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Abstract Extreme learning machine (ELM) algorithm is

used to train Single-hidden Layer Feed forward Neural

Networks. And Deep Belief Network (DBN) is based on

Restricted Boltzmann Machine (RBM). The conventional

DBN algorithm has some insufficiencies, i.e., Contrastive

Divergence (CD) Algorithm is not an ideal approximation

method to Maximum Likelihood Estimation. And bad

parameters selected in RBM algorithm will produce a bad

initialization in DBN model so that we will spend more

training time and get a low classification accuracy. To

solve the problems above, we summarize the features of

extreme learning machine and deep belief networks, and

then propose Incremental extreme learning machine based

on Deep Feature Embedded algorithm which combines the

deep feature extracting ability of Deep Learning Networks

with the feature mapping ability of extreme learning

machine. Firstly, we introduce Manifold Regularization to

our model to attenuate the complexity of probability dis-

tribution. Secondly, we introduce the semi-restricted

Boltzmann machine (SRBM) to our algorithm, and build a

deep belief network based on SRBM. Thirdly, we introduce

the thought of incremental feature mapping in ELM to the

classifier of DBN model. Finally, we show validity of the

algorithm by experiments.

Keywords RBM � SRBM � Manifold Regularization �
ELM � Incremental feature mapping

1 Introduction

The classification problem is always the focus of machine

learning. Several algorithms have been presented in recent

decades. The classification algorithm is a supervised

learning process. And the input samples are the bases of

empirical risks in classification. However, solely using

empirical risks as the cost function may bring over-fitting

problems. Scholars therefore presented the structural risk

minimization and introduced regularization term to the cost

function.

Deep learning is a training method of multilayer neural

networks (MNNs). Initializing the MNN by unsupervised

methods and fine-tuning the weights by supervised meth-

ods can give MNNs a better performance in classification

problems. Scholars also analyze the deep learning algo-

rithms in theory. Erhan showed that unsupervised pre-

training appeared to play predominantly a regularization

role in subsequent supervised training. And the MNN can

obtain a better initialization in the error curved surface by

unsupervised pre-training process [1]. This thought can

assist us further understand the deep learning algorithms in

classification problems.

Since deep learning algorithms are proposed, they have

attracted much attention. The DBN model derived from

RBM, is a classic model in the area of deep learning. The

RBM is an unsupervised learning model that is proposed

by Hinton et al. [2]. The conventional RBM algorithm uses

the Markov Chain Monte Carlo (MCMC) method and

obtains an effective expression of input data by reflecting

the statistical characteristics [3]. Derived from the
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characteristics above, Hinton et al. proposed the DBN

model [4]. Since the DBN model is a feasible method for

training multilayer neural network, many scholars do a lot

of research about it [5]. Lee et al. combined the RBM with

the Convolutional Neural Network (CNN), and proposed a

Convolutional deep belief network algorithm [6]. However,

the training results of traditional DBN algorithm are rela-

tively dependent on the learning parameters. If we use bad

parameters in RBM model, we will obtain a bad initial-

ization and a poor local minimum in DBN algorithm, and

spend much training time as well.

Extreme learning machine (ELM) is proposed by Huang

GB et al. to train Single hidden Layer Feed forward Neural

Networks (SLFNs) [7]. Since then, scholars havemade a lot of

research,DingSFet al. proposed an adaptive extreme learning

machine [8], Wang XZ et al. proposed an architecture selec-

tion algorithm for networks trained with extreme learning

machine [9]. Then, the ELMmodel was applied in clustering

problems [10, 11], and other machine learning models, i.e.,

evolutionary algorithms [12], Upper integral networks [13].

The serviceability of ELMmodel provides a practical basis of

the combination of ELM and DBN algorithm. The Manifold

Regularization theory is a regularization framework that is

always used in unsupervised learning and semi-supervised

learning [14]. The combination of Manifold Regularization

ELM and our model could be efficient to extract useful

information and attenuate the complexity of probability dis-

tribution. If the number of hidden layer nodes in ELM grad-

ually increased, Huang GB et al. proved that the ELM

algorithm was convergent [15].

The semi-restricted Boltzmann machine (SRBM) [16–

18] is also a Markov random field. Compared with RBM,

the visible layer units are fully connected in SRBM model.

