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Abstract The purpose of this paper is to investigate

interval-valued intuitionistic uncertain linguistic multi-at-

tribute group decision making with incomplete weight

information and interactive conditions. In order to obtain

the comprehensive attribute values of alternatives, the

induced generalized Shapley interval-valued intuitionistic

uncertain linguistic hybrid Choquet averaging (IGS-

IVIULHCA) operator is defined, which globally considers

not only the importance of elements and the ordered

positions but also their correlations. Based on gray rela-

tional analysis (GRA) method, models for the optimal

fuzzy measures are constructed. Then, a new decision

approach is developed, which considers the interactive

characteristics between elements in a set. Finally, a

numerical example is presented to illustrate the proposed

approach and demonstrate its practicality and effectiveness.

Keywords Multi-attribute group decision making �
Interval-valued intuitionistic uncertain linguistic set � Gray
relational analysis (GRA) method � Choquet integral

1 Introduction

Decision making is one of the most significant and omni-

present human activities in business, service, manufactur-

ing, selection of products, etc. The key issues of decision

making with incomplete weight information are to find the

proper way to derive the weight vector and to aggregate the

decision makers’ preferences. For the former: there are

several kinds of methods to derive the weight vector, such

as TOPSIS method [11, 18, 56], correlation coefficient

method [5–7], gray relational analysis method [21, 56] and

deviation method [64]. For the latter: there are many

aggregation operators. One of the most important aggre-

gation operators is the ordered weighted averaging (OWA)

operator [68]. Its fundamental aspect is a reordering step in

which the input arguments are rearranged in descending

order and the weight vector is merely associated with its

ordered position. Since it was first introduced in 1988,

many generalized forms have been developed [8, 12, 44,

59, 60, 66, 69, 73].

To address the uncertainties and fuzziness, Zadeh [74]

introduced the concept of fuzzy sets, which have been

successfully used in decision making. Later, some

researchers found that fuzzy sets only consider the pref-

erence degrees of the decision maker, but cannot address

the non-preference degrees of the decision maker. To cope

with this issue, Atanassov [2] presented intuitionistic fuzzy

sets (IFSs), which are characterized by a membership

degree, a non-membership degree and a hesitancy degree.

De et al. [15] defined some operations on IFSs. Xu and

Yager [59] presented some operators in terms of geomet-

rics, and Xu [61] defined some arithmetic aggregation

operators. Xu and Wang [57] introduced several induced

generalized intuitionistic fuzzy aggregation operators and

studied their application to group decision making. Hung

& Fanyong Meng

mengfanyongtjie@163.com

1 School of Business, Central South University,

Changsha 410083, China

2 School of Management, Qingdao Technological University,

Qingdao 266520, China

3 School of Management and Economics, Beijing Institute of

Technology, Beijing 100081, China

123

Int. J. Mach. Learn. & Cyber. (2015) 6:859–871

DOI 10.1007/s13042-015-0401-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0401-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0401-2&amp;domain=pdf


and Yang [19] researched the application of IFSs to pattern

recognition; and Kharal [20] used IFSs to study homeo-

pathic drug selection.

Considering the situations where there exist interactive

characteristics, in references [45–47, 65] several intu-

itionistic fuzzy Choquet integral operators are defined.

Because these intuitionistic fuzzy Choquet integral opera-

tors cannot address the importance of the ordered positions,

Meng and Zhang [28] introduced the generalized intu-

itionistic fuzzy hybrid Choquet averaging operator and

researched its application in decision making. Furthermore,

Xia and Xu [67] discussed entropy and cross entropy of

IFSs and studied their application to group decision mak-

ing; Meng and Chen [29] studied entropy and similarity

measure of IFSs by using the Shapley function and dis-

cussed their application to pattern recognition. Atanassov

and Gargov [1] found that IFSs need the decision maker to

give the exact values of the membership degree, the non-

membership degree and the hesitancy degree. This is still

difficult in some situations. Thus, the authors further pro-

posed the concept of interval-valued intuitionistic fuzzy

sets (IVIFSs) that are characterized by an interval mem-

bership function, an interval non-membership function and

an interval hesitancy function. Such a generalization fur-

ther facilitates representing inherent imprecision and

uncertainty of the decision makers. Atanassov [3] defined

some operational laws on IVIFSs, and Xu and Chen [62,

63] proposed some aggregation operators in terms of

geometrics and arithmetics, respectively. Researches about

IVIFSs in multi-criteria decision making can be seen in the

literature [9, 10, 54, 70–72]. To cope with the situations

that the elements in a set are inter-dependent, the interval-

valued intuitionistic fuzzy Choquet integral operators are

studied in [27, 30, 31, 48, 65], and the interval-valued

intuitionistic fuzzy Shapley operators are discussed in [32–

34, 36].

However, IVIFSs can only address the quantitative

preference of the decision maker, but cannot denote the

decision maker’s qualitative reference. To both denote the

decision maker’s quantitative and qualitative references, Liu

[23] introduced the concept of interval-valued intuitionistic

uncertain linguistic sets, which can be seen as a combination

of IVIFSs and uncertain linguistic variables [58]. With

respect to interval-valued intuitionistic uncertain linguistic

sets, Liu [23] defined the interval-valued intuitionistic

uncertain linguistic weighted geometric averaging

(IVIULWGA) operator, the interval-valued intuitionistic

uncertain linguistic ordered weighted geometric (IVIU-

LOWG) operator and the interval-valued intuitionistic

uncertain linguistic hybrid geometric (IVIULHG) operator.

Furthermore, Meng et al. [35] defined several interval-val-

ued intuitionistic uncertain linguistic Choquet operators, and

Meng et al. [36] proposed several interval-valued intuition-

istic uncertain linguistic hybrid Shapley operators. However,

there are some disadvantages of the interval-valued intu-

itionistic uncertain linguistic aggregation operators in [35,

36]. For example, the aggregation operators in [35] only

address the importance of elements and their interactions,

but the importance of the ordered positions and their inter-

actions do not consider. For the aggregation operators in

[36], although they can address the importance of the ele-

ments and the ordered positions and their interactions, they

are based on k-fuzzy measures. As we know, k-fuzzy
measures can only address either complementary or redun-

dant interactions, but they cannot reflect these two cases

simultaneously.

With these issues, this paper continues to study interval-

valued intuitionistic uncertain linguistic multi- attribute

group decision-making problems with incomplete weight

information, where the interactions between experts and

between attributes are considered. The induced generalized

Shapley interval-valued intuitionistic uncertain linguistic

hybrid Choquet averaging (IGS-IVIULHCA) operator is

proposed, by which the comprehensive attribute values of

the alternatives can be obtained. It is worth noticing that

this operator addresses not only the importance of elements

and the ordered positions but also their complementary and

redundant interactions. In order to derive the weight vec-

tors on the expert set, on the attribute set and on their

ordered sets, we first define the gray relational coefficient

for interval-valued intuitionistic uncertain linguistic num-

bers (IVIULNs), and then build models for the optimal

fuzzy measures on the associated sets, respectively. Fur-

thermore, an approach to interval-valued intuitionistic

uncertain linguistic multi-attribute group decision making

is developed, which considers the importance of the deci-

sion maker with respect to each attribute.

