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Abstract In this paper, we proposed an implicit

Lagrangian twin support vector machine (TWSVM) clas-

sifiers by formulating a pair of unconstrained minimization

problems (UMPs) in dual variables whose solutions will be

obtained using finite Newton method. The advantage of

considering the generalized Hessian approach for our

modified UMPs reduces to solving just two systems of

linear equations as opposed to solving two quadratic pro-

gramming problems in TWSVM and TBSVM, which leads

to extremely simple and fast algorithm. Unlike the classical

TWSVM and least square TWSVM (LSTWSVM), the

structural risk minimization principle is implemented by

adding regularization term in the primal problems of our

proposed algorithm. This embodies the essence of statis-

tical learning theory. Computational comparisons of our

proposed method against GEPSVM, TWSVM, STWSVM

and LSTWSVM have been made on both synthetic and

well-known real world benchmark datasets. Experimental

results show that our method yields significantly better

generalization performance in both computational time and

classification accuracy.

Keywords Machine learning � Nonparallel planes �
Lagrangian support vector machines � Twin support vector

machines � Unconstrained convex minimization

1 Introduction

Support vector machine (SVM), introduced by Vapnik and

coworkers [6, 44], is an excellent kernel based tool for

binary data classification problems. Over the past decades,

SVM has played an important role in solving problems

emerged in pattern recognition and machine learning

community due to its novel state of art technique. Its

applications include a wide spectrum of research areas,

ranging from pattern recognition [30], text categorization

[16], biomedicine [5] etc. They have shown excellent

performance on wide variety of problems [15, 30] due to its

method of constructing a hyper plane such that the band

between the two hyper planes separate both the classes and

distance between two hyper planes is maximized, leading

to the introduction of regularization term. Unlike other

machine learning methods such as artificial neural net-

works (ANNs), training of SVMs leads to solving a linearly

constrained quadratic programming problem (QPP) having

unique optimal solution. Combined with the advantage of

having unique optimal solution and better generalization

performance, SVM becomes one of the most popular

methods for solving classification problems. One of the

main challenges for SVM is the large computational cost

that is associated with the quadratic programming prob-

lems (QPPs). To reduce the learning complexity of SVM,

various algorithms with comparable classification abilities

have been reported, see [2, 6, 15, 19, 20, 24, 33, 43].

Specifically, Fung and Mangasarian [11] proposed an

implicit Lagrangian formulation for SVM and solved using
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Newton method. The presented method is simple, fast and

can be applied to problems with large scale data.

To improve the computational speed, Jayadeva et al.

[14] proposed a twin support vector machine (TWSVM)

[14] for the binary classification data in the spirit of the

proximal SVM [10] and generalized eigenvalue proximal

support vector machine (GEPSVM) [26]. TWSVM gener-

ates two nonparallel hyper planes by solving a pair of

smaller-sized QPPs such that each plane is closest to one of

the classes and as far as possible from the other class. A

fundamental difference between TWSVM and SVM is that

TWSVM solves two small QPPs rather than solving one

large QPP makes the learning speed of TWSVM approxi-

mately four times faster than that of the standard SVM.

Now, TWSVM has become popular and widely used

because of its low computational complexity. Recently,

some scholars proposed variants of TWSVM to reduce the

time complexity and keep the effectiveness of TWSVM,

see [3, 4, 12, 17, 29, 31, 32, 34, 37–39, 41, 42, 45, 46].

Specifically, least square twin SVM (LSTWSVM) [18] has

been proposed by using the squared loss function instead of

the hinge one in TWSVM, leading to very fast training

speed since two QPPs are replaced by two systems of linear

equations.

One of the principle advantages of SVM is the imple-

mentation of structural risk minimization (SRM) principle

[36]. However, in the primal formulations of TWSVM and

LSTWSVM [18], only the empirical risk is minimized.

Also, we notice that the inverse of GtG appears in the dual

formulation of TWSVM. Using the extra regularization

term GtG is nonsingular. This is not perfect way from the

theoretical point of view although it has been handled by

modifying the dual problems technically and elegantly

[37]. Recently, Shao et al. [37] proposed twin bounded

support vector machines (TBSVM) based on TWSVM.

Unlike TWSVM, the SRM principle is implemented in

TBSVM and SOR technique is applied to speed-up the

computational time.

Motivated by the works of [11, 24, 37], we proposed in

this paper an implicit Lagrangian formulation for the twin

support vector machine (TWSVM) classifiers by formu-

lating a pair of unconstrained minimization problems in

dual variables whose solutions will be obtained using finite

Newton method. There are some differences in our for-

mulation and TWSVM. The idea of our formulation is to

reformulate TWSVM as a strongly convex problem by

incorporated regularization techniques to improve the

training speed and robustness. The solution of two modi-

fied unconstrained minimization problems reduces to

solving just two systems of linear equations as opposed to

solving two quadratic programming problems in TWSVM

and TBSVM, which leads to extremely simple and fast

algorithm. It is also worth mentioning that the proposed

formulation does not need any specialized optimization

packages. The results of experiments conducted on both

artificial and publicly available benchmark datasets con-

firm its efficacy and feasibility.

In this work, all vectors are taken as column vectors.

