
ORIGINAL ARTICLE

Least squares recursive projection twin support vector machine
for multi-class classification

Zhi-Min Yang1 • He-Ji Wu2 • Chun-Na Li1 • Yuan-Hai Shao1

Received: 17 September 2014 / Accepted: 27 June 2015 / Published online: 10 July 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Multiple recursive projection twin support

vector machine (MPTSVM) is a recently proposed classi-

fier and has been proved to be outstanding in pattern

recognition. However, MPTSVM is computationally

expensive since it involves solving a series of quadratic

programming problems. To relieve the training burden, in

this paper, we propose a novel multiple least squares

recursive projection twin support vector machine

(MLSPTSVM) based on least squares recursive projection

twin support vector machine (LSPTSVM) for multi-class

classification problem. For a KðK[2Þ classes classifica-

tion problem, MLSPTSVM aims at seeking K groups of

projection axes, one for each class that separates it from all

the other. Due to solving a series of linear equations, our

algorithm tends to relatively simple and fast. Moreover, a

recursive procure is introduced to generate multiple

orthogonal projection axes for each class to enhance its

performance. Experimental results on several synthetic and

UCI datasets, as well as on relatively large datasets

demonstrate that our MLSPTSVM has comparable classi-

fication accuracy while takes significantly less computing

time compared with MPTSVM, and also obtains better

performance than several other SVM related methods

being used for multi-class classification problem.

Keywords Pattern recognition � Multi-class

classification � Multiple recursive projection � Projection
twin support vector machine � Least squares recursive
projection twin support vector machine

1 Introduction

Support vector machine (SVM) [1, 2], being widely used

for pattern classification and regression problems, was

introduced by Vapnik and his co-workers in the early

1990s. Previous studies demonstrated the superiority of

SVM [3–5]. By employing the structural risk minimization

(SRM) principle [6], SVM tries to find a decision hyper-

plane that separates data points from two classes well by

constructing two parallel support hyperplanes that the

margin between them is maximized. However, SVM needs

to solve a quadratic programming problem (QPP), which

restricts its application to large scale problems. To address

this issue, numerous approaches have been proposed [7–

12].

For binary classification, some nonparallel hyperplane

classifiers have attracted much attention. Mangasarian and

Wild [9] proposed a generalized eigenvalue proximal

support vector machine (GEPSVM) which aims at finding

two nonparallel hyperplanes such that each hyperplane is

closer to its own class and far from the other class as much

as possible. This idea leads to solving two generalized

eigenvalue problems which in turn reduces computation

cost compared with SVM. Subsequently, an improved

version of GEPSVM, called IGEPSVM [13], is proposed to

& Yuan-Hai Shao

shaoyuanhai21@163.com

Zhi-Min Yang

yzm9966@126.com

He-Ji Wu

flary005@163.com

Chun-Na Li

na1013na@163.com

1 Zhijiang College, Zhejiang University of Technology,

Hangzhou 310024, People’s Republic of China

2 College of Science, Zhejiang University of Technology,

Hangzhou 310023, People’s Republic of China

123

Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

DOI 10.1007/s13042-015-0394-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0394-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0394-x&domain=pdf

remove the possible singularity problem of GEPSVM. In

the spirit of GEPSVM, Jayadeva et. al. [10] proposed the

twin support vector machine (TWSVM). Different from

SVM, TWSVM solves two smaller sized QPPs rather than

a single large one, which makes the learning speed of

TWSVM be approximately four times faster than that of

SVM. Both GEPSVM and TWSVM share the idea of

nonparallel SVMs, which is in fact has been studied

extensively [14–20].

Instead of finding nonparallel hyperplanes, the idea of

seeking projection axes for SVMs has also been established.

Ye et. al. [21] proposed a multi-weight vector projection

support vector machine (MVSVM), whose purpose is to find

two optimal weight vector projection directions, such that

each class is centered around its own class centroid while is

separated as much as possible from the other class in the

projected space. Inspired by TWSVM and MVSVM, pro-

jection twin support vector machine (PTSVM) [22, 23] is

proposed recently. The central thought of PTSVM is to find a

projection axis one for each class, such that the within-class

variance of the projected data points of its own class is

minimizedmeanwhile projected data points of the other class

scatter away as far as possible. PTSVM can be extended to

find multiple orthogonal directions by a recursive procure.

To accelerate the training speed of PTSVM, Shao et al. [24]

adopted the idea of least squares [7, 14] and proposed a least

squares projection twin support vectormachine (LSPTSVM)

by considering the equality constraints. An extra regular-

ization term is introduced in the primal problem of

LSPTSVM to remove the singularity problem that may

appear in PTSVM.