This paper is organized as follows: In Sect. 2, some

basic notations and concepts are briefly reviewed, which

will be used in the following. In Sect. 3, based on the

Choquet integral [13], the induced generalized Shapley

interval-valued intuitionistic uncertain linguistic hybrid

Choquet averaging (IGS-IVIULHCA) operator is defined,

and some desirable properties are discussed. In Sect. 4,

the gray relational coefficients for IVIULNs are pre-

sented. Then, the optimal models for the fuzzy measures

on the expert set, on the attribute set and on their ordered

sets are respectively constructed. Furthermore, a new

algorithm for interval-valued intuitionistic uncertain lin-

guistic multi-attribute group decision making with

incomplete weight information and interactive conditions

is developed. In Sect. 5, we illustrate our proposed algo-

rithmic method with an example. The conclusion is made

in the last section.
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2 Some basic concepts

Let X be a no empty finite set. An IFS A in X is expressed

as [1]:

A ¼ x; uAðxÞ; vAðxÞh ijx 2 Xf g;

where uAðxÞ 2 ½0; 1� and vAðxÞ 2 ½0; 1� respectively denote

the degrees of membership and non-membership of the

element x 2 X with the condition uAðxÞ þ vAðxÞ� 1. The

hesitancy degree is denoted by pAðxÞ ¼ 1� uAðxÞ �vAðxÞ.
The linguistic approach is an approximate technique,

which represents qualitative aspects as linguistic values

[75] by means of linguistic variables. Let S = {si | i = 0,

2,…,t} be a linguistic term set with odd cardinality. Any

label, si, represents a possible value for a linguistic vari-

able, and it should satisfy the following characteristics

[17]:

1. The set is ordered: si[ sj, if i[ j;

2. Max operator: max(si, sj) = si, if si C sj;

3. Min operator: min(si, sj) = si, if si B sj.

For example, S can be defined as

S = {s0: extremely poor, s1: very poor, s2: poor, s3:

slightly poor, s4: fair, s5: slightly good, s6: good, s7: very

good, s8: extremely good}.

It is worth noticing that linguistic values are a powerful

tool to express the decision makers’ qualitative prefer-

ences. Since it was introduced by Zadeh [75], many

researchers have devoted themselves to decision making

with linguistic information. For instance, Tapia Garcı́a

et al. [49] introduced a consensus model for group decision

making with linguistic interval fuzzy preference relations.

Alonso et al. [4] presented a linguistic consensus model for

linguistic fuzzy preference relations and discussed its

application to Web 2.0 communities. Massanet et al. [25]

developed a new linguistic computational model by using

discrete fuzzy numbers and researched its application to

decision making. Morente-Molinera et al. [26] reviewed

the studies about multi-granular fuzzy linguistic modelling

in group decision making and pointed out the future trends.

More researches about decision making with linguistic

information can be seen in [37–40, 58].

In order to preserve all the given information, Xu [58]

extended the discrete term set S to a continuous linguistic

term set �S ¼ fsajs0 � sa � st; a 2 ½0; t�g, whose elements

also meet all the characteristics above. If sa 2 S, then it is

called the original linguistic term, otherwise, it is called the

virtual linguistic term [58].

Based on interval-valued intuitionistic fuzzy sets [1] and

uncertain linguistic variables [58], Liu [23] defined the

following interval-valued intuitionistic uncertain linguistic

sets.

Definition 1 [23] An interval-valued intuitionistic

uncertain linguistic set (IVIULS) A in X ¼ fx1; x2; . . .; xng
is defined by

A ¼ xi; ½shAðxiÞ; ssAðxiÞ�; ½uAl
ðxiÞ; uAr

ðxiÞ�; ½vAl
ðxiÞ; vAr

ðxiÞ�
� �� �

jxi 2 X
� �

;

where shAðxiÞ; ssAðxiÞ 2 �S, the numbers ½uAl
ðxiÞ; uAr

ðxiÞ� and
½vAl

ðxiÞ; vAr
ðxiÞ� respectively represent the interval mem-

bership degree and the interval non-membership degree of

the element xi [ X to the uncertain linguistic variable

½shAðxiÞ; ssAðxiÞ� with ½uAl
ðxiÞ; uAr

ðxiÞ� � ½0; 1�, ½vAl
ðxiÞ; vAr

ðxiÞ� � ½0; 1� and uAr
ðxiÞ þ vAr

ðxiÞ� 1 for each xi [ X.

When uAl
ðxiÞ ¼ uAu

ðxiÞ and vAl
ðxiÞ ¼ vAu

ðxiÞ for each

xi [ X, the IVIULS A degenerates to be the intuitionistic

uncertain linguistic set A ¼ xi; ½shAðxiÞ; ssAðxiÞ�; uAðxiÞ;
���

vAðxiÞÞijxi 2 Xg [22]. Furthermore, if shAðxiÞ ¼ ssAðxiÞ, then

it reduces to the intuitionistic linguistic set (ILS) A ¼
xi; shAðxiÞ; uAðxiÞ; vAðxiÞ

� �� �
jxi 2 X

� �
[55].

Definition 2 [23] An interval-valued intuitionistic

uncertain linguistic number (IVIULN)~a is defined by

~a ¼ ½shðaÞ; ssðaÞ�; ½ulðaÞ; urðaÞ�; ½vlðaÞ; vrðaÞ�
� �

, where the

interval numbers ½ulðaÞ; urðaÞ� and ½vlðaÞ; vrðaÞ� respec-

tively represent the interval membership and non-mem-

bership degrees to the uncertain linguistic variable

½shðaÞ; ssðaÞ� with ½ulðaÞ; urðaÞ�� ½0; 1�,½vlðaÞ; vrðaÞ� � ½0; 1�
and urðaÞ þ vrðaÞ� 1:

From Definitions 1 and 2, we know that IVIULSs (or

IVIULNs) consider both the quantitative and qualitative

references. This means that IVIULSs (or IVIULNs) endow

the decision maker more flexible to denote his/her

judgment.

Let ~a ¼ ½shðaÞ; ssðaÞ�; ½ulðaÞ; urðaÞ�;
�

½vlðaÞ; vrðaÞ�Þ and

~b ¼ ½shðbÞ; ssðbÞ�; ½ulðbÞ; urðbÞ�; ½vlðbÞ; vrðbÞ�
� �

be any two

IVIULNs, then some operations of ~a and ~b are defined by

[23]

(i) ~a� ~b ¼ ½shðaÞþhðbÞ; ssðaÞþsðbÞ�; ½1� ð1� ulðaÞÞð1�
�

ulðbÞÞ; 1� ð1� urðaÞÞð1� urðbÞÞ�; :
½vlðaÞvlðbÞ; vrðaÞvrðbÞ�Þ,
(ii) ~a� ~b ¼ ½shðaÞhðbÞ; ssðaÞsðbÞ�; ½ulðaÞulðbÞ; urðaÞurðbÞ�;

�

½1� ð1� vlðaÞÞð1� vlðbÞÞ;
1� ð1� vrðaÞÞð1� vrðbÞÞ�Þ,
(iii) k~a ¼ ½skhðaÞ;

�
sksðaÞ�; ½1� 1� ulðaÞð Þk; 1� 1�ð

urðaÞÞk�; ½vlðaÞk; vrðaÞk�Þ k 2 ½0; 1�;
(iv) ~ak ¼ ½shðaÞk ; ssðaÞk �;

�
½ulðaÞk; urðaÞk�; ½1 � 1�ð

vlðaÞÞk; 1� 1� vrðaÞð Þk�Þ k 2 ½0; 1�:

Proposition 1 [21] Let ~a and ~b be any two IVIULNs, then

(i) ~a� ~b ¼ ~b� ~a;,
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(ii) ~a� ~b ¼ ~b� ~a,

(iii) kð~a� ~bÞ ¼ k~b� k~a k 2 ½0; 1�;
(iv) k1 þ k2ð Þ~a ¼ k1~a k1; k2 2 ½0; 1�;
(v) ð~a� ~bÞk ¼ ~bk � ~ak k 2 ½0; 1�;
(vi) ~ak1þk2 ¼ ~ak1 � ~ak2 k1; k2 2 ½0; 1�:

For any IVIULN ~a ¼ ½shðaÞ; ssðaÞ�; ½ulðaÞ; urðaÞ�; ½vlðaÞ;
�

vrðaÞ�Þ, Liu [23] defined the expected function Eð~aÞ of ~a by

Eð~aÞ ¼ s hðaÞþsðaÞð Þ ulðaÞþur ðaÞþ2�vlðaÞ�vr ðaÞð Þ
8

;

and presented the accuracy function

Hð~aÞ ¼ s hðaÞþsðaÞð Þ ulðaÞþur ðaÞþvlðaÞþvr ðaÞð Þ
4

to evaluate the accuracy degree of ~a. Furthermore, Liu [23]

gave the following order relationship between IVIULNs ~a

and ~b.