The SRBM can extract the features of input samples effi-

ciently and make a useful expression. At the same time,

SRBM could obtain a better reconstruction of the images

than RBM. In our experiments, we investigated the data

reconstruction of SRBM, and showed that the DBN based

on SRBM is also efficient in classification. Inspired by this

thought, we combine the Persistent Contrast Divergence

algorithm with Fast Weight (FPCD) [19] with the SRBM

model. The FPCD algorithm can approximate the maxi-

mum likelihood estimation value of SRBM more accu-

rately and quickly than the conventional K-Step Contrast

Divergence (CD-K) algorithm. And FPCD algorithm also

lower the errors that are generated by the hidden layer

feature extraction [20].

Then we introduce the Manifold Regularization ELM to

our model, and propose the IELM-DFE algorithm. In

IELM-DFE, the visible layer and the first hidden layer are

built as a SRBM model, and the other hidden layers are

constructed as RBM models. Then we use the hidden layer

of the last RBM in DBN as the hidden layer of ELM, and

then increase the hidden nodes and compute the distribu-

tion of the RBM. In this way, we make use of the classi-

fication ability in ELM and the feature extraction ability in

RBM by the combination of these two models. The last

hidden layer of IELM-DFE can reflect the distribution and

promote the ELM algorithm convergence at the same time.

As we can see from our experiments, compared to con-

ventional DBN algorithm, our algorithm spends less

training time, and gets a better classification accuracy.

The remainder of this paper is organized as follows: the

second part, ELM model. Expound the idea of ELM

algorithm and Manifold Regularization ELM. The third

part, deep belief networks. Introduce the RBM algorithm,

SRBM algorithm and the conventional DBN algorithm.

The fourth part. Propose IELM-DFE algorithm. The fifth

part, experimental analysis. The sixth part, summary.

2 Extreme learning machine

2.1 Conventional ELM model

ELM algorithm is based on the SLFN. By increasing the

number of hidden layer nodes, we need not adjust the input

weights or hidden layer bias if we randomly assign the

input weights and biases. Therefore, the algorithm runs

fast. The network structure can be organized as shown in

Fig. 1.

For N different training samples (xi; ti) 2 Rn � Rm

i ¼ 1; 2; 3; . . .; nð Þ, the number of hidden neurons is ~N. The

SLFN model, which has activation function f xð Þ can be

expressed as:

X~N

i¼1

Vifi(xj
!) ¼

X~N

i¼1

Vif (ai
!� xj!þ bi

!
); j ¼ 1; . . .;N ð1Þ

where, ai
!¼ [ai1; ai2; . . .; ain]

T is the input weights that are

connected to the hidden layer node i, bi
!

is the bias value of

the hidden layer node, Vi ¼ [Vi1;Vi2; . . .;Vim]
T are the

output weights that are connected to the hidden layer node

i, ai
!� xj! is the product of ai

! and xj
!, f ðxÞ can be ‘‘Sig-

moid’’, ‘‘RBF’’, ‘‘Sine’’ and so on.

Equation (1) can be written as follow:

HV

where, H is the output matrix of hidden layer, V is the

output weight matrix. T is the label matrix.

H ¼
f (a1
!� x1!þ b1

!
) � � � f a ~N

�! � x1!þ b ~N

�!� �

..

.
� � � ..

.

f (a1
!� xN

�!þ b1
!
) � � � f a ~N

�! � xN
�!þ b ~N

�!� �

2

6664

3

7775

N� ~N
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Not all parameters need to be adjusted, when the exci-

tation function f ðxÞ is infinitely differentiable at any

interval. At the start of training process, SLFNs assigned

random values to the input weights and hidden layer biases.

When the input weights and hidden layer biases are

determined by random assignment, we can get the hidden

layer output matrix H from the input samples. Therefore,

the task of training SFLNs can be transformed into

obtaining the least square solutions.

Introduce regularization theory to ELM model, the cost

function can be expressed as:

min
V

LELM ¼ 1

2
Vk k2þC

2
T � HVk k2 ð2Þ

where, C is the regularization parameter. And the least

square solution of Eq. (3) is:

V � CHTðT � HVÞ ¼ 0 ð3Þ

where, T is the label matrix, V is the output weights matrix.