The inner product of two vectors x, y in the n-dimensional

real space Rn; will be denoted by: xty; where xt is the

transpose of x. Whenever x is orthogonal to y, we write

x ? y. For x ¼ ðx1; x2; . . .; xnÞt 2 Rn, the plus function xþ is

defined as: ðxþÞi ¼ maxf0; xig; where i ¼ 1; 2; . . .; n. The

2-norm of a vector x and a matrix Q will be denoted by kxk
and kQk respectively. For simplicity, we drop the 2 from

kxk2. We denote the vector of ones of dimension m by e

and the identity matrix of appropriate size by I. If f is a real

valued function of the variable x ¼ ðx1; x2; . . .; xnÞt 2 Rn

then the gradient of f is denoted by rf ¼
ðof=ox1; . . .; of=oxnÞt and the Hessian matrix of f is deno-

ted by r2f ¼ ðo2f=oxioxjÞi;j¼1;2;...;n:

The remainder of this paper is organized as follows.

Section 2 reviews the TWSVM formulation. Our proposed

formulation is presented and discuss the related theoretical

analysis in Sect. 3. Numerical experiments have been

performed on a number of interesting synthetic and real-

world benchmark datasets and their results are compared

with other SVMs in Sect. 4. Finally, concluding remarks

and future work are given in Sect. 5.

2 Twin support vector machine for classification

In this section, we give a brief description of TWSVM

formulation. For details, the interested reader is referred to

[8, 14].

In 2007, Jayadeva et al. [14] proposed a new non-par-

allel support vector machine for binary classification, ter-

med as TWSVM, which is in the spirit of GEPSVM.

However, TWSVM has the formulation similar to typical

support vector machine (SVM) formulation [6, 44] except

that not all the patterns appear in the constraints of either

problem at the same time. This makes TWSVM [14] faster

than standard SVM.

Suppose that all the data points in class ?1 are denoted

by a matrix A 2 Rm1�n; where the ith row Ai 2 Rn and the

matrix B 2 Rm2�n represent the data points of class �1.

Unlike SVM, the linear TWSVM [14] seeks a pair of non-

parallel hyperplanes

f1ðxÞ ¼ wt
1xþ b1 and f2ðxÞ ¼ wt

2xþ b2: ð1Þ

The idea in the linear TWSVM is to solve the following

two QPPs with objective functions corresponding to one of

the two classes and constraints corresponding to the other

class:
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min
w1;b1ð Þ2Rnþ1

1

2
Aw1 þ e2b1k k2þC1 n1k k

s:t: � Bw1 þ e1b1ð Þ þ n1 � e1; n1 � 0;

ð2Þ

min
w2;b2ð Þ2Rnþ1

1

2
Bw2 þ e1b2k k2þC2 n2k k

s:t: Aw2 þ e2b2ð Þ þ n2 � e2; n2 � 0;

ð3Þ

where C1;C2 [ 0 are parameters and e1; e2 are vectors of

one of appropriate dimensions. It is evident that the idea in

TWSVM is to solve two QPPs (2) and (3), each of the

QPPs in the TWSVM pair is a typical SVM formulation,

except that not all data points appear in the constraints of

either problem [14].

In order to derive the corresponding dual formulation,

TWSVM assumes that the matrices GtG and HtH, where

G ¼ ½A e2� and H ¼ ½B e1�; are non-singular. The dual

QPPs are

min
u12Rm2

1

2
ut1H GtGð Þ�1

Htu1 � et1u1

s:t: 0� u1 �C1;

ð4Þ

min
u22Rm1

1

2
ut2G HtHð Þ�1

Gtu2 � et2u2

s:t: 0� u2 �C2:

ð5Þ

Remark 1 The matrices GtG and HtH appearing in the

dual formulation (4) and (5) may be singular. To avoid the

possible ill conditioning, the inverse matrices ðGtGÞ�1
and

ðHtHÞ�1
are approximately replaced by ðGtGþ dIÞ�1

and

ðHtH þ dIÞ�1
, where d is a very small positive scalar and

I is an identity matrix of appropriate dimensions.

Thus the nonparallel proximal hyperplanes are obtained

from the solution u1 and u2 of (4) and (5) by

w1

b1

� �
¼ � GtGþ dIð Þ�1

Htu1 and

w2

b2

� �
¼ HtH þ dIð Þ�1

Gtu2:

ð6Þ

The dual problems (4) and (5) are derived and solved in

[14]. Experimental results of Jayadeva et. al. [14] show that

the performance of TWSVM is better than the conventional

SVM and GEPSVM on UCI machine learning datasets.

3 Proposed Newton method for implicit
Lagrangian twin support vector machines
(NLTSVM)

Motivated by the works of [11, 24, 37], we proposed in this

paper an implicit Lagrangian formulation for the twin

support vector machine (TWSVM) classifiers by

formulating a pair of unconstrained minimization problems

in dual variables whose solutions will be obtained using

finite Newton method. The idea of our NLTSVM is to

reformulate TWSVM as a strongly convex problem by

incorporated regularization techniques to improve the

training speed and robustness. The solution of two modi-

fied unconstrained minimization problems reduces to

solving just two systems of linear equations as opposed to

solving two quadratic programming problems in TWSVM

and TBSVM, which leads to extremely simple and fast

algorithm.

