive controller to synchronize these two frac-

tional-order chaotic systems with different dimensions, i.e.

(40) and (41). In Sect. 5, an illustrative example will be

given.

5 Simulation results

In this section, some numerical simulation studies are

carried out to show the effectiveness of the proposed

synchronization scheme.

Example 1 In this example, we will verify the effective-

ness of the proposed scheme for the synchronization of two

different fractional-order chaotic systems. Consider the

fractional-order Lotka–Volterra system [38] as the master

system and the fractional-order Newton–Leipnik system

[46] as the slave system. The equations of these systems are

given below:

The master system (fractional-order chaotic Lotka–

Volterra system [38, 46]):

D
q
t x1 ¼ x1 � x1x2 þ 2x21 � 2:9851x3x

2
1;

D
q
t x2 ¼ �x2 þ x1x2;

D
q
t x3 ¼ �3x3 þ 2:9851x3x

2
1;

8<
: ð43Þ

The slave system (the fractional-order Newton–Leipnik

system [46]):

D
q
t y1 ¼ �0:4y1 þ y2 þ 10y2y3 þ u1 þ K1;

D
q
t y2 ¼ �y1 � 0:4y2 þ 5y1y3 þ u2 þ K2;

D
q
t y3 ¼ 0:175y3 � 5y1y2 þ u3 þ K3;

8<
: ð44Þ

The fractional-order q is set to 0:95. This value ensures

the existence of chaos for both systems [38, 46].

The external dynamic disturbances are selected as fol-

lows:K1 tð Þ ¼ K2 tð Þ ¼ K3 tð Þ ¼ �0:2 cos 2tð Þ þ 0:1 sin 3tð Þ.
The initial conditions of the master and slave systems are

chosen as: X 0ð Þ ¼ ½x1 0ð Þ; x2 0ð Þ; x3 0ð Þ�T ¼ ½1; 1:4; 1�T and

Y 0ð Þ ¼ ½y1 0ð Þ; y2 0ð Þ; y3 0ð Þ�T ¼ ½0:349; 0;�0:160�T .
The adaptive fuzzy systems,hTi wiðYÞ, with i = 1, 2, 3,

have the vector Y ¼ ½y1; y2; y3�T as input. For each input

variable of these fuzzy systems, as in [7], we define three

(one triangular and two trapezoidal) membership functions

uniformly distributed on the intervals [-5, 5]. The design

parameters are chosen as follows: k11 ¼ k12 ¼ k13 ¼
1; ch1 ¼ ch2 ¼ ch3 ¼ 500; rh1 ¼ rh2 ¼ rh3 ¼ 0:0001; ck1 ¼
ck2 ¼ ck3 ¼ 4; rk1 ¼ rk2 ¼ rk3 ¼ 0:001: The initial con-

ditions of the adaptive laws are selected as follows:

h1j 0ð Þ ¼ h2j 0ð Þ ¼ h3j 0ð Þ ¼ 0, and k0i 0ð Þ ¼ 0:01:

Three simulation cases are considered here:

(a) Case 1 (Complete synchronization, i.e. when

k1 ¼ k2 ¼ k3 ¼ 1): The obtained simulation results of a

complete synchronization are depicted in Figs. 2 and 3.

The time responses of the master (43) and the slave system

(44) are illustrated in Fig. 2a–c. From this figure, it should

be highlighted that a complete synchronization between

both systems is practically realized. Figure 2d exhibits the

control signals. Figure 3a–c show the synchronization

phase plots of xi � yi (for i = 1–3), Fig. 3d illustrates the

time evolution of the synchronization errors. Hence, from

these results, we conclude that the proposed adaptive fuzzy

controller is robust and can quickly achieve a complete

synchronization between the systems (43) and (44), even in

the presence of the external dynamic disturbances and

uncertain dynamics (i.e. the models of the both systems are

unknown).

(b) Case 2 (Anti-phase synchronization, i.e. when

k1 ¼ k2 ¼ k3 ¼ �1): Figures 4 and 5 illustrate the simu-

lation results of an anti-phase synchronization. It is clear

from these figures that in spite of the presence of the

external dynamic disturbances and uncertain dynamics, the

anti-phase synchronization is adequately achieved by

applying the proposed controller.

(b) Case 3 (Projective synchronization, i.e. when

k1 ¼ 0:5; k2 ¼ 1:25; k3 ¼ �0:75): From Figs. 6 and 7, it is

clear that a projective synchronization between the master

system and the controlled slave system is effectively and

practically realized.

Example 2 To test the performances of the proposed

practical projective synchronization scheme, we consider

two homogeneous fractional-order chaotic Chua’s systems

with a piecewise-linear nonlinearity [35]:

The master system:

D
q
t x1 ¼ r½x2 � x1 � hðx1Þ�;

D
q
t x2 ¼ x1 � x2 þ x3;

D
q
t x3 ¼ �bx2;

8<
: ð45Þ

The slave system:
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D
q
t y1 ¼ r½y2 � y1 � hðy1Þ� þ u1 þ K1 tð Þ;

D
q
t y2 ¼ y1 � y2 þ y3 þ u2 þ K2ðtÞ;

D
q
t y3 ¼ �by2 þ u3 þ K3ðtÞ;

8<
: ð46Þ

where h y1ð Þ ¼ by1 þ 0:5 a� bð Þ y1 þ 1j j � y1 � 1j j½ �; r ¼
13; b ¼ 14:87; a ¼ �1:27 and b ¼ �0:68.