H is the output matrix of the hidden layer.

When the number of training samples is more than the

number of hidden layer nodes,

V ¼ I

C
þ HTH

� ��1

HTT ð4Þ

When the number of training samples is less than the

number of hidden layer nodes,

V ¼ HT I

C
þ HHT

� ��1

T ð5Þ

2.2 Manifold Regularization ELM

The Manifold Regularization [21] method is always used in

semi-supervised learning and unsupervised learning.

Learning process is built on the following two assumptions:

(1) both the labeled data X1 and the unlabeled data Xu are

drawn from the same marginal distribution PX and (2) if

two points x1
! and x2

! are close to each other, then the

conditional probabilities Pð y!jx1!Þ and Pð y!jx2!Þ should be

similar as well. The latter assumption is widely known as

the smoothness assumption in machine learning. To

enforce this assumption on the data, the manifold Regu-

larization framework proposes to minimize the following

cost function:

Lm ¼ 1

2

X

i;j

w1
ij
P y!jxi!
� �

� P y!jxj!
� �		 		2 ð6Þ

where wij
1 is the pair-wise similarity between two patterns

xi
! and xj

!. And the similarity matrix W1 = [wij
1] is usually

sparse. The nonzero weights are usually computed using

Gaussian function exp � xi
!� xj

!		 		2=2r2
� �

or simply fixed

to 1.
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Fig. 1 ELM model
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According to the research of Huang et al. [10], the

Manifold Regularization cost function can be expressed

as:

L̂ ¼ Tr ŶTLŶ
� �

ð7Þ

Therefore, the ELM algorithm with Manifold Regular-

ization method can be expressed as follows:

min
V

1

2
bk k2þ 1

2
C

1
2 Y � HVð Þ

			
			
2

þ k
2
Tr VTHTLHV
� �

ð8Þ

If the number of labeled data is more than the number of

hidden units,

V ¼ I þ HTCH þ kHTLH
� ��1

HTCY ð9Þ

If the number of labeled data is less than the number of

hidden units,

V ¼ HT I þ CHHT þ kLHHT
� ��1

CY ð10Þ

where, V is the output weight matrix.

According to the ELM theory [22], when the number of

hidden layer units is gradually increasing, the ELM algo-

rithm is convergent.

3 Deep learning networks

3.1 Restricted Boltzmann machine models

RBM is a model based on energy functions. The structure

of RBM is shown as Fig. 2.

The RBM model consists of a visible layer v! and a

hidden layer h
!
. If the visible units and the hidden units are

binary, the energy function can be defined as follow:

Eð v!; h
!Þ ¼ �

Xnv

i¼1

aivi �
Xnh

j¼1

bjhj �
Xnv

i¼1

Xnh

j¼1

hj � wji � vi

ð11Þ

where, a! is the bias vector of the visible layer, b
!

is the

bias vector of the hidden layer, W is the weight matrix

between visible units and hidden units, v! is the visible

layer vector, h
!

is the hidden layer vector. Then, the

Boltzmann Distribution based on Eð v!; h
!Þ is:

Pð v!; h
!Þ ¼ 1

Z
e�Eð v!; h

!
Þ ð12Þ

where, Z is a partition function.

Z ¼
X

v;h

e�Eð v!; h
!

Þ ð13Þ

Our purpose is getting the maximum of probability

distribution P v!
� �

.P v!
� �

is the marginal distribution of

P v!; h
!� �

,

Pð v!Þ ¼
X

h

Pð v!; h
!Þ ¼ 1

Z

X

h

e�Eð v!; h
!

Þ ð14Þ

The likelihood function is defined as:

Ls ¼ ln
Yns

i¼1

Pð vi
!
Þ ¼

Xns

i¼1

lnPðvi
!
Þ ð15Þ

where, ns is the number of samples. And there are many

methods to maximize the likelihood function, we use the

Gradient Ascent method. Then, we calculate the partial

derivatives of the likelihood function. Let h ¼ a!; b
!
;W

� �
,

so:

Fig. 2 The RBM model
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o lnPðVÞ
oh

¼ �
X

h

Pð h!jVÞ oEðV; h
!Þ

oh

þ
X

v;h

Pð v!; h
!Þ oEð v

!; h
!Þ

oh
ð16Þ

where, V is an input sample, h is the learning parameter.