3.1 Linear case

Different from TWSVM, the primal problems of TWSVM

(2) and (3) are modified as follows:

min
ðw1;b1Þ2Rnþ1

1

2
Aw1 þ e2b1k k2þC1

2
n1k k2þC3

2

w1

b1

� �����
����
2

s:t: � Bw1 þ e1b1ð Þ þ n1 � e1;

ð7Þ

min
ðw2;b2Þ2Rnþ1

1

2
Bw2 þ e1b2k k2þC2

2
n2k k2þC4

2

w2

b2

� �����
����
2

s:t: Aw2 þ e2b2ð Þ þ n2 � e2:

ð8Þ

Note that there are three terms in the objective functions of

(7) and (8). The first term in the objective function of (7) or

(8) is the sum of squared distances from the hyperplane to

points of one class. Therefore, minimizing it tends to keep

the hyperplane close to points of one class (say positive

class). The constraints require the hyperplane to be at a

distance of atleast 1 from points of the other class (say

negative class). The second term is the sum of error vari-

ables related with the constraints, requiring the distances

from the two hyperplanes to points in the other class to be

one or greater. The third term is a regularization term that

is similar to [6, 23, 37, 40, 41] which make the objective

functions strongly convex. Thus, it has a unique global

optimal solution.

Our NLTSVM replaces the slack variables with 2-norm

instead of 1-norm as in TWSVM and TBSVM, which make

the constraints (n1; n2 � 0) redundant. The solution of two

modified unconstrained minimization problems reduces to

solving just two systems of linear equations as opposed to

solving two quadratic programming problems in TWSVM

and TBSVM, which leads to extremely simple and fast

algorithm. Similar to TBSVM, SRM principle is imple-

mented in our NLTSVM by adding a regularization term

with the idea of maximizing the margin and only empirical

risk is minimized in the primal problems of TWSVM,

STWSVM and LSTWSVM. Similar to standard SVM, this
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strategy leads our formulation to be more theoretically

sound than the original TWSVM, STWSVM and

LSTWSVM. The computational results, given in Sect. 4,

clearly show that our NLTSVM does not compromise on

generalization performance.

One can obtain the dual QPPs of (7) and (8) as follows:

min
0� u12Rm2

L1ðu1Þ ¼
1

2
u1

tQ1u1 � e1
tu1 ð9Þ

min
0� u22Rm1

L2ðu2Þ ¼
1

2
u2

tQ2u2 � e2
tu2 ð10Þ

where

Q1 ¼ I

C1

þN1; Q2 ¼
I

C2

þN2; N1 ¼HðGtGþC3IÞ�1
Ht;

N2 ¼GðHtHþC4IÞ�1
Gt; G¼ ½A e2� and H ¼ ½B e1�:

The nonparallel proximal hyper planes are obtained from

the solution u1 and u2 of (9) and (10) by

w1

b1

� �
¼ �ðGtGþ C3IÞ�1

Htu1 and

w2

b2

� �
¼ ðHtH þ C4IÞ�1

Gtu2:

ð11Þ

Remark 2 Unlike TWSVM, the matrices appearing in the

dual objective functions (9) and (10) of our NLTSVM are

positive definite and there is no upper bound on the dual

variables u1 and u2.

Note that the regularization parameter d used in

TWSVM formulation is just a fixed small scalar while

penalty parameters C3;C4 used in our NLTSVM are

weighting factors which determine the trade-off between

the regularization term and the empirical risk. Therefore,

selecting appropriate parameters C3;C4 reflects the SRM

principle. We have seen in the experimental section that the

classification accuracy improved on adjusting the values of

C3;C4.

3.2 Nonlinear case

In this subsection, we extend our NLTSVM to the non-

linear case using kernel trick. We consider the following

kernel based surfaces instead of hyperplanes:

Kðxt;CtÞw1 þ b1 ¼ 0 and Kðxt;CtÞw2 þ b2 ¼ 0;

ð12Þ

where Ct ¼ ½A B�t and K is appropriately chosen kernel.

Similar to linear case, the optimization problem for our

NLTSVM in the kernel feature space can be reformulated as

min
ðw1;b1Þ2Rmþ1

1

2
KðA;CtÞw1 þ e2b1k k2þC1

2
n1k k2þC3

2

w1

b1

� �����
����
2

s:t: � KðB;CtÞw1 þ e1b1ð Þ þ n1 � e1;

ð13Þ

min
ðw2;b2Þ2Rmþ1

1

2
KðB;CtÞw2 þ e1b2k k2þC2

2
n2k k2þC4

2

w2

b2

� �����
����
2

s:t: KðA;CtÞw2 þ e2b2ð Þ þ n2 � e2:

ð14Þ

where KðA;CtÞ and KðB;CtÞ are kernel matrices of sizes

m1 � m and m2 � m respectively, where m ¼ m1 þ m2.

Similar to linear case, the nonparallel proximal hyper

planes are obtained as

w1

b1

� �
¼ �ðStSþ C3IÞ�1

Rtu1 and

w2

b2

� �
¼ ðRtRþ C4IÞ�1

Stu2;

ð15Þ

where S ¼ ½KðA;CtÞ e2� and R ¼ ½KðB;CtÞ e1�:

3.3 Method of solution

In this subsection, we will discuss a fast and effective

Newton algorithm for solving UMPs (9) and (10) by

solving a system of linear equations in a finite number of

times.