If Eð~aÞhEð~bÞ), then ~a 	 ~b.

If Eð~aÞ ¼ Eð~bÞ), then Hð~aÞ ¼ Hð~bÞ ) ~a ¼ ~b
Hð~aÞhHð~bÞ ) ~a 	 ~b

	
.

3 The IGS-IVIULHCA operator

In practical decision-making problems, the independence

between elements is usually violated. Thus, it is unsuitable

to use the additive measures to measure the importance of

them. Because the importance of an element is not only

determined by itself but also influenced by the other ele-

ments. Fuzzy measures [43] seem to be a good choice to

cope with this issue.

Definition 3 [43] A fuzzy measure l on finite set N = {1,

2,…,n} is a set function l : PðNÞ ! ½0; 1� satisfying

(i) lð;Þ ¼ 0; lðNÞ ¼ 1;

(ii) If A, B [ P(N) with A � B, then lðAÞ� lðBÞ,
where P(N) is the power set of N.

In multi-attribute group decision making,lðAÞ can be

viewed as the importance of the attribute (or expert) set

A. The Choquet integral [13] is one of the most important

fuzzy integrals, which has been used in many fields. Gra-

bisch [16] defined the following Choquet integral on dis-

crete sets.

Definition 4 [16] Let f be a positive real-valued function

on X ¼ fx1; x2; . . .; xng, and l be a fuzzy measure on X.

The discrete Choquet integral of f with respect to l is

defined by

Clðf ðxð1ÞÞ; f ðxð2ÞÞ; . . .; f ðxðnÞÞÞ

¼
Xn

i¼1

f ðxðiÞÞðlðAðiÞÞ � lðAðiþ1ÞÞÞ; ð1Þ

where ð�Þ indicates a permutation on X such that f ðxð1ÞÞ
� f ðxð2ÞÞ � � � � � f ðxðnÞÞ, and AðiÞ ¼ fxðiÞ; . . .; xðnÞg with

Aðnþ1Þ ¼ ;.

When there is no interaction between elements, namely,

lðAÞ ¼
P

xi2A lðxiÞ for any A ( X, then the Choquet

integral given in Eq. (1) reduces to the OWA operator [68]

with respect to f on X.

In order to measure the overall influence of each

coalition rather than each player in a cooperative game,

Marichal [24] defined the following generalized Shapley

function

USðl;NÞ ¼
X

T�NnS

ðn� s� tÞ!t!
ðn� sþ 1Þ! ðlðS [ TÞ � lðTÞÞ

8S � N;

ð2Þ

where s, t and n respectively denote the cardinalities of S,

T and N.

When s = 1, then Eq. (2) degenerates to the Shapley

function [42]

uiðl;NÞ ¼
X

S�Nni

ðn� s� 1Þ!s!
n!

ðlðS [ iÞ � lðSÞÞ 8i 2 N;

ð3Þ

From Eq. (2), we know that the generalized Shapley

function is an expected value of all marginal contributions

between the coalition S and every coalition in N\S, and the

Shapley function is an expected value of all marginal

contributions between the element i and every coalition in

N\i. When there is no interaction between the coalition S

and every coalition in N\S, from Eq. (2) we obtain

USðl;NÞ ¼ lðSÞ.

Definition 5 The induced generalized Shapley interval-

valued intuitionistic uncertain linguistic hybrid Choquet

averaging (IGS-IVIULHCA) operator of dimension n is a

mapping IGS-IVIULHCA: IVIULNsn ? IVIULNs defined

on the set of second arguments of two tuples

hu1; ~a1i; hu2; ~a2i; . . .; hun; ~ani with a set of order-inducing

variables qi (i = 1, 2,…,n), denoted by

IGS-IVIULHCAU;u hq1; ~a1i; hq2; ~a2i; . . .; hqn; ~anið Þ

¼
�
n

j¼1
UAðjÞ ðl;NÞ � UAðjþ1Þ ðl;NÞ

� 

u~aðjÞ

ðg; #Þ~aðjÞ
Pn

j¼1 UAðjÞ ðl;NÞ � UAðjþ1Þ ðl;NÞ
� 


u~aðjÞ
ðg; #Þ

;

where (�) is a permutation on qi (i = 1, 2,…,n) such that q(j)
being the jth largest value of qi (i = 1, 2,…,n), UAðjÞ ðl;NÞ is
the generalized Shapley value with respect to the fuzzy

measure l on ordered set N = {1, 2,…,n} for A(j) = {j,…,n}

with A nþ1ð Þ ¼ ;, and u~aiðg; #Þ is the Shapley value with

862 Int. J. Mach. Learn. & Cyber. (2015) 6:859–871

123



respect to the fuzzy measure g on # ¼ f~aigi2N for ~ai (i = 1,

2,…,n).

Remark 1 When l and g are both an additive measure,

then the IGS-IVIULHCA operator reduces to the induced

interval-valued intuitionistic uncertain linguistic hybrid

weighed averaging (I-IVIULHWA) operator

I-IVIULHWAw;x hq1; ~a1i; hq2; ~a2i; . . .; hqn; ~anið Þ

¼
�
n

j¼1
wjxðjÞ~aðjÞ

Pn
j¼1 wjxðjÞ

;

where lðiÞ ¼ wi and gð~aiÞ ¼ xi (i = 1, 2,…,n).

Remark 2 When qi ¼ u~aiðg; #Þ~ai
(i = 1, 2,…,n), then the

IGS-IVIULHCA operator reduces to the generalized

Shapley interval-valued intuitionistic uncertain linguistic

hybrid Choquet averaging (GS-IVIULHCA) operator

GS-IVIULHCAU;u ~a1; ~a2; . . .; ~anð Þ

¼
�
n

j¼1
UAðjÞ ðl;NÞ � UAðjþ1Þ ðl;NÞ

� 

u~aðjÞ

ðg; #Þ~aðjÞ
Pn

j¼1 UAðjÞ ðl;NÞ � UAðjþ1Þ ðl;NÞ
� 


u~aðjÞ
ðg; #Þ

;

where u~aðjÞ
ðg; #Þ~aðjÞ is the jth largest value of

u~aiðg; #Þ~ai
(i = 1, 2,…,n).