When the states of units are determined in one layer, the

activation of each unit in the other layer is independent, so:

p hk ¼ 1j v!
� �

¼ sigmoid bk þ
Xnv

i¼1

wkivi

 !
ð17Þ

p vk ¼ 1j h!
� �

¼ sigmoid ak þ
Xnv

j¼1

hjwkj

 !
ð18Þ

where, hk is the component of h
!
, vk is the component of

v!. When the value of input data is continuous, we redefine

the energy function as follows:

Eð v!; h
!Þ ¼

Xnv

i¼1

v2i þ
Xnv

i¼1

aivi þ
Xnh

j¼1

bjhj þ
Xnv

i¼1

Xnh

j¼1

viWjihj

ð19Þ

Eð v!; h
!Þ ¼ jj v!jj2 þ a!T

v!þ b
!T

h
!þ h

!T
W v! ð20Þ

Then, the conditional probability of hidden units can be

written as:

p hk ¼ 1j v!
� �

¼ sigmoid bk þ
Xnv

i¼1

wkivi

 !
ð21Þ

The conditional probability of the visible units obeys the

Gauss distribution [23].

pðvk!j h!Þ ¼ N ak þ
Xnv

j¼1

hjwkj; 1

 !
ð22Þ

Hinton et al. proposed Contrastive Divergence (CD)

algorithm to approximate the maximum likelihood esti-

mation. The approximation of the gradient can be expres-

sed as follows:

o lnPð v!Þ
owij

� P hi ¼ 1j v!ð0Þ
� �

v!ð0Þ � P hi ¼ 1j v!ðkÞ
� �

v!ðkÞ

ð23Þ

olnPð v!Þ
oai

� v
ð0Þ
i � v

ðkÞ
i ð24Þ

olnPð v!Þ
obi

� P hi ¼ 1jvð0Þ
�!� �

� P hi ¼ 1jvðkÞ
�!� �

ð25Þ

where, k is the number of steps in K-steps Contrastive

Divergence algorithm (CD-K). Then, we update the

weights between visible units and hidden units with the

following formulas:

Mwij ¼ gw P hi ¼ 1j v!ð0Þ
� �

v!ð0Þ � P hi ¼ 1j v!ðkÞ
� �

v!ðkÞ
� �

ð26Þ

Mai ¼ ga v
ð0Þ
i � v

ðkÞ
i

� �
ð27Þ

Dbi ¼
olnPð v!Þ

obi

� gb P hi ¼ 1jvð0Þ
�!� �

� P hi ¼ 1jvðkÞ
�!� �� �

ð28Þ

where, parameter g is the learning rate. The whole process

of CD algorithm is described above. However, the con-

ventional CD-1 algorithm is not a perfect approximation of

maximum likelihood, and the CD-K algorithm costs much

training time. We need a method to reduce the approxi-

mation errors.

3.2 Semi-restricted Boltzmann machine

The SRBM model is a Markov random field. The visible

layer units are connected. The SRBM can extract the fea-

tures of input samples efficiently and make a better

expression, although the inference of SRBM is not accu-

rate. And the formula of energy function E is a little dif-

ferent from RBM,

Eð v!; h
!Þ ¼ �

Xnv

i¼1

aivi �
Xnh

j¼1

bjhj �
Xnv

i¼1

Xnh

j¼1

hjwjivi

�
X

i\k

Likvivk ð29Þ

And the probabilities can be calculated as follows:

p hj ¼ 1j v!
� �

¼ sigmoid
X

i

Wijvi þ aj

 !
ð30Þ

p vi ¼ 1j h!; v�i
�!� �

¼ sigmoid
X

j

Wijhj þ
X

k=i

Likvjþbi

0
@

1
A

ð31Þ

The derivative of the log-likelihood with respect to the

lateral interaction term L is:

o log p v!; h
� �� �

oL
¼ Epdata v! v!T

h i
� Epmodel

v! v!T
h i

ð32Þ

There are many methods to obtain the approximation of

the likelihood values and the partition function. The con-

ventional CD algorithm is also useful. Although the

reconstruction and the classification of SRBM are efficient

[17], the inference of the visible units is not exact. The
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reconstruction results of SRBM will also be shown in our

experiments.