Our NLTSVM algorithm is based directly on applying

the Karush–Kuhn–Tucker (KKT) necessary and sufficient

optimality conditions [21, 24] for the dual problems (9) and

(10):

0�u1 ? ðQ1u1� e1Þ�0 and 0�u2 ? ðQ2u2� e2Þ�0:

ð16Þ

By using the well-known identity between two vectors (or

real numbers) a and b:

0� a ? b� 0 if and only if a ¼ ða� abÞþ
for any a� 0:

The solutions of the following equivalent pair of problems

will be considered [24]: for any a1; a2 [ 0,

ðQ1u1 � e1Þ ¼ ðQ1u1 � a1u1 � e1Þþ and

ðQ2u2 � e2Þ ¼ ðQ2u2 � a2u2 � e2Þþ:
ð17Þ

The optimality condition (17) becomes necessary and

sufficient condition to be satisfied by the unconstrained

minimum of the following pair of implicit Lagrangian’s

[25] associated to the pair of dual problems (9) and (10):

for any a1; a2 [ 0,
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min
u12Rm2

L1ðu1Þ ¼
1

2
u1

tQ1u1 � e1
tu1

þ 1

2a1
kðQ1u1 � a1u1 � e1Þþk

2 � kQ1u1 � e1k2
� �

ð18Þ

min
u22Rm1

L2ðu2Þ ¼
1

2
u2

tQ2u2 � e2
tu2

þ 1

2a2
kðQ2u2 � a2u2 � e2Þþk

2 � kQ2u2 � e2k2
� �

ð19Þ

where ak; k ¼ 1; 2 is sufficiently large but finite positive

parameter. The implicit Lagrangian formulations [11, 24,

36] consist of replacing the non-negativity constrained

quadratic minimization problems (9) and (10) by the

equivalent unconstrained piecewise quadratic minimization

problems (18) and (19).

Our finite Newton method consists of applying New-

ton’s method to UMPs (18) and (19) and showing that it

terminates in a finite number of steps at the global mini-

mum. The gradient of LkðukÞ is:

rLkðukÞ ¼
akI�Qk

ak

� �
Qkuk � eð Þ� Qkuk � akuk � eð Þþ

	 

:

ð20Þ

Notice that for k¼ 1;2; the gradient rLkðukÞ is not dif-

ferentiable and therefore the Hessian matrix of second

order partial derivatives of LkðukÞ is not defined in the usual
sense. The generalized Hessian of LkðukÞ in the sense of

Hiriart-Urruty et al. [13] exists and is defined as follows:

o2LkðukÞ ¼
akI � Qk

ak

� �
Qk þ diag Qkuk � akuk � eð Þ�
	

ðakI � QkÞ�; ð21Þ

where diag ð:Þ� denote a diagonal function and ð:Þ�
denotes the step function. For k ¼ 1; 2; the basic Newton

step of the iterative algorithm is in determining the

unknowns uiþ1
k at the ðiþ 1Þth iteration using the current ith

iterate uik using

rLkðuikÞþ o2LkðuikÞðuiþ1
k � uikÞ ¼ 0 where i¼ 0;1;2; . . .:

ð22Þ

Using the property that the matrices Qk; k ¼ 1; 2 defined

in (9) and (10) are positive definite and choosing the

parameter ak satisfying the condition [11]: ak [ kQkk
where k ¼ 1; 2; the Newton’s iterative step can be rewritten

in the following simpler form: for i ¼ 0; 1; 2; . . .

uiþ1
k ¼ uik � ohkðuikÞ

�1
hkðuikÞ: ð23Þ

For k ¼ 1; 2; hkðukÞ and ohkðukÞ are defined as:

hkðukÞ :¼ ðQkuk � eÞ � ðQkuk � akuk � eÞþ

¼ akI � Qk

ak

� ��1

rLðukÞ;

ohkðukÞ :¼ Qk þ diagðQkuk � akuk � eÞ�ðakI � QkÞ

¼ akI � Qk

ak

� ��1

o2LðukÞ:

ð24Þ

We will be used simpler iteration (24) in our implemen-

tation instead of the equivalent iteration (20). By defining

the following matrix: for k ¼ 1; 2;

Ek ¼ diag Qkuk � akuk � eð Þ�; Zk ¼ Fk
�1ðI � EkÞ

and Fk ¼ aEk þ
I � Ek

Ck

:

One can obtain

ohkðukÞ�1 ¼ ðI þ ZkNkÞ�1
Fk

�1: ð25Þ

Now we state Newton algorithm for solving unconstrained

minimization problems (18) and (19) for an arbitrary pos-

itive definite matrix Qk using the simplified iteration (23)

together with an Armijo stepsize [1, 20] in order to guar-

antee finite termination from any starting point.

Newton algorithm with Armijo step size [11, 22]. For solving pair of
UMPs (18) and(19) with k = 1, 2 :

Start with any initial guess u0
k and let i = 0

(i) Compute ∇Lk(ui
k)

(ii) Stop the iteration if ∇Lk(ui
k) = 0

Else

• Compute ∇2Lk(ui
k)

• Determine the direction vector dik ∈ Rm as the solution of the following
linear system of equations in m variables

∇2Lk(ui
k)d

i
k = −∇Lk(ui

k)

(iii) Armijo step size: Define

ui+1
k = ui

k + λid
i
k

where λi = max{1, 1
2 , 1

4 , ...} is the step size in which

Lk(ui
k) − Lk(ui

k + λid
i
k) ≥ −δλi∇Lk(ui

k)
tdik, for some δ ∈ (0, 1

2 )
(iv) Replace i by i + 1 and go to (i).

The convergence and finite termination of the above

Newton algorithm with Armijo stepsize will follow as a

simple extension of [22, 24].