The fractional-order q is set to 0:9. This value ensures

the existence of chaos for this fractional-order chaotic

Chua’s systems [35].

The external dynamic disturbances are selected as fol-

lows: K1 tð Þ ¼ K2 tð Þ ¼ K3 tð Þ ¼ 0:25 sin 4tð Þ � 0:15 sin 5tð Þ.
The initial conditions of the master and slave systems

are chosen as: X 0ð Þ¼½x1 0ð Þ;x2 0ð Þ;x3 0ð Þ�T¼½0:6;0:1;�0:6�T

and Y 0ð Þ¼½y1 0ð Þ;y2 0ð Þ;y3 0ð Þ�T¼½0:2;�0:1;0:1�T .
The adaptive fuzzy systems,hTi wiðYÞ, with i = 1, 2, 3,

have the vector Y ¼ ½y1; y2; y3�T as input. For each input

variable of these fuzzy systems, as in [7], we define three

(a) (b)

(c) (d)

Fig. 2 Complete

synchronization (for example

1): a x1 (dotted line) and y1
(solid line). b x2 (dotted line)

and y2 (solid line). c x3 (dotted

line) and y3 (solid line). d
Control signals: u1 (solid line),

u2 (dotted line) and u3 (dashed

line)

(a) (b)

(c) (d)

Fig. 3 Complete

synchronization (for Example

1): a–c the synchronization

phase plots of xi � yi. d The

synchronization error curves: e1
(solid line), e2 (dotted line) and

e3 (dashed line)
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(one triangular and two trapezoidal) membership functions

uniformly distributed on the intervals [-4, 4].

The design parameters are chosen as follows: k11 ¼
k12 ¼ k13 ¼ 1; ch1 ¼ ch2 ¼ ch3 ¼ 800; rh1 ¼ rh2 ¼ rh3 ¼
0:001; ck1 ¼ ck2 ¼ ck3 ¼ 5; rk1 ¼ rk2 ¼ rk3 ¼ 0:005: The

initial conditions of the adaptive laws are selected as fol-

lows: h1j 0ð Þ ¼ h2j 0ð Þ ¼ h3j 0ð Þ ¼ 0, and k0i 0ð Þ ¼ 0:001:

As in the previous example, three simulation cases are

considered here:

(a) Case 1 (Complete synchronization, i.e. when

k1 ¼ k2 ¼ k3 ¼ 1): The simulation results of a complete

synchronization between the master system (45) and the

slave system (46) are depicted in Figs. 8 and 9. The time

responses of both systems are illustrated in Fig. 8a–c. It is

clear from this figure that a complete synchronization is

practically and quickly achieved. From Fig. 8d, it is clear

that the control signals are smooth, admissible and boun-

ded. Figures 9a–c show the signal xi versus yi (respectively

(a) (b)

(c) (d)

Fig. 4 Anti-phase

synchronization (for Example

1): a x1 (dotted line) and y1
(solid line). b x2 (dotted line)

and y2 (solid line). c x3 (dotted

line) and y3 (solid line). d
Control signals: u1 (solid line),

u2 (dotted line) and u3 (dashed

line)

(a) (b)

(c) (d)

Fig. 5 Anti-phase

synchronization (for Example

1): a–c the anti-phase

synchronization phase plots of

xi � yi. d The anti-phase

synchronization error curves: e1
(solid line), e2 (dotted line) and

e3 (dashed line)
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for i = 1, 2, 3), Fig. 9d gives the time evolution of the

corresponding synchronization errors. Therefore, we can

conclude from these obtained results that the proposed

adaptive fuzzy controller is robust and can adequately

achieve a complete synchronization between the systems

(45) and (46), even in the presence of the external dynamic

disturbances and uncertain dynamics.

(b) Case 2 (Anti-phase synchronization, i.e. when

k1 ¼ k2 ¼ k3 ¼ �1): Figures 10 and 11 illustrate the

simulation results of this case. From these results, we can

see that an anti-phase synchronization between both sys-

tems is practically achieved and the control signals are

bounded and admissible.

(c) Case 3 (Projective synchronization, i.e. when

k1 ¼ �2; k2 ¼ �3; k3 ¼ 0:50): From Figs. 12 and 13, it is

obvious that a projective synchronization between the

master system and the slave system is effectively realized.