According to the research of Salakhutdinov [18], the

SRBM model obtained a good approximation to the par-

tition function. Both the SRBM and the RBM models can

be built into deep models. The deep belief networks based

on SRBM and RBM are both generative models and dis-

criminative models. The characteristic expression ability of

SRBM and the DBN that are trained by FPCD algorithm

will also be shown in our experiments.

3.3 Deep belief networks

The conventional deep belief network stacks multiple

RBMs up and is trained as a neural network by BP algo-

rithm. The DBN model also has the ability of reconstruc-

tion which is usually useful in image recognition. And the

extracted features of the images play important roles. The

structure of DBN model with Nn hidden layers is shown in

Fig. 3.

In order to investigate the effectiveness of SRBM, we

build DBN models that are based on SRBM and RBM.

However, instead of BP algorithm, we use the labels as the

output data, and train the last RBM model by the labels. In

this way, the classification errors are fully dependent on the

RBM and SRBM models. We show the results in our

experiments.

Generally speaking, the number of DBN layers indicates

the feature expression ability of the network. However, the

convergence of traditional DBN algorithm is relatively

dependent on the process of RBM algorithm in the model.

If we use bad parameters, we will get a low training

accuracy, and spend much training time. At the same time,

we need a classifier which should be easily convergent and

make full use of the features that are extracted by deep

learning process.

4 IELM-DFE algorithm

The IELM-DFE structure is shown in Fig. 4.

We try to construct an efficient classifier that could be

used in the DBN model based on SRBM. As a summary of

Fig. 4, the depth of the IELM-DFE is 3 (except the input

layer). The visible layer units are fully connected. And

there are 2 hidden layers which are used to extract the

features, the first hidden and the visible layer are con-

structed as a SRBM model, and the second hidden layer is

also used as the hidden layer of ELM algorithm. Therefore,

a SRBM model and a RBM model are included in IELM-

DFE, the first SRBM model extracts the characteristic

information and makes another useful feature expression of

the input data. The second RBM model provides a feature

expression and an incremental bases to make the Manifold

Regularization ELM classifier convergent.

Conventional CD-1 algorithm is not a perfect approxi-

mation to maximum likelihood estimation and CD-k algo-

rithm costs much training time. To solve the problem, we

introduce FPCD algorithm to RBM and SRBM algorithm

to approximate the cost function.

Persistent Contrastive Divergence algorithm (PCD) is

also called Stochastic Maximum Likelihood (SML)

1

2

N

  

1

2

N1

  

1

2

N2

  

1

2

Nn

  

1

2

m

Input layer Output layer

Hidden layers of DBN

  

Fig. 3 DBN model

116 Int. J. Mach. Learn. & Cyber. (2016) 7:111–120

123



algorithm. In Markov random field, the distribution of the

model is not always changing, that means, before and after

the parameter updating, the model distribution is often

similar. When we use MCMC to approximate the mean

values of the distribution, we sample the current distribu-

tion, and these samples will not be discarded, but be used to

initialize the new MCMC state after updated. Then T.

Tieleman found that, if the RBM distribution is too steep in

SML, the MCMC process will fall into some models for a

long time. However, if we select large learning rates, which

can help MCMC in Model Escape (ME) process, but we

will also pay the price in the algorithm convergence [19].

To solve this question, Tieleman suggested adding another

set of parameters W0 which were called Fast Weight in

training process, and proposed FPCD algorithm [20]. In

each round before updating the parameters, we sample the

RBM defined by W þW 0 instead of W.

Our objective is classification, and an appropriate clas-

sifier can assist us obtain a higher classification accuracy.

In conventional DBN model, BP algorithm is used to finish

the classification process. However, BP algorithm is rela-

tively dependent on the learning parameters. If we use bad

parameters in RBM algorithm, we will obtain a bad ini-

tialization in DBN model and a poor local minimum in

classification, at the same time, we will spend much

training time as well. To make full use of the features, we

introduce Manifold Regularization ELM algorithm to our

model, and use the hidden layer of the last RBM as the

hidden layer of Manifold Regularization ELM, then

increase the hidden layer nodes and compute the

distribution of RBM. So that the last hidden layer of IELM-

DFE can reflect the distribution and promote the Manifold

Regularization ELM algorithm convergent at the same

time.