Note that the computational complexity of SVM and

TWSVM are Oðm3Þ and Oð2� ðm=2Þ3Þ respectively,

where m is the total size of training data. It means that

TWSVM is approximately four times faster than SVM. The

linear NLTSVM solves just two matrix inversions with

order of ðnþ 1Þ � ðnþ 1Þ where n\\m. For nonlinear

NLTSVM, the inverses of the matrices with order of ðmþ
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1Þ � ðmþ 1Þ is required. We have been utilized Sherman–

Morrison–Woodbury (SMW) formula to reduce the com-

putational cost and need inverses of smaller dimension

ðm1 � m1Þ and ðm2 � m2Þ to solve (15).

4 Experimental results

In order to evaluate the efficiency of our NLTSVM,

numerical experiments were performed on ‘Cross-Planes’

and ‘Ripley’ datasets as examples of synthetic datasets and

several well-known, publicly available, benchmark data-

sets, and their results were compared with GEPSVM,

TWSVM, STWSVM and LSTWSVM. All the experiments

were performed in MATLAB R2010a environment on a PC

running on Windows XP OS with 3.30 GHz Intel (R) Core

(TM) i3-2120 processor having 4 GB of RAM. In our

experiment, we employ optimization toolbox of MATLAB

for GEPSVM and TWSVM. In all the examples consid-

ered, the Gaussian kernel function with parameter l[ 0,

defined by: for x1; x2 2 Rm

Kðx1; x2Þ ¼ expð�lkx1 � x2k2Þ;

is taken. The classification accuracy of each algorithm was

computed using the well-known ten-fold cross-validation

methodology [9]. For brevity’s sake, we set C1 ¼ C2 for

TWSVM, STWSVM and LSTWSVM, C1 ¼ C2;C3 ¼ C4

for our NLTSVM, and the kernel parameter value l were

allowed to vary from the sets f10�5; 10�4; . . .; 105g and

f2�10; 2�9; . . .; 210g respectively. For GEPSVM, the range

of d was allowed to vary from the set f2�7; 2�6; . . .; 27g:
Finally, choosing these optimal values, the classification

accuracies and computational efficiencies on the test

dataset was calculated.

The accuracy used to evaluate methods is defined as

follows:

Accuracy ¼ ðTPþ TNÞ=ðTPþ TN þ FPþ FNÞ;

where TP, TN, FP and FN are the number of true positive,

true negative, false positive and false negative respectively.

We conduct the experiments on five synthetic datasets

and fifteen real world benchmark datasets to investigate the

performance of our NLTSVM. The performance compar-

isons of five algorithms are summarized in Table 1, where

‘‘Accuracy’’ denotes the mean value of ten-testing results

and ‘‘Time’’ denotes the mean value of the time taken by

ten experiments. We draw some conclusions after imple-

menting these experiments on twenty datasets. In terms of

prediction accuracy, our proposed NLTSVM yields the

highest accuracy among five algorithms on most of the

datasets considered. The main reason of our proposed

NLTSVM yields such good testing accuracy is that our

NLTSVM solves two systems of linear equations instead of

solving two QPPs. The next good algorithm is LSTWSVM

which yields slightly lower testing accuracy than TWSVM,

STWSVM and our NLTSVM, but higher than GEPSVM

for most of the datasets. Among five algorithms, GEPSVM

yields lowest testing accuracy for most of the datasets

considered. Moreover on Heart-Statlog, Ionosphere, Bupa,

Transfusion, Haberman, Sonar, Wpbc, Cleve, Monks2,

Monks3 and Splice datasets, GEPSVM produces extremely

low testing accuracy compared with four other algorithms.

Table 1 shows the comparison of computational time and

accuracy for all five algorithms with Gaussian kernel. It is

evident that our NLTSVM have performed several orders

of magnitude faster than GEPSVM and TWSVM but

nearly similar to STWSVM and LSTWSVM. Our

NLTSVM outperforms GEPSVM and TWSVM on most of

the datasets considered which clearly indicates the overall

superiority. Also it is worth mentioning that NLTSVM

does not require any special optimizers.

4.1 Synthetic datasets

In this subsection, we consider five examples to compare

our NLTSVM with the other SVMs. First we take a simple

two dimensional ‘‘Cross Planes’’ dataset as an example of

synthetic dataset which was also tested in [26, 37, 39–41].

It was generated by perturbing points lying on two inter-

secting lines and the intersection point is not in the center.

The linear classifiers obtained by TWSVM and our

NLTSVM along with the input data are shown in Fig. 1a, b

respectively. In the figures, positive points are plotted as

‘‘þ’’ and negative ones are plotted as ‘‘	’’. The corre-

sponding hyperplanes has also been plotted in Fig. 1a, b. It

is easy to see that the result of the proposed NLTSVM is

more reasonable than that of TWSVM. This indicate that

our NLTSVM can handle the ‘‘Cross Planes’’ dataset much

better than TWSVM. The classification accuracy and

central processing unit (CPU) time of each algorithm are

summarized in Table 1. The results clearly demonstrate the

superiority of multi-plane/surface classifiers over

GEPSVM, TWSVM, STWSVM and LSTWSVM. The

second example is an artificial-generated Ripley’s synthetic

dataset [35]. It is also two dimensional dataset which

includes 250 training points and 1000 test points. Table 1

shows the learning results of nonlinear GEPSVM,

TWSVM, STWSVM, LSTWSVM and NLTSVM. It can be

seen that our NLTSVM obtains better classification accu-

racy with less training time than GEPSVM, TWSVM,

STWSVM and LSTWSVM which indicate the suitability

of our NLTSVM for these kind of problems since its non-

parallel hyperplanes successfully describe the two class of

points.
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To further show the advantage of our NLTSVM in the

training speed, we have compared the computational time

of our NLTSVM with GEPSVM, TWSVM, STWSVM and

LSTWSVM on three NDC [28] datasets. The parameters of

all the algorithms have been fixed i.e. C1;2;3;4 ¼ 1 and l ¼
2�8: We have selected 10 % data for testing and rest for

training. The central processing unit (CPU) time of each

algorithm are summarized in Table 2. One can see from the

Table 2 that our NLTSVM is more reasonable than

GEPSVM, TWSVM, STWSVM and LSTWSVM.