Example 3 To test the performances of the proposed

synchronization scheme on fractional-order chaotic

(a) (b)

(c) (d)

Fig. 6 Projective

synchronization (for Example

1): a x1 (dotted line) and y1
(solid line). b x2 (dotted line)

and y2 (solid line). c x3 (dotted

line) and y3 (solid line). d
Control signals: u1 (solid line),

u2 (dotted line) and u3 (dashed

line)

(a) (b)

(c) (d)

Fig. 7 Projective

synchronization (for Example

1): a–c the projective

synchronization phase plots of

xi � yi. d The projective

synchronization error curves: e1
(solid line), e2 (dotted line) and

e3 (dashed line)
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systems with different scaling factors and different

dimensions (the number of state variables for both systems

is different), we consider the following chaotic systems:

The master system (fractional-order Duffing-Holmes) [31]:

D
q
t x1 ¼ 2:2x2

D
q
t x2 ¼ �0:4x31 � 0:4x1 � 0:1x2 þ 22 cosð1:29tÞ

�
ð47Þ

The slave system (fractional-order Arneodo’s system)

[34]:

D
q
t y1 ¼ y2 þ u1

D
q
t y2 ¼ y3 þ u2

D
q
t y3 ¼ 5:5y1 þ 3:5y2 � 0:4y3 � y31 þ u3

8<
: ð48Þ

(a) (b)

(c) (d)

Fig. 8 Complete

synchronization (for Example

2): a x1 (dotted line) and y1
(solid line). b x2 (dotted line)

and y2 (solid line). c x3 (dotted

line) and y3 (solid line). d
Control signals: u1 (solid line),

u2 (dotted line) and u3 (dashed

line)

(a) (b)

(c) (d)

Fig. 9 Complete

synchronization (for Example

2): a–c The synchronization

phase plots of xi � yi. d: The
synchronization error curves: e1
(solid line), e2 (dotted line) and

e3 (dashed line)
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The fractional-order q is set to 0:98. This value ensures

the existence of chaos for both fractional-order chaotic

systems [31], [34].

The initial conditions of the master and slave systems

are chosen as: X 0ð Þ ¼ ½x1 0ð Þ; x2 0ð Þ�T ¼ ½0; 0�T and Y 0ð Þ ¼
½y1 0ð Þ; y2 0ð Þ; y3 0ð Þ�T ¼ ½0:2; 0:2; 0:1�T .

Here, our objective is to realize a practical projective

synchronization between both systems (47) and (48). The

synchronization errors are selected as: e1 ¼ y1 þ 0:1x1,

e2 ¼ y2 � 0:2x2; e3 ¼ y3 � 0:3ðx1 þ x2Þ.
The adaptive fuzzy systems,hTi wiðYÞ, with i = 1, 2,

3, have the vector Y ¼ ½y1; y2; y3�T as input. For each

input variable of these fuzzy systems, as in [7], we

define three (one triangular and two trapezoidal) mem-

bership functions uniformly distributed on the intervals

[-5, 5].

(a) (b)

(c) (d)

Fig. 10 Anti-phase

synchronization (for Example

2): a x1 (dotted line) and y1
(solid line). b x2 (dotted line)

and y2 (solid line). c x3 (dotted

line) and y3 (solid line). d
Control signals: u1 (solid line),

u2 (dotted line) and u3 (dashed

line)

(a) (b)

(c) (d)

Fig. 11 Anti-phase

synchronization (for Example

2): a–c: the anti-phase

synchronization phase plots of

xi � yi. d The anti-phase

synchronization error curves: e1
(solid line), e2 (dotted line) and

e3 (dashed line)
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The design parameters are chosen as follows: k11 ¼
k12 ¼ k13 ¼ 1; ch1 ¼ ch2 ¼ ch3 ¼ 500; rh1 ¼ rh2 ¼ rh3 ¼
0:0001; ck1 ¼ ck2 ¼ ck3 ¼ 4; rk1 ¼ rk2 ¼ rk3 ¼ 0:001:

The initial conditions of the adaptive laws are selected as

follows: h1j 0ð Þ ¼ h2j 0ð Þ ¼ h3j 0ð Þ ¼ 0, and k0i 0ð Þ ¼ 0:01:

Simulation results obtained for this case are given in

Figs. 14 and 15. From these figures, we can see obviously

that the projective synchronization between the master and

slave system is successfully achieved.

6 Conclusion

In this paper, based on a continuous fuzzy adaptive control,

we have investigated a practical projective synchronization

scheme of two distinct fractional-order chaotic systems

subject to both uncertain dynamics and external disturbances.

Of fundamental interest, a Lyapunov based analysis has been

carried out to conclude about the practical stability as well as

the exponential convergence of the synchronization errors to

(a) (b)

(c) (d)

Fig. 12 Projective

synchronization (for Example

2): a x1 (dotted line) and y1
(solid line). b x2 (dotted line)

and y2 (solid line). c x3 (dotted

line) and y3 (solid line). d
Control signals: u1 (solid line),

u2 (dotted line) and u3 (dashed

line)

(a) (b)

(c) (d)

Fig. 13 Projective

synchronization (for Example

2): a–c the projective

synchronization phase plots of

xi � yi. d The projective

synchronization error curves: e1
(solid line), e2 (dotted line) and

e3 (dashed line)
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an adjustable residual set. Finally, three illustrative simula-

tion examples have been given to show the interest of the

proposed projective synchronization system.
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