The convergence of ELM algorithm has been investi-

gated by Huang et al. [22]. Consider the vector: cðbiÞ ¼
½giðx1!Þ; . . .; gið xN�!Þ�T ¼ ½gðwi

!� x1
!þ biÞ; . . .; gðwi

!� xN
�!þ

biÞ� the i th column of H, in space RN , where, g is the

activation function, and bi 2 a; bð Þ, a; bð Þ is any interval of

R. It can be proved that vector c! does not belong to any

subspace whose dimension is less than N. The wi
! is gen-

erated by the RBM training process, which based on the

distribution of the input data. We can assume that the

probability distribution of the input data is continuous.

Then the same proof procedure of paper [22] can be used in

our algorithm.

The classification of IELM-DFE algorithm flow is

shown in Table 1.

5 Experimental analysis

5.1 Experimental description

Our experiments are divided into two parts. We firstly

validate the effectiveness of SRBM. And then we test the

classification ability. The Characteristic expression ability

depends on the SRBM model and the training algorithm

that are used. The classification capability is determined by

1

2

N

1

2

N1

1

2

N2

1

2

m

The hidden 
layer of the 
last RBM in 
DBN  is  also 
the hidden 

layer of ELM

Input layer Output layer

Hidden layers of ELM-DFE

Fig. 4 IELM-DFE structure
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the extracted features and the classifier that is used in our

model.

We use an experimental computer which has i7 4710hq

CPU, 16g DDR3 memory. Our data came from UCI dataset

and MNIST dataset. The maximum number of hidden units

is 5000. The Manifold Regularization parameter k and the

Regularization parameter C are selected from [10-4,

10-3,…, 104].

The characteristics of each dataset are as follows in

Table 2.

5.2 Validate the effectiveness of SRBM

Because the DBN model is always used to learn features of

images, we firstly validate the effectiveness of SRBM and

DBN by MNIST dataset. The SRBM model is useful not

only in classification, but also in reconstruction. In this

part, we use the same training method in SRBM and RBM,

and test the data reconstruction of SRBM that is compared

with RBM in MNIST dataset. Then we test the SRBM

which is trained by FPCD algorithm. Finally, we build a

deep belief network which has the visible units fully con-

nected, and compare this model with conventional DBN.

As mentioned in part 3.3, these two DBN models will not

be trained by the BP algorithm.

We train the two models with MNIST dataset. The

reconstruction errors of RBM model which has 500

hidden units is 2,130,273. And the reconstruction errors of

SRBM model which has 500 hidden units is 629,753.

Both models are trained by CD algorithm. The iterations

is 100. And the learning parameters are the same. At the

same time, the reconstruction errors of SRBM model

which is trained by FPCD is 417,536. Then, we build a

DBN model that is based on SRBM, and obtain the

reconstruction results. The experimental results are shown

as Fig. 5.

Then we test the classification ability of DBN model

based on SRBM. There are 10000 testing samples in

MNIST dataset. And the misclassification number of DBN

model based on SRBM is 209. The misclassification

number of DBN model based on RBM is 271. If we use a

better classifier, we may obtain a better results in classifi-

cation problem.

5.3 The IELM-DFE model in classification

problems

From the experiments above we can see, the SRBM is

useful in both reconstruction and classification in image

data. We change the classifier of DBN that is based on

SRBM, and use the IELM-DFE model to test the ability of

classification in other UCI datasets.

The calculation of the Laplacian matrix costs too much

memory for us on MNIST dataset. Therefore, the classifier

which is used for MNIST dataset of DBN is conventional

Regularization ELM.

The accuracy is as follows in Table 3.

As we can see from the Table 3, compared with ELM

algorithm and DBN algorithm, the IELM-DFE algorithm

performs well in classification problems.