4.2 UCI datasets

To further evaluate the classification ability of our

NLTSVM, we compare the behavior of our NLTSVM with

GEPSVM, TWSVM, STWSVM and LSTWSVM on sev-

eral publicly available benchmark datasets [27]. In all the

Table 1 Performance comparisons of GEPSVM, TWSVM, STWSVM, LSTWSVM and NLTSVM on synthetic and real world datasets using

Gaussian kernel

Datasets (train size, test size) GEPSVM

Accuracy (%)

Time (s)

TWSVM

Accuracy (%)

Time (s)

STWSVM

Accuracy (%)

Time (s)

LSTWSVM

Accuracy (%)

Time (s)

NLTSVM

Accuracy (%)

Time (s)

Cross planes 90.00 97.50 97.50 94.29 100

(80 � 2, 70 � 2) 0.1782 0.8575 0.010 0.0198 0.0333

Ripley 77.30 85.20 88.80 89.40 90.60

(1000 � 2, 250 � 2) 0.9065 0.1280 0.1253 0.1924 0.0959

Heart-Statlog 75.71 81.43 80.00 80.00 85.71

(200 � 13, 70 � 13) 0.8125 0.4404 0.0145 0.0797 0.0109

WDBC 84.06 78.26 84.06 85.50 84.06

(500 � 30, 69 � 30) 4.9375 0.6929 0.0065 0.0078 0.1014

Ionosphere 73.33 94.29 95.23 96.19 95.24

(246 � 34, 105 � 34) 1.4843 0.3374 0.0174 0.0162 0.0158

Bupa Liver 46.15 64.42 63.46 55.76 65.38

(241 � 6, 104 � 6) 1.125 0.1799 0.0186 0.0128 0.0143

Votes 93.02 96.90 95.35 96.12 95.35

(306 � 16, 129 � 16) 1.7320 0.3638 0.0046 0.0224 0.0279

WPBC 64.91 75.44 75.44 71.92 77.19

(137 � 33, 57 � 33) 0.3750 0.2142 0.0051 0.0044 0.0042

Cleve 71.67 72.50 75.26 80.00 81.67

(177 � 13, 120 � 13) 0.5625 0.2655 0.009 0.0299 0.0070

Monk-2 78.94 87.27 90.56 85.64 96.30

(432 � 7, 122 � 7) 0.6400 0.0984 0.0245 0.0305 0.0066

Monk-3 81.48 90.74 85.53 93.51 94.68

(432 � 7, 122 � 7) 0.6875 0.1773 0.0046 0.0269 0.0032

Australian 89.33 76.00 76.00 78.00 90.67

(540 � 14, 150 � 14) 5.7812 1.6721 0.1426 0.1522 0.1229

Transfusion 86.49 90.54 90.54 90.54 90.54

(600 � 4, 148 � 4) 6.7812 0.2094 0.1234 0.1000 0.1626

Haberman 66.98 76.41 76.41 75.47 77.36

(200 � 3, 106 � 3) 1.078 1.2963 0.0102 0.0344 0.0095

Sonar 70.69 77.58 75.68 82.75 79.31

(150 � 60, 58 � 60) 0.500 0.0822 0.0040 0.0242 0.0052

Splice 67.03 88.33 88.03 88.03 85.76

(500 � 60, 2675 � 60) 673.359 0.6190 0.1348 0.1207 0.1013

Tic-Tac-Toe 94.43 94.43 94.43 91.28 94.43

(671 � 9, 287 � 9) 1.7892 7.15085 0.1204 0.2961 0.6547

Bold values indicate the best result
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real-world examples considered, each attribute of the

original data is normalized as follows:

�xij ¼
xij � xmin

j

xmax
j � xmin

j

;

where xij is the (i, j)-th element of the input matrix A, �xij is

its corresponding normalized value and xmin
j ¼ minmi¼1ðxijÞ

and xmax
j ¼ maxmi¼1ðxijÞ denote the minimum and maximum

values, respectively, of the j-th column of A.

The sizes of training and test data, the number of attri-

butes, training time and accuracies of each algorithm for

nonlinear classifiers were summarized in Table 1 and the

best accuracy is shown by bold figures. Clearly One can

observe from Table 1 that, in comparison to GEPSVM,

TWSVM, STWSVM and LSTWSVM, our NLTSVM

shows better generalization performance. In details, for

Heart-Statlog dataset, the experimental result (accuracy

85.71 %, time 0.0109 s) by our NLTSVM is higher than

other four algorithms in computational time and classifi-

cation accuracy, i.e., GEPSVM (accuracy 75.71 %,

0.8125 s), TWSVM (accuracy 81.43 %, 0.4404 s),

STWSVM (accuracy 80.00 %, 0.0145 s) and LSTWSVM

(accuracy 80.00 %, 0.0797 s). We obtained the similar

conclusions for Bupa, WPBC, Cleve, Monks-2, Monks-3,

Australian and Haberman datasets. For Votes dataset, the

classification accuracy obtained by our NLTSVM (accu-

racy 95.35 %) is slightly lower than TWSVM (accuracy

96.90 %) and LSTWSVM (accuracy 96.12 %), it is higher

than GEPSVM (accuracy 93.02 %). The empirical results

further reveal that our NLTSVM, whose solutions are

obtained by solving system of linear equations, is faster

than TWSVM on all the datasets. It is worthwhile notice

that choosing the values of the parameters C3 and C4 affect

the results significantly and these values are varying in our

NLTSVM rather than small fixed positive scalar in

TWSVM. The details of optimal parameters for Gaussian

kernel are listed in Table 3. It clearly indicates that adding

the regularization terms in our formulation are useful.