Remark 3 When u~aiðg; #Þ¼1=n (i = 1, 2,…,n), then the

IGS-IVIULHCA operator reduces to the induced general-

ized Shapley interval-valued intuitionistic uncertain lin-

guistic Choquet averaging (IGS-IVIULCA) operator

IGS-IVIULCAU hq1; ~a1i; hq2; ~a2i; . . .; hqn; ~anið Þ
¼ �

n

j¼1
UAðjÞ ðl;NÞ � UAðjþ1Þ ðl;NÞ

� 

~aðjÞ:

Remark 4 When UAðiÞ ðl;NÞ � UAðiþ1Þ ðl;NÞ¼ 1=n (i = 1,

2,…,n), then the IGS-IVIULHCA operator reduces to the

induced interval-valued intuitionistic uncertain linguistic

Shapley averaging (I-IVIULSA) operator

I-IVIULSAu hu1; ~a1i; hu2; ~a2i; . . .; hun; ~anið Þ
¼ �

n

j¼1
u~aðjÞ

ðv; #Þ~aðjÞ:

Theorem 1 Let ~ai ¼ ½shðaiÞ; ssðaiÞ�; ½ulðaiÞ; uuðaiÞ�; ½vlðaiÞ;
�

vuðaiÞ�Þ be a collection of IVIULNs, and let l and g be a

fuzzy measure on N = {1, 2,…,n} and # ¼ f~aigi2N,
respectively. Then their collective value by using the IGS-

IVIULHCA operator is also an IVIULN, denoted by

Proof From the operations on IVIULNs and Proposition

1, it is not difficult to get the conclusion. h

IGS-IVIULHCAU;u hq1; ~a1i; hq2; ~a2i; . . .; hqn; ~anið Þ

¼ sPn

j¼1
UAðjÞ

ðl;NÞ�UAðjþ1Þ
ðl;NÞ

� 

u ~aðjÞ

ðg;#ÞhðaðjÞÞ

Pn

j¼1
UAðjÞ

ðl;NÞ�UAðjþ1Þ
ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ

; sPn

j¼1
UAðjÞ

ðl;NÞ�UAðjþ1Þ
ðl;NÞ

� 

u ~aðjÞ

ðg;#ÞsðaðjÞÞ

Pn

j¼1
UAðjÞ

ðl;NÞ�UAðjþ1Þ
ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ

2

6666664

3

7777775

;

0

BBBBBB@

1� P
n

j¼1
ð1� ulðaðjÞÞÞ

UAðjÞ
ðl;NÞ�UAðjþ1Þ

ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ

Pn

j¼1
UAðjÞ

ðl;NÞ�UAðjþ1Þ
ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ
; 1� P

n

j¼1
ð1� urðaðjÞ ÞÞ

UAðjÞ
ðl;NÞ�UAðjþ1Þ

ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ

Pn

j¼1
UAðjÞ

ðl;NÞ�UAðjþ1Þ
ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ

2

666664

3

777775
;

P
n

j¼1
vlðaðjÞ Þ

UAðjÞ
ðl;NÞ�UAðjþ1Þ

ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ

Pn

j¼1
UAðjÞ

ðl;NÞ�UAðjþ1Þ
ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ
; P

n

j¼1
vrðaðjÞ Þ

UAðjÞ
ðl;NÞ�UAðjþ1Þ

ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ

Pn

j¼1
UAðjÞ

ðl;NÞ�UAðjþ1Þ
ðl;NÞ

� 

u ~aðjÞ

ðg;#Þ

2

666664

3

777775

1

CCCCCCA

ð4Þ
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From Definition 5, it is easy to know that the IGS-

IVIULHCA operator satisfies commutative, monotonic,

bounded and idempotent.

4 A decision making method based on grey
relational analysis (GRA) method

Consider a multi-attribute group decision-making problem,

in which the experts and attributes are correlative. Let A =

{a1, a2,…,am} be the set of alternatives, C = {c1, c2,…,cn}

be the set of attributes, and E = {e1, e2,…,eq} be the set of

the decision makers. Assume that Ak ¼ ~akij

� 


m
n
is the

IVIULN matrix, where ~akij ¼ ½shðak
ij
Þ; ssðak

ij
Þ�; ½ulðakijÞ;

�

urðakijÞ�; :½vlðakijÞ; vrðakijÞ�



is the IVIULN given by the

decision maker ek (k = 1, 2,…,q) for the alternative ai [
A (i = 1, 2,…,m) with respect to the attribute cj [ C (j = 1,

2,…,n). When the weight information of the decision

makers, the attributes and their ordered positions is exactly

known, then we can use an aggregation operator to obtain

the comprehensive attribute values of the alternatives.

However, because of various reasons, such as time pressure

and the expert’s limited expertise about the problem

domain, the information about the weights may be

incompletely known [27–41, 50].

4.1 Models for the optimal fuzzy measures

Grey relational analysis (GRA) method [14] is an impor-

tant multi-attribute decision making method that has been

studied by researchers. In order to define the grey relational

coefficient for IVIULNs, we first introduce the distance

between any two IVIULNs.

Definition 6 Let ~a ¼ ½shðaÞ; ssðaÞ�; ½ulðaÞ; urðaÞ�;
�

½vlðaÞ;
vrðaÞ�Þ and ~b ¼ ½shðbÞ; ssðbÞ�;

�
½ulðbÞ; urðbÞ�; ½vlðbÞ; vrðbÞ�Þ

be any two IVIULNs, the distance between ~a and ~b is

defined by

Let �A ¼ ~bij
� �

m
n
be the averaging IVIULN matrix,

where ~bij ¼ sPq

k¼1
hðak

ij
Þ=q; s

Pq

k¼1
sðak

ij
Þ=q

h i
;

� Pq
k¼1 ulðakijÞ=q;

h

Pq
k¼1 urðakijÞ=q

i
;
Pq

k¼1 vlðakijÞ=q;
Pq

k¼1 vrðakijÞ=q
h i


. Simi-

lar to the grey relational coefficient of intuitionistic fuzzy

sets [56], we present the following grey relational coeffi-

cient between individual preferences and the averaging

preference with respect to the attribute cj (j = 1, 2,…,n).

nijek ¼
min

1� k� q
min

1� i�m
dð~akij; ~bijÞ þ q max

1� k� q
max

1� i�m
dð~akij; ~bijÞ

dð~akij; ~bijÞ þ q max
1� k� q

max
1� i�m

dð~akij; ~bijÞ

ð5Þ

for each pair (i, j) (i = 1, 2,…,m; j = 1, 2,…,n), where q is

usually equal to 0.5.

Based on the grey relational coefficient given in Eq. (5),

we build the following model for the optimal fuzzy

measure on the decision maker set E with respect to the

attribute cj (j = 1, 2,…,n).

min
Xm

i¼1

Xq

k¼1
uek

ðg j;EÞð1� nijekÞ

s:t:

g jðekÞ 2 H j
ek
; k ¼ 1; 2; . . .; q

g jð;Þ ¼ 0; l jðEÞ ¼ 1

g jðSÞ� g jðTÞ 8S; T � E; S � T ;

8
><

>:

ð6Þ

where uek
ðg j;EÞ is the Shapley value of the decision maker

ek (k = 1, 2,…,q) with respect to the attribute cj, and H j
ek
is

the known weight information.

Furthermore, by Eq. (5) we build the following model

for the optimal fuzzy measure on ordered set K = {1,

2,…,q} with respect to the attribute cj (j = 1, 2,…,n).

min
Xm

i¼1

Xq

k¼1
u

ðkÞ
ðl j;KÞð1� nijeðkÞ Þ

s:t:

l jððkÞÞ 2 H
j
ðkÞ; k ¼ 1; 2; . . .; q

l jð;Þ ¼ 0; l jðKÞ ¼ 1

l jðSÞ� l jðTÞ 8S; T � K; S � T;

8
><

>:

ð7Þ

where ð1� nijeðkÞ Þ is the kth largest value of ð1� nijelÞ (l = 1,

2,…,q) for each pairs (i, j) (i = 1, 2,…,m; j = 1, 2,…,n),

dð~a; ~bÞ ¼ jhðaÞ � hðbÞj þ jsðaÞ � sðbÞjð Þ=t þ julðaÞ � ulðbÞj þ jurðaÞ � urðbÞj
6

:

þjvlðaÞ � vlðbÞj þ jvrðaÞ � vrðbÞj
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u
ðkÞ
ðl j;KÞ is the Shapley value of the kth position (k = 1,

2,…,q) with respect to the attribute cj, and H
j

ðkÞ is the

known weight information.

Let A ¼ ~aij
� �

m
n
be the comprehensive IVIULN matrix,

where ~aij ¼ ½shðaijÞ; ssðaijÞ�; ½ulðaijÞ;
�

urðaijÞ�; ½vlðaijÞ; vrðaijÞ�
�
.