However, when the number of input samples is large,

calculating the Laplacian matrix will cost much time and

Table 1 The description of IELM-DFE algorithm in classification

IELM-DFE algorithm steps in classification problems

Step 1 Select the number of layers N. And the initial number of units in the first (N � 2) layers are based on the physical problems. The Nth

layer is the Output Layer

Step 2 Initialize the weights in IELM-DFE, normalize the input data. The input data is the samples. Set a threshold k

Step 3 Train the first (N � 2) layers with RBM algorithm or SRBM algorithm. Select an initial number of the (N � 1) th layer units

Step 4 Calculate the weights between the (N � 1) th layer and the (N � 2)th layer, and the (N � 1)th layer output matrix

Step 5 Use the output of the (N � 1)th layer as the output of hidden layer in ELM. Calculate the output weights between the (N � 1)th layer

and the Nth layer as Manifold Regularization ELM model. Get the classification error of the test data. Record the test accuracy

Step 6When the algorithm meets the following condition: the number of the (N � 1)th layer nodes reaches the threshold k. Then jump to Step

7. Otherwise increase the (N � 1) layer units, and jump to Step 4

Step 7 Use the number of the (N � 1)th layer units, which made the IELM-DFE algorithm get best accuracy, as the (N � 1)th layer nodes in

our network

Step 8 Output the test results

Table 2 Data characteristics

Name Training set Testing set Attributes Categories

Ionosphere 200 151 34 2

Spect 80 187 23 2

MNIST 60,000 10,000 784 10

CNAE-9 900 180 857 9
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much memory in computer, so our approximation of Lm is

not a good method to big data. Finding an applicable

method to approximate the cost function Lm to deal with

big data is our next goal.

We spend much time on tuning the parameters, but still

cannot guarantee that the results we obtained are optimal.

Because of the Manifold Regularization ELM algorithm

and the SRBM algorithm, when the number of hidden layer

units is lager, IELM-DFE is relatively stable.

In aspects of algorithm efficiency, the traditional DBN

algorithm has a relatively large dependence on the RBM

training process and the learning parameters in the net-

work. If we use bad parameters, we will speed more

training time. At the same time, ELM algorithm is the

fastest algorithm in experiments. The time complexity of

IELM-DFE algorithm is mainly dependent on FPCD

training procedure and the number of hidden units. The

training time of algorithms is listed in Table 4.

6 Conclusion

In this paper, we investigate the data reconstruction and the

classification ability of SRBM, and then stack SRBM as a

DBN model. From the experiments we can see, the DBN

model that is based on SRBM is also efficient without BP

algorithm. Then in order to improve the classification

accuracy, we use the Manifold Regularization ELM as the

classifier of DBN, and propose IELM-DFE algorithm.

In IELM-DFE, using ELM feature mapping theory, the

network reflects the input data distribution characteristics

and completes the supervised learning process. And the

model performs well in classification. However, the accu-

racy of our model is not very stable, and the approximation

to the Manifold Regularization cost function is not a good

method to resolve big data problems. To ensure that the

algorithm is still stable to deal with various sizes of data-

sets in high speed, and extend the algorithm to semi-su-

pervised and unsupervised problems, are our next works.

Acknowledgments This work is supported by the National Natural

Science Foundation of China (No. 61379101), and the National Key

Basic Research Program of China (No. 2013CB329502).

References

1. Erhan D, Bengio Y, Courville A et al (2010) Why does unsu-

pervised pre-training help deep learning. J Mach Learn Res

11:625–660

2. Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. In

Proc. CVPR1983. Washington DC, pp 448–453

Fig. 5 The reconstruction errors of SRBM and RBM. The left figure

shows the reconstruction errors of SRBM and RBM, the red line is the

error of RBM, the blue line means the error of SRBM. The mid figure

shows the reconstruction errors of SRBM models that are based on CD

algorithm and FPCD algorithm. The blue line is the error of SRBM

model based on FPCD algorithm, the black line means the result of

SRBM model based on CD algorithm. The right figure shows the

reconstruction result of the DBN model based on SRBM

Table 4 IELM-DFE learning time compared with other algorithms

Dataset DBN (s) ELM (s) IELM-DFE (s)

Ionosphere 37 3.1 15

Spect 7.7 2.6 7.3

CNAE-9 207.7 53.5 223

MNIST 21370 647 20130

Table 3 IELM-DFE accuracy compared with other algorithms

Dataset ELM (%) DBN (%) IELM-DFE (%)