To further compare our NLTSVM with TWSVM, we

also compare it with the two-dimensional scatter plots that

were obtained from the part test points for the WDBC and

Heart Statlog datasets. The plots were obtained by plotting

points with coordinates: perpendicular distance of a test

point x from positive hyperplane 1 and the distance from

negative hyperplane 2. In the figures, positive points are

plotted as ‘‘þ’’ and negative points are plotted as ‘‘	’’.
Hence, the clusters of points indicate how well the classi-

fication criterion is able to discriminate between the two

classes. From Figs. 2a, b and 3a, b, it can be seen that our

NLTSVM obtained large distances from the test samples to

the opposite hyperplanes. In contrast, the TWSVM

obtained small distances from the test points to the

hyperplane pair. It means that our NLTSVM is much more

robust when compared with the TWSVM.

For further fair comparisons, we use statistical test to

demonstrate a correct analysis when comparing the per-

formance of multiple algorithms over multiple datasets,

which has been largely discussed. Since the Friedman test

with the corresponding post hoc tests is pointed out to be a

simple, safe, and robust non parametric test for comparison

of more classifiers over multiple datasets [7], we use it to
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Fig. 1 Classification results of

a TWSVM b NLTSVM for

Cross planes dataset

Table 2 Comparison on NDC

datasets with Gaussian kernel
Datasets GEPSVM

Time (s)

TWSVM

Time (s)

STWSVM

Time (s)

LSTWSVM

Time (s)

NLTSVM

Time (s)

NDC1k 34.7429 2.0138 0.7521 1.1822 0.9873

NDC3k 250.2833 5.625 3.2012 3.2177 3.1023

NDC5k 1093.80 10.4802 8.4696 11.3433 8.2302
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Table 3 Optimal parameters of

GEPSVM, TWSVM,

STWSVM, LSTWSVM and

NLTSVM for Gaussian kernel

Datasets GEPSVM

ðl; dÞ
TWSVM

ðl;C1 ¼ C2Þ
STWSVM

ðl;C1 ¼ C2Þ
LSTWSVM

ðl;C1 ¼ C2Þ
NLTSVM

ðl;C1 ¼ C2;C3 ¼ C4Þ

Cross planes ð29; 2�5Þ ð29; 10�5Þ ð28; 10�4Þ ð2�6; 10�4Þ ð2�8; 10�3; 10�2Þ
Ripley ð2�5; 24Þ ð27; 10�5Þ ð2�6; 10�5Þ ð20; 10�1Þ ð2�8; 10�3; 10�2Þ
Heart-Statlog ð25; 22Þ ð2�5; 10�5Þ ð25; 10�4Þ ð24; 10�1Þ ð2�5; 104; 10�1Þ
WDBC ð24; 26Þ ð2�1; 10�5Þ ð2�6; 10�2Þ ð2�2; 10�1Þ ð2�9; 10�5; 10�3Þ
Ionosphere ð23; 2�7Þ ð21; 10�3Þ ð22; 10�3Þ ð2�3; 10�3Þ ð20; 10�4; 10�1Þ
Bupa ð2�6; 25Þ ð21; 10�5Þ ð24; 10�4Þ ð22; 10�1Þ ð2�1; 10�5; 10�2Þ
Votes ð2�4; 2�1Þ ð2�7; 10�5Þ ð2�6; 10�4Þ ð22; 100Þ ð2�9; 102; 10�3Þ
WPBC ð23; 26Þ ð20; 10�5Þ ð23; 10�5Þ ð24; 10�1Þ ð21; 10�5; 10�1Þ
Cleve ð26; 22Þ ð2�5; 10�5Þ ð29; 10�4Þ ð28; 10�4Þ ð2�9; 105; 10�4Þ
Monk-2 ð26; 2�3Þ ð21; 10�5Þ ð25; 104Þ ð2�2; 10�1Þ ð2�4; 10�3; 10�3Þ
Monk-3 ð26; 2�3Þ ð2�3; 10�5Þ ð2�10; 10�4Þ ð22; 10�1Þ ð2�3; 10�5; 10�4Þ
Australian ð20; 2�7Þ ð2�4; 10�5Þ ð2�4; 102Þ ð21; 10�1Þ ð2�2; 105; 100Þ
Transfusion ð26; 2�3Þ ð2�8; 10�1Þ ð2�10; 101Þ ð21; 100Þ ð2�6; 10�5; 100Þ
Haberman ð26; 22Þ ð21; 10�5Þ ð26; 10�4Þ ð2�1; 100Þ ð2�9; 10�5; 10�5Þ
Sonar ð21; 27Þ ð2�2; 10�5Þ ð25; 103Þ ð20; 10�2Þ ð2�3; 10�5; 10�2Þ
Splice ð2�8; 22Þ ð2�6; 10�5Þ ð27; 10�4Þ ð22; 10�2Þ ð2�5; 10�5; 10�2Þ
Tic-Tac-Toe ð23; 22Þ ð2�6; 10�5Þ ð2�8; 10�2Þ ð21; 10�1Þ ð2�9; 102; 10�5Þ
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Fig. 2 2-D projections of