Let

~aþj ¼ ½smaxm
i¼1

hðaijÞ; smaxm
i¼1

sðaijÞ�; ½max
m

i¼1
ulðaijÞ;

�

max
m

i¼1
urðaijÞ�; ½min

m

i¼1
vlðaijÞ;min

m

i¼1
vrðaijÞ�

�

and ~a�j ¼ ½sminmi¼1 hðaijÞ; sminmi¼1 sðaijÞ�; ½minmi¼1 ulðaijÞ;
�

minmi¼1

urðaijÞ�; :½maxmi¼1 vlðaijÞ; maxmi¼1 vrðaijÞ�Þ.
We define the grey relational coefficients from the

positive-ideal solution (PIS) and the negative-ideal solution

(NIS) as follows:

nþij ¼
min

1� i�m
min

1� j� n
dð~aij; ~aþj Þ þ q max

1� i�m
max

1� j� n
dð~aij; ~aþj Þ

dð~aij; ~aþj Þ þ q max
1� i�m

max
1� j� n

dð~aij; ~aþj Þ
;

ð8Þ

n�ij ¼
min

1� i�m
min

1� j� n
dð~aij; ~a�j Þ þ q max

1� i�m
max

1� j� n
dð~aij; ~a�j Þ

dð~aij; ~a�j Þ þ q max
1� i�m

max
1� j� n

dð~aij; ~a�j Þ

ð9Þ

for each pair (i, j) (i = 1, 2,…,m; j = 1, 2,…,n), where q is

usually equal to 0.5.

Because all alternatives are non inferior, and the weight

vector makes the comprehensive attribute values for the

alternatives the bigger the better, we build the following

model for the optimal fuzzy measure on attribute set C.

min
Xm

i¼1

Xn

j¼1

n�ij
n�ij þ nþij

ucj
ðg;CÞ

s:t:

gðCÞ ¼ 1

gðSÞ� gðTÞ 8S; T � C; S � T

gðcjÞ 2 Wcj ; gðcjÞ� 0 8cj 2 C;

8
<

:
ð10Þ

where ucj
ðg;CÞ is the Shapley value of the attribute cj

(j = 1, 2,…,n), and Wcj is the known weight information.

Similarly to model (9), we build the following model for

the optimal fuzzy measure on ordered set N = {1, 2,…,n}.

min
Xm

i¼1

Xn

j¼1

n�iðjÞ
n�iðjÞ þ nþiðjÞ

uðjÞðl;NÞ

s:t:
lððjÞÞ 2 WðjÞ; j ¼ 1; 2; . . .; n
lð;Þ ¼ 0; lðNÞ ¼ 1

lðSÞ� lðTÞ 8S; T � N; S � T;

8
<

:
ð11Þ

where n�iðjÞ

.
ðn�iðjÞ þ nþiðjÞÞ is the jth largest value of

n�ip

.
ðn�ip þ nþipÞ(p = 1, 2,…,n) for each i (i = 1, 2,…,m),

uðjÞðl;NÞ is the Shapley value of the jth position (j = 1,

2,…,n), and WðjÞ is the known weight information.

When there is no interaction between elements, then we

get the corresponding models for the optimal additive

weight vectors.

4.2 A new algorithm

Based on above discussions, this subsection introduces an

algorithm to group decision making with interval- valued

intuitionistic uncertain linguistic information.

Step 1 Assume that the evaluation of the alternative ai with

respect to the attribute cj given by the decision maker ek

(k = 1, 2,…,q) is an IVIULN ~akij ¼ ½shðak
ij
Þ; ssðak

ij
Þ�;

�

½ulðakijÞ; urðakijÞ�; :½vlðakijÞ; vrðakijÞ�



(i = 1, 2,…,m; j = 1,

2,…,n). Then, we obtain the following IVIULN matrix

Ak ¼
~ak11 ~ak12 . . . ~ak1n
~ak21 ~ak22 . . . ~ak2n
. . . . . . . . .
~akm1 ~akm2 . . . ~akmn

0

BB@

1

CCA:

Step 2 Confirm the optimal fuzzy measure g j on the

decision maker set E with respect to the attribute cj (j = 1,

2,…,n) by applying model (6). Use Eq. (3) to calculate the

decision makers’ Shapley values with respect to the attri-

bute cj.

Step 3 Confirm the optimal fuzzy measure l j on ordered

set K = {1, 2,…,q} with respect to the attribute cj (j = 1,

2,…,n) by applying model (7).

Step 4 Let ul¼ ð1� nijelÞ (l = 1, 2,…,q) for each pair (i, j)

(i = 1, 2,…,m; j = 1, 2,…,n), use the IGS- IVIULHCA

operator to calculate the comprehensive IVIULN ~aij ¼

½shðaijÞ; ssðaijÞ�; ½ulðaijÞ; urðaijÞ�;
�

½vlðaijÞ; vrðaijÞ�
�
, and the

comprehensive matrix

A ¼

~a11 ~a12 . . . ~a1n
~a21 ~a22 . . . ~a2n
. . . . . . . . .
~am1 ~am2 . . . ~amn

0

BB@

1

CCA;

where #i ¼ ~ai1; ~ai2; . . .; ~ainf g for each pair (i, j) (i = 1,

2,…,m; j = 1, 2,…,n).

Step 5 Confirm the optimal fuzzy measure g on attribute set
C by applying model (10). Use Eq. (3) to calculate the

attribute Shapley values.

Step 6 Confirm the optimal fuzzy measure l on the ordered

set N = {1, 2,…,n} by applying model (11).
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Step 7 Let uj ¼ n�ij

.
ðn�ij þ nþij Þ (j = 1, 2,…,n) for each i

(i = 1, 2,…,m), use the IGS-IVIULHCA operator to

calculate the comprehensive IVIULN ~ai ¼ ½shðaiÞ; ssðaiÞ�;
�

½ulðaiÞ; urðaiÞ�; :½vlðaiÞ; vrðaiÞ�Þ of the alternative ai (i = 1,

2,…,m).

Step 8 For the comprehensive IVIULNs ~ai ¼ ½shðaiÞ;
�

ssðaiÞ�; ½ulðaiÞ; urðaiÞ�; :½vlðaiÞ; vrðaiÞ�Þ (i = 1, 2,…,m), let

~aþ ¼ ½smaxm
i¼1

hðaiÞ; smaxm
i¼1

sðaiÞ�; ½maxmi¼1 ulðaiÞ;
�

maxmi¼1 urðaiÞ�;½minmi¼1 vlðaiÞ;minmi¼1 vrðaiÞ�
�

and ~a� ¼ ½sminmi¼1 hðaiÞ; sminmi¼1 sðaiÞ�; ½minmi¼1 ulðaiÞ;minmi¼1

�
ur

ðaiÞ�; :½maxmi¼1 vlðaiÞ;maxmi¼1 vrðaiÞ�Þ.

Calculate

di ¼
nþi

n�i þ nþi

for each i = 1, 2,…,m, where

nþi ¼
min

1� i�m
dð~ai; ~aþÞ þ q max

1� i�m
dð~ai; ~aþÞ

dð~ai; ~aþÞ þ q max
1� i�m

dð~ai; ~aþÞ

and

n�i ¼
min

1� i�m
dð~ai; ~a�Þ þ q max

1� i�m
dð~ai; ~a�Þ

dð~ai; ~a�Þ þ q max
1� i�m

dð~ai; ~a�Þ

with q = 0.5.

Step 9 Rank the alternatives according to di (i = 1, 2,…,m),

and then select the biggest one(s).

Step 10 End.