Ionosphere 93.83 96.03 98.20

Spect 78.26 91.98 92.79

MNIST 97.59 98.88 98.94

CNAE-9 94.20 92.86 96.59

Int. J. Mach. Learn. & Cyber. (2016) 7:111–120 119

123



3. Hinton GE (2002) Training products of experts by minimizing

contrastive divergence. Neural Comput 14(8):1711–1800

4. Hinton GE, Osindero S, Teh YW (2006) A fast learning algo-

rithm for deep belief nets. Neural Comput 18(7):1527–1554

5. Lv Q, Dou Y, Niu X et al (2014) Remote Sensing Image Clas-

sification Based on DBN Model. J Comput Res Dev

51(9):1911–1918

6. Honglak L, Rajesh R, Andrew YN (2011) Unsupervised learning

of hierarchical representations with convolutional deep belief

networks. Commun ACM 54(10):95–103

7. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine:

theory and applications. Neurocomputing 70:489–501

8. Ding SF, Ma G, Shi ZZ (2014) A novel self-adaptive extreme

learning machine based on affinity propagation for radial basis

function neural network. Neural Comput Appl

24(7–8):1487–1495

9. Wang XZ, Shao QY, Qing M et al (2013) Architecture selection

for networks trained with extreme learning machine using

localized generalization error model. Neurocomputing

102(2):3–9

10. Huang G, Song S, Gupta JND et al (2014) Semi-supervised and

unsupervised extreme learning machines. IEEE Trans Cybern

44(12):2405–2417

11. He Q, Jin X, Du CY et al (2014) Clustering in extreme learning

machine feature space. Neurocomputing 128:88–95

12. Fu AM, Wang XZ, He YL et al (2014) A study on residence error

of training an extreme learning machine and its application to

evolutionary algorithms. Neurocomputing 146(1):75–82

13. Wang XZ, Chen AX, Feng HM (2011) Upper integral network

with extreme learning mechanism. Neurocomputing

74(16):2520–2525

14. Zhang N, Ding SF, Shi ZZ Denoising Laplacian multi-layer

extreme learning machine. Neurocomputing (to be published)
15. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine:

a new learning scheme of feed-forward neural networks. In: Proc.

IJCNN2004, Budapest, pp 25–29

16. Osindero S, Hinton GE (2008) Modeling image patches with a

directed hierarchy of Markov random fields. Adv Neural Inf

Process Syst, pp 1121–1128

17. Salakhutdinov R (2009) Learning deep generative models. Topics

Cogn Sci 3(1):74–91

18. Salakhutdinov R (2008) Learning and evaluating Boltzmann

machines. In: Technical Report UTML TR, Department of

Computer Science, University of Toronto

19. Tieleman T (2008) Training restricted Boltzmann machines using

approximations to the likelihood gradient. In: Proc. ICML’08.

New York, pp 1064–1071

20. Tieleman T, Hinton GE (2009) Using fast weights to improve

persistent contrastive divergence. In: Proc. ICML’09. New York,

pp 1033–1040

21. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regulariza-

tion: a geometric framework for learning from labeled and

unlabeled examples. J Mach Learn Res 7(3):2399–2434

22. Huang GB, Chen L, Siew CK (2006) Universal approximation

using incremental constructive feedforward networks with ran-

dom hidden nodes. Neural Netw IEEE Trans 17(4):879–892

23. Norouzi M, Ranjbar M, Mori G (2009) Stacks of convolutional

restricted Boltzmann machines for shift-invariant feature learn-

ing. In: Proc. CVPR2009, Miami, FL, pp 2735–2742

120 Int. J. Mach. Learn. & Cyber. (2016) 7:111–120

123


	Incremental extreme learning machine based on deep feature embedded
	Abstract
	Introduction
	Extreme learning machine
	Conventional ELM model
	Manifold Regularization ELM

	Deep learning networks
	Restricted Boltzmann machine models
	Semi-restricted Boltzmann machine
	Deep belief networks

	IELM-DFE algorithm
	Experimental analysis
	Experimental description
	Validate the effectiveness of SRBM
	The IELM-DFE model in classification problems

	Conclusion
	Acknowledgments
	References