a TWSVM, b NLTSVM from

WDBC dataset. Plus scatter plot

of the positive points. Circle

scatter plot of the negative

points
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Fig. 3 2-D projections of

a TWSVM, b NLTSVM from

Heart-Statlog dataset. Plus

scatter plot of the positive

points. Circle scatter plot of the

negative points
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compare the generalization ability of five algorithms. The

average ranks of all the algorithms on accuracies were

computed and listed in Table 4. We employ the Friedman

test to check whether the measured average ranks are sig-

nificantly different from the mean rank Rj ¼ 3 expected

under the null hypothesis:

v2F ¼ 12N

k k þ 1ð Þ
X3
j¼1

R2
j �

k k þ 1ð Þ2

4

" #

is distributed according to v2F with k � 1 degree of free-

dom. where k is the number of methods and N is the

number of datasets.

v2F ¼ 12� 17

5 5þ 1ð Þ

� 4:562 þ 2:882 þ 3:032 þ 2:792 þ 1:742 � 5 6ð Þ2

4

" #

¼ 27:7481:

FF ¼ N � 1ð Þv2F
N k � 1ð Þ � v2F

¼ 17� 1ð Þ � 27:7481

17 5� 1ð Þ � 27:7481
¼ 11:0298:

With five algorithms and seventeen datasets, FF is distributed

according to the F-distribution with k � 1ð Þ and

k � 1ð Þ N � 1ð Þ ¼ 4; 64ð Þ degrees of freedom. The critical

value of F 4; 64ð Þ for a ¼ 0:05 is 2.52. So, we reject the null

hypothesis FF [Fð4; 64Þð Þ: We use the Nemenyi test for

further pairwise comparison. According to [7], at p ¼ 0:10;

critical difference (CD) ¼ qa

ffiffiffiffiffiffiffiffiffiffiffi
k kþ1ð Þ
6N

q
¼ 2:459

ffiffiffiffiffiffiffiffi
5�6
6�17

q
¼

1:336: Since the difference between GEPSVM and our

NLTSVM is larger than the critical difference 1:336ð4:56�
1:74 ¼ 2:82[ 1:336Þ; we can identify that the performance

of NLTSVM is significantly better than GEPSVM. Similarly,

we can identify that the performances ofTWSVM,STWSVM

and LSTWSVM are significantly better than GEPSVM. Fur-

ther, we see that the difference between TWSVM, STWSVM,

LSTWSVM and our NLTSVM is just below the critical dif-

ference, we can conclude that the post hoc test is not powerful

enough to detect any significant difference between the

algorithms. But the average rank of our NLTSVM is always

lower than that of GEPSVM, TWSVM, STWSVM and

LSTWSVM, once can conclude that our NLTSVM is better

than GEPSVM, TWSVM, STWSVM and LSTWSVM.

Regarding the computational time of five algorithms

shown in Table 1 reveals that the proposed NLTSVM is

nearly seven times faster than GEPSVM and TWSVM.

However, the proposed NLTSVM and GEPSVM cost

nearly the same time. One of the reasons is that both are

solving the systems of linear equations.

5 Conclusions and future work

In this paper, we proposed an implicit Lagrangian twin

support vector machine (TWSVM) classifiers by formu-

lating a pair of unconstrained minimization problems in

dual variables whose solutions will be obtained using finite

Newton method. The idea of our formulation is to refor-

mulate TWSVM as a strongly convex problem by incor-

porated regularization techniques to improve the training

speed and robustness. The solution of two modified

Table 4 Average ranks of

GEPSVM, TWSVM,

STWSVM, LSTWSVM and

NLTSVM with Gaussian kernel

Datasets GEPSVM TWSVM STWSVM LSTWSVM NLTSVM

Cross planes 5 2.5 2.5 4 1

Ripley 5 4 3 2 1

Heart-Statlog 5 2 3.5 3.5 1

WDBC 3 5 3 1 3

Ionosphere 5 4 3 1 2

Bupa 5 2 3 4 1

Votes 5 1 3.5 2 3.5

WPBC 5 2.5 2.5 4 1

Cleve 5 4 3 2 1

Monk-2 5 3 2 4 1

Monk-3 5 3 4 2 1

Australian 2 4.5 4.5 3 1

Transfusion 5 2.5 2.5 2.5 2.5

Haberman 5 2.5 2.5 4 1

Sonar 5 3 4 1 2

Splice 5 1 2.5 2.5 4

Tic-Tac-Toe 2.5 2.5 2.5 5 2.5

Average Rank 4.56 2.88 3.03 2.79 1.74
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unconstrained minimization problems reduces to solving

just two systems of linear equations as opposed to solving

two quadratic programming problems in TWSVM and

TBSVM, which leads to extremely simple and fast algo-

rithm. To demonstrate the effectiveness of the proposed

method, we performed numerical experiments on number

of interesting real-world datasets and compared their

results with other SVMs. Comparison of results with

GEPSVM, TWSVM, STWSVM and LSTWSVM clearly

demonstrate the effectiveness and suitability of the pro-

posed method. Similar to TBSVM, there are four param-

eters in our NLTSVM, so the parameter selection is a

practical problem and should be address in the future. Our

future work will be on the extension of the proposed

method to learning using privileged information.
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