5 An illustrative example

There is a panel with four possible alternatives to invest the

money: a1 (car company), a2 (food company), a3 (com-

puter company) and a4 (arms company). The investment

company must take a decision according to the following

three attributes: c1 (the risk analysis), c2 (the growth

analysis) and c3 (the environmental impact analysis). The

four possible alternatives ai (i = 1, 2, 3, 4) are to be

evaluated by three decision makers {e1, e2, e3} using the

linguistic term set S = {s0, s1, s2, s3, s4, s5, s6} under the

above four attributes. The IVIULN matrices are listed as

follows:

Assume that the uncertain weight vectors of the decision

makers with respect to each attribute are given as follows:

H1 ¼ ½0:3; 0:4�; ½0:2; 0:3�; ½0:2; 0:3�ð Þ;

H2 ¼ ½0:3; 0:4�; ½0:4; 0:5�; ½0:5; 0:6�ð Þ;

H3 ¼ ½0:2; 0:3�; ½0:4; 0:5�; ½0:3; 0:4�ð Þ;

and the uncertain weight vector of the ordered set K = {1,

2, 3} with respect to each attribute is given by

H ¼ ½0:2; 0:3�; ½0:3; 0:4�; ½0:4; 0:5�ð Þ. Furthermore, the

uncertain weight vector of attributes is defined by

W ¼ ½0:3; 0:5�; ½0:4; 0:6�; ½0:4; 0:5�ð Þ, and the uncertain

weight vector of the ordered set N = {1, 2, 3} is defined by

G ¼ ½0:2; 0:3�; ½0:3; 0:4�; ½0:4; 0:5�ð Þ. In the following, we

can utilize the proposed procedure to derive the most

desirable alternative(s).

Step 1 From Ak (k = 1, 2, 3), we obtain the averaging

matrix �A as follows:

A1 ¼

½s2; s4�; ½0:3; 0:5�; ½0:2; 0:4�ð Þ ½s3; s4�; ½0:4; 0:5�; ½0:2; 0:3�ð Þ ½s3; s5�; ½0:4; 0:6�; ½0:1; 0:3�ð Þ
½s2; s3�; ½0:3; 0:4�; ½0:4; 0:6�ð Þ ½s1; s2�; ½0:2; 0:3�; ½0:4; 0:6�ð Þ ½s1; s2�; ½0:2; 0:3�; ½0:5; 0:6�ð Þ
½s3; s5�; ½0:4; 0:6�; ½0:2; 0:3�ð Þ ½s4; s5�; ½0:4; 0:6�; ½0:1; 0:3�ð Þ ½s2; s3�; ½0:2; 0:4�; ½0:4; 0:5�ð Þ
½s2; s3�; ½0:3; 0:5�; ½0:3; 0:4�ð Þ ½s4; s5�; ½0:4; 0:6�; ½0:2; 0:4�ð Þ ½s4; s5�; ½0:5; 0:7�; ½0:1; 0:2�ð Þ

0

BB@

1

CCA;

A2 ¼

½s1; s2�; ½0:2; 0:3�; ½0:5; 0:6�ð Þ ½s4; s5�; ½0:5; 0:7�; ½0:1; 0:2�ð Þ ½s4; s5�; ½0:5; 0:7�; ½0:1; 0:2�ð Þ
½s2; s3�; ½0:3; 0:4�; ½0:3; 0:5�ð Þ ½s2; s4�; ½0:3; 0:5�; ½0:2; 0:4�ð Þ ½s2; s3�; ½0:3; 0:5�; ½0:3; 0:4�ð Þ
½s3; s5�; ½0:4; 0:6�; ½0:3; 0:4�ð Þ ½s2; s3�; ½0:3; 0:5�; ½0:2; 0:4�ð Þ ½s1; s2�; ½0:2; 0:3�; ½0:5; 0:7�ð Þ
½s4; s5�; ½0:5; 0:6�; ½0:2; 0:3�ð Þ ½s4; s5�; ½0:5; 0:7�; ½0:1; 0:2�ð Þ ½s4; s6�; ½0:6; 0:8�; ½0:1; 0:2�ð Þ

0

BB@

1

CCA;

A3 ¼

½s2; s4�; ½0:3; 0:5�; ½0:3; 0:5�ð Þ ½s3; s5�; ½0:4; 0:7�; ½0:2; 0:3�ð Þ ½s5; s5�; ½0:6; 0:7�; ½0:1; 0:2�ð Þ
½s4; s5�; ½0:5; 0:7�; ½0:1; 0:2�ð Þ ½s4; s5�; ½0:5; 0:6�; ½0:2; 0:4�ð Þ ½s3; s5�; ½0:4; 0:6�; ½0:2; 0:3�ð Þ
½s2; s4�; ½0:3; 0:5�; ½0:2; 0:4�ð Þ ½s3; s5�; ½0:4; 0:6�; ½0:2; 0:3�ð Þ ½s0; s1�; ½0:1; 0:2�; ½0:6; 0:8�ð Þ
½s2; s3�; ½0:2; 0:4�; ½0:3; 0:5�ð Þ ½s3; s5�; ½0:4; 0:6�; ½0:2; 0:3�ð Þ ½s4; s5�; ½0:5; 0:6�; ½0:2; 0:3�ð Þ

0

BB@

1

CCA:
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By Eq. (5), we obtain the following grey relational

coefficient matrices

n1 ¼

0:79 0:8 0:62

0:67 0:46 0:4

1 0:76 0:46

0:98 0:94 0:87

0

BBB@

1

CCCA
;

n2 ¼

0:62 0:75 1

0:79 0:87 0:79

1 0:63 1

0:58 0:82 0:67

0

BBB@

1

CCCA
;

n3 ¼

0:97 0:91 0:68

0:49 0:5 0:37

0:85 0:96 0:46

0:73 1 0:57

0

BBB@

1

CCCA
:

Let q = 0.5. From model (6), the following linear pro-

gramming for the optimal fuzzy measure on expert set E

with respect to the attribute c1 is constructed.

min� 0:142ðg1ðe1Þ � g1ðe2; e3ÞÞ þ 0:083ðg1ðe2Þ
� g1ðe1; e3ÞÞ þ 0:058ðg1ðe3Þ � g1ðe1; e2ÞÞ þ 0:843

s:t:
g1ðSÞ� g1ðTÞ 8S; T � fe1; e2; e3g; S � T ;
g1ðe1Þ 2 ½0:3; 0:4�; g1ðe2Þ 2 ½0:2; 0:3�;
g1ðe3Þ 2 ½0:2; 0:3�; g1ðe1; e2; e3Þ ¼ 1:

8
<

:

By solving the above linear programming model, it

derives the following fuzzy measure

g1ðe1Þ ¼ 0:4; g1ðe2Þ ¼ g1ðe3Þ ¼ g1ðe2; e3Þ
¼ 0:2; g1ðe1; e2Þ ¼ g1ðe1; e3Þ ¼ g1ðe1; e2; e3Þ ¼ 1:

Similar to the calculation of the optimal fuzzy measure

g1, the following optimal fuzzy measures are obtained.

g2ðe1Þ ¼ g2ðe3Þ ¼ g2ðe1; e2Þ ¼ 0:3; g2ðe2Þ
¼ 0:2; g2ðe1; e3Þ ¼ g2ðe2; e3Þ ¼ g2ðe1; e2; e3Þ ¼ 1;

g3ðe1Þ ¼ g3ðe2Þ ¼ g3ðe1; e3Þ ¼ 0:3; g3ðe3Þ
¼ 0:2; g3ðe1; e2Þ ¼ g3ðe2; e3Þ ¼ g3ðe1; e2; e3Þ ¼ 1:

From Eq. (3), the decision makers’ Shapley values with

respect to each attribute cj (j = 1, 2, 3) are derived as

follows:

ue1
ðg1;EÞ¼ 0:67;ue2

ðg1;EÞ¼ 0:17;ue3
ðg1;EÞ¼ 0:17;

ue1
ðg2;EÞ¼ 0:23;ue2

ðg2;EÞ¼ 0:18;ue3
ðg2;EÞ¼ 0:58;

ue1
ðg3;EÞ¼ 0:23;ue2

ðg3;EÞ¼ 0:58;ue3
ðg3;EÞ¼ 0:18:

Step 2 Let q = 0.5. From model (7), the following linear

programming for the optimal fuzzy measure on ordered set

K = {1, 2, 3} is constructed.

min 0:308ðl1ð1Þ � l1ð2; 3ÞÞ � 0:017ðl1ð2Þ � l1ð1; 3ÞÞ
� 0:292ðl1ð3Þ � l1ð1; 2ÞÞ þ 0:843

s:t:
l1ðSÞ� l1ðTÞ 8S; T � f1; 2; 3g; S � T ;
l1ð1Þ 2 ½0:2; 0:3�; l1ð2Þ 2 ½0:3; 0:4�;
l1ð3Þ 2 ½0:4; 0:5�; l1ð1; 2; 3Þ ¼ 1:

8
<

:

By solving the above linear programming model, it

derives the following optimal fuzzy measure

l1ð1Þ ¼ 0:2; l1ð2Þ ¼ l1ð1; 2Þ ¼ 0:3; l1ð3Þ ¼ l1ð1; 3Þ
¼ 0:5; l1ð2; 3Þ ¼ l1ð1; 2; 3Þ ¼ 1:

Similar to the calculation of the optimal fuzzy measure

l1, the following optimal fuzzy measures with respect to

the attributes cj (j = 2, 3) are obtained.

l jð1Þ ¼ 0:2; l jð2Þ ¼ l jð1; 2Þ ¼ 0:3; l jð3Þ ¼ 0:5; l jð1; 3Þ
¼ l jð2; 3Þ ¼ l jð1; 2; 3Þ ¼ 1:

From Eq. (2), the following generalized Shapley values

with respect to each attribute are obtained.

u1ðl1;KÞ¼ 0:07;uf1;2gðl1;KÞ¼ 0:4;uKðl1;KÞ¼ 1;

u1ðl j;KÞ¼ 0:15;uf1;2gðl j;KÞ¼ 0:4;uKðl j;KÞ¼ 1;

where j = 2, 3.

Step 3 Let ul ¼ ð1� nijelÞ (l = 1, 2, 3) for each pair (i, j)

(i = 1, 2, 3, 4; j = 1, 2, 3), use the IGS-IVIULHCA

operator to calculate the comprehensive value ~aij, i.g.,

�A ¼

½s1:66; s3:33�; ½0:27; 0:43�; ½0:33; 0:5�ð Þ ½s3:33; s4:67�; ½0:43; 0:63�; ½0:17; 0:27�ð Þ ½s4; s5�; ½0:5; 0:67�; ½0:1; 0:23�ð Þ
½s2:67; s3:67�; ½0:37; 0:5�; ½0:27; 0:43�ð Þ ½s2:33; s3:67�; ½0:33; 0:4�; ½0:27; 0:47�ð Þ ½s2; s3:3�; ½0:3; 0:47�; ½0:33; 0:43�ð Þ
½s2:67; s4:67�; ½0:37; 0:57�; ½0:23; 0:37�ð Þ ½s3; s4:33�; ½0:37; 0:57�; ½0:17; 0:33�ð Þ ½s1; s2�; ½0:17; 0:3�; ½0:5; 0:67�ð Þ
½s2:67; s3:67�; ½0:33; 0:5�; ½0:27; 0:4�ð Þ ½s3:67; s5�; ½0:43; 0:63�; ½0:17; 0:3�ð Þ ½s4; s5:33�; ½0:53; 0:7�; ½0:13; 0:23�ð Þ
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~a11 ¼ IGS-IVIULHCAU;u ~a111; ~a
2
11; ~a

3
11

� �

¼ ½s0:07
0:17
1þ0:33
0:67
2þ0:6
0:17
2
0:07
0:17þ0:33
0:67þ0:6
0:17

; s0:07
0:17
2þ0:33
0:67
4þ0:6
0:17
4
0:07
0:17þ0:33
0:67þ0:6
0:17

�;
�

1� ð1� 0:2Þ
0:07
0:17

0:07
0:17þ0:33
0:67þ0:6
0:17

h


 ð1� 0:3Þ
0:33
0:67

0:07
0:17þ0:33
0:67þ0:6
0:17 
 ð1� 0:3Þ
0:6
0:17

0:07
0:17þ0:33
0:67þ0:6
0:17;

1� ð1� 0:3Þ
0:07
0:17

0:07
0:17þ0:33
0:67þ0:6
0:17


 ð1� 0:5Þ
0:33
0:67

0:07
0:17þ0:33
0:67þ0:6
0:17 
 ð1� 0:5Þ
0:6
0:17

0:07
0:17þ0:33
0:67þ0:6
0:17�;
½0:5 0:07
0:17

0:07
0:17þ0:33
0:67þ0:6
0:17 
 0:2
0:33
0:67

0:07
0:17þ0:33
0:67þ0:6
0:17


0:3
0:6
0:17

0:07
0:17þ0:33
0:67þ0:6
0:17; 0:6
0:07
0:17

0:07
0:17þ0:33
0:67þ0:6
0:17


0:4
0:33
0:67

0:07
0:17þ0:33
0:67þ0:6
0:17 
 0:5
0:6
0:17

0:07
0:17þ0:33
0:67þ0:6
0:17�



¼ ½s1:96; s3:93�; ½0:3; 0:49�; ½0:23; 0:43�ð Þ:

Similar to the calculation of ~a11, the following com-

prehensive IVIULN matrix is obtained.

Step 4 Let q = 0.5. From model (10), the following linear

programming for the optimal fuzzy measure g on attribute

set C is constructed.

min 0:063ðgðc1Þ � gðc2; c3ÞÞ � 0:012ðgðc2Þ � gðc1; c3ÞÞ
� 0:052ðgðc3Þ � gðc1; c2ÞÞ þ 1:95

s:t:
gðSÞ� gðTÞ 8S; T � fc1; c2; c3g; S � T ;
gðc1Þ 2 ½0:3; 0:5�; gðc2Þ 2 ½0:4; 0:6�;
gðc3Þ 2 ½0:4; 0:5�; gðc1; c2; c3Þ ¼ 1:

8
<

:

By solving the above linear programming model, it

derives the following optimal fuzzy measure

gðc1Þ ¼ 0:3; gðc2Þ ¼ gðc1; c2Þ ¼ 0:4; gðc3Þ ¼ gðc1; c3Þ
¼ 0:5; gðc2; c3Þ ¼ gðc1; c2; c3Þ ¼ 1:

From Eq. (3), the attribute Shapley values are derived by

uc1
ðg;CÞ¼ 0:1;uc2

ðg;CÞ¼ 0:4;uc3
ðg;CÞ¼ 0:5.

Step 5 Let q = 0.5. From model (11), the following linear

programming for the optimal fuzzy measure l on ordered

set N = {1, 2, 3} is built.

min 0:263ðlð1Þ � lð2; 3ÞÞ � 0:012ðlð2Þ � lð1; 3ÞÞ
� 0:252ðlð3Þ � lð1; 2ÞÞ þ 1:95

s:t:
lðSÞ� lðTÞ 8S; T � f1; 2; 3g; S � T;
lð1Þ 2 ½0:2; 0:3�; lð2Þ 2 ½0:3; 0:4�;
lð3Þ 2 ½0:4; 0:5�; lð1; 2; 3Þ ¼ 1:

8
<

:

By solving the above linear programming model, the

following optimal fuzzy measure is obtained

lð1Þ ¼ 0:2; lð2Þ ¼ lð1; 2Þ ¼ 0:3; lð3Þ ¼ lð1; 3Þ
¼ 0:5; lð2; 3Þ ¼ lð1; 2; 3Þ ¼ 1:

From Eq. (2), the following generalized Shapley values

are derived

u1ðl;NÞ ¼ 0:07;uf1;2gðl;NÞ ¼ 0:4;uNðl;NÞ ¼ 1:

Step 6 Let up ¼ n�ip

.
ðn�ip þ nþipÞ (p = 1, 2, 3) for each i

(i = 1, 2, 3, 4), use the IGS-IVIULHCA operator, it

derives the comprehensive value ~ai (i = 1, 2, 3, 4). For

example,

~a1 ¼ IGS-IVIULHCAU;u hu1; ~a11i; hu2; ~a12i; hun; ~a13ið Þ

¼ ½s0:07
0:1
1:96þ0:33
0:4
3:06þ0:6
0:5
4:02
0:07
0:1þ0:33
0:4þ0:6
0:5

; s0:07
0:1
3:93þ0:33
0:4
4:87þ0:6
0:5
5
0:07
0:1þ0:33
0:4þ0:6
0:5

�;
�

½1� ð1� 0:3Þ
0:07
0:1

0:07
0:1þ0:33
0:4þ0:6
0:5


 ð1� 0:41Þ
0:33
0:4

0:07
0:1þ0:33
0:4þ0:6
0:5 
 ð1� 0:5Þ
0:6
0:5

0:07
0:1þ0:33
0:4þ0:6
0:5;

1� ð1� 0:49Þ
0:07
0:1

0:07
0:1þ0:33
0:4þ0:6
0:5


ð1� 0:68Þ
0:33
0:4

0:07
0:1þ0:33
0:4þ0:6
0:5 
 ð1� 0:69Þ
0:6
0:5

0:07
0:1þ0:33
0:4þ0:6
0:5�;
½0:23 0:07
0:1

0:07
0:1þ0:33
0:4þ0:6
0:5 
 0:19
0:33
0:4

0:07
0:1þ0:33
0:4þ0:6
0:5


0:1
0:6
0:5

0:07
0:1þ0:33
0:4þ0:6
0:5; 0:43
0:07
0:1

0:07
0:1þ0:33
0:4þ0:6
0:5


0:29
0:33
0:4

0:07
0:1þ0:33
0:4þ0:6
0:5 
 0:21
0:6
0:5

0:07
0:1þ0:33
0:4þ0:6
0:5�Þ
¼ ½s3:7; s4:94�; ½0:47; 0:68�; ½0:12; 0:23�ð Þ:

Similar to the calculation of ~a1, the comprehensive

IVIULNs of the alternatives are obtained as follows:

~a2 ¼ ½s2:22; s3:98�; ½0:33; 0:49�; ½0:28; 0:41�ð Þ;
~a3 ¼ ½s2:73; s4:47�; ½0:37; 0:56�; ½0:22; 0:35�ð Þ;
~a4 ¼ ½s3:67; s5:29�; ½0:51; 0:71�; ½0:13; 0:24�ð Þ:

Step 7 According to the comprehensive IVIULNs

~ai(i = 1,2,3), it derives

A ¼

½s1:96; s3:93�; ½0:30; 0:49�; ½0:23; 0:43�ð Þ ½s3:06; s4:87�; ½0:41; 0:68�; ½0:19; 0:29�ð Þ ½s4:02; s5:00�; ½0:50; 0:69�; ½0:10; 0:21�ð Þ
½s2:07; s3:07�; ½0:31; 0:41�; ½0:35; 0:55�ð Þ ½s2:89; s4:26�; ½0:40; 0:53�; ½0:22; 0:42�ð Þ ½s1:93; s3:00�; ½0:29; 0:48�; ½0:31; 0:41�ð Þ
½s2:96; s4:96�; ½0:40; 0:60�; ½0:23; 0:33�ð Þ ½s3:07; s4:88�; ½0:39; 0:59�; ½0:18; 0:31�ð Þ ½s1:07; s2:07�; ½0:19; 0:31�; ½0:49; 0:67�ð Þ
½s2:05; s3:05�; ½0:29; 0:49�; ½0:30; 0:41�ð Þ ½s3:20; s5:00�; ½0:41; 0:61�; ½0:19; 0:30�ð Þ ½s3:91; s5:47�; ½0:55; 0:75�; ½0:11; 0:21�ð Þ

0

BBB@

1

CCCA

868 Int. J. Mach. Learn. & Cyber. (2015) 6:859–871

123



~aþ ¼ ½s3:7; s5:29�; ½0:51; 0:71�;ð ½0:12; 0:23�Þ;
~a� ¼ ½s2:22; s3:98�; ½0:33; 0:49�; ½0:28; 0:41�ð Þ

and

d1 ¼ 0:68; d2 ¼ 0:26; d3 ¼ 0:43; d4 ¼ 0:75:

Step 8 From Step 7, it obtains d4[d1[d3[d2. Thus, a4
(arms company) is the best choice.

In Step 8, when we adopt the Liu’s ranking method [15],

then the expected values of the alternatives are

Eð~a1Þ ¼ 2:87;Eð~a2Þ ¼ 1:65;Eð~a3Þ ¼ 2:12;Eð~a4Þ ¼ 3:19:

From Eð~aiÞ (i = 1, 2, 3, 4), the same ranking results are

obtained, and a4 (arms company) is the best choice.

In this example, when the aggregation operators in [23,

35, 36] are applied to calculate the comprehensive attribute

values of alternatives, ranking orders are obtained as shown

in Table 1.

From Table 1, one can see that the same ranking order is

derived by using the IVIULWAA operator [23], the

IVIULWGA operator [23], the IVIULHG operator [23],

the GS-IVIULCGM operator [35] and the I-IVIULHSG

operator [36]. Furthermore, it obtains the same ranking

order by applying the IGS- IVIULHCA operator, the GS-

IVIUCA operator [35], and the I-IVIULHSA operator [36].

However, all ranking order shows that the alternative a4 is

the best choice. Because all these aggregation operators are

based on different points of view, we need to determine the

weight vector with respect to each aggregation operator.

Although all ranking results show that the alternative a4 is

the best choice, the values of the ranking indices are

different.

6 Conclusion

We have researched interval-valued intuitionistic uncertain

linguistic multi-attribute group decision making with

incomplete weight information and interactive conditions.

In order to derive the comprehensive attribute values for

the alternatives and reflect the interactions between ele-

ments in a set, the induced generalized Shapley interval-

valued intuitionistic uncertain linguistic hybrid Choquet

averaging (IGS-IVIULHCA) operator is defined, which

globally considers not only the importance of elements but

also their correlations. By using the defined grey relational

coefficient for interval-valued intuitionistic uncertain lin-

guistic sets, models for the optimal fuzzy measures on the

expert set, on the attribute set and on their ordered sets are

respectively established, which use their Shapley values as

their weights. It is worth noticing that when there is no

interaction between elements, then we get their corre-

sponding models for the optimal weight vectors. Further-

more, an approach to interval-valued intuitionistic

uncertain linguistic multi-attribute group decision making

problems is developed, which considers the decision

maker’s weight for each attribute. It is worth noticing that

we can also have other methods to decision making with

interval-valued intuitionistic uncertain linguistic informa-

tion such as maximum fuzziness [51], maximum ambiguity

[52] a maximum entropy [53].

However, this paper only develops an approach to group

decision making with interval-valued intuitionistic uncer-

tain linguistic information, and we will further consider the

application of IVIULSs in the other fields such as pattern

recognition, expert system, social sciences, and economics.
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