As a natural extension of binary classification problem,

multi-class classification has also drawn many attentions.

Among all the methods, SVM and its variants [25–29] have

been confirmed to have outstanding performance. Gener-

ally speaking, two types of strategies are widely used when

SVMs are applied. One is the ‘‘decomposition-reconstruc-

tion’’ strategy which involves solving a series of small

sized optimization problems, including the classical ‘‘one

versus one’’ and ‘‘one versus rest’’ techniques [26–29]. The

other one is the ‘‘all-together’’ strategy through solving one

large scale optimization problem [25].

Being a successful multi-class classification tool, mul-

tiple recursive projection twin support vector machine

(MPTSVM) [29] is a recently proposed SVM-type classi-

fier, which is established based on binary PTSVM by uti-

lizing the ‘‘one versus rest’’ technique. Though MPTSVM

performs satisfactorily, it is computationally expensive

since a series of QPPs are needed to be solved. For this

purpose, in this paper, we extend the LSPTSVM to multi-

class classification problem, and propose a multiple least

squares recursive projection twin support vector machine

(MLSPTSVM). Instead of solving complex QPPs in

MPTSVM, our MLSPTSVM solves a series of linear

equations, which leads to relatively fast training speed. For

KðK[2Þ classes classification problem, our MLSPTSVM

determines K groups of projection axes, one group for each

class, such that the within-class variance of the projected

data points of its own class is minimized while each pro-

jected class is far awat from the projected centers of the

other classes. Specially, we apply the classical ‘‘one versus

rest’’ multi-class classification technique to our

MLSPTSVM by considering its advantage on computa-

tional efficiency. Preliminary experimental results on sev-

eral real-world datasets and large datasets show the

advantages of MLSPTSVM over MPTSVM and other

SVM related methods for multi-class classification prob-

lem. The following are the highlights of our MLSPTSVM:

1. MLSPTSVM considers both the linear and the non-

linear models, while the binary LSPTSVM ignores the

nonlinear case.

2. MLSPTSVM solves a series of linear equations, which

makes it can handle the large datasets easily.

3. MLSPTSVM could generate multiple orthogonal pro-

jection directions for each class, which may notably

enhance its performance.

4. The Sherman–Morrison–Woodbury (SMW) formula-

tion and the reduced kernel technique are employed to

reduce the complexity of nonlinear MLSPTSVM.

The rest of the paper is organized as follows: In Sect. 2, we

provide the basic notations and give a brief review of

TWSVM, PTSVM and LSPTSVM. Section 3 presents the

details of MLSPTSVM under different requirement and its

computational complexity. A variety of experimental

results are demonstrated in Sect. 4. Finally, Sect. 5 con-

cludes this paper.

2 Preliminaries

In this section, we consider the binary classification prob-

lem of classifying m data points in the n-dimensional real

space R
n, with data points in class 1 and class 2 are rep-

resented by the matrices A ¼ ða1; . . .; am1
ÞT 2 R

m1�n and

B ¼ ðb1; . . .; bm2
ÞT 2 R

m2�n respectively, where

m ¼ m1 þ m2. In the following, we will give a brief review

of TSVM, PTSVM and LSPTSVM.

2.1 Twin support vector machine

Twin support vector machine (TWSVM) [10] aims at

determining two nonparallel hyperplanes xTwð1Þ þ bð1Þ ¼ 0

and xTwð2Þ þ bð2Þ ¼ 0, such that each hyperplane is close to

data points of one class and far from the data points of the

412 Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

123

other class. The two hyperplanes are obtained by solving a

pair of SVM-type QPPs as the following

min
wð1Þ;bð1Þ;n

1

2
ðAwð1Þ þ e1b

ð1ÞÞTðAwð1Þ þ e1b
ð1ÞÞ þ c1e

T
2n

s.t. � ðBwð1Þ þ e2b
ð1ÞÞ þ n� e2; n� 0

ð1Þ

and

min
wð2Þ;bð2Þ;g

1

2
ðBwð2Þ þ e2b

ð2ÞÞTðBwð2Þ þ e2b
ð2ÞÞ þ c2e

T
1g

s.t. ðAwð2Þ þ e1b
ð2ÞÞ þ g� e1; g� 0;

ð2Þ

where c1, c2 [0 are penalty parameters, e1 2 R
m1 and e2 2

R
m2 are vectors of ones, and n; g are vectors of nonnega-

tive slack variables.

Through the K.K.T conditions [30], we can obtain the

Wolf dual forms of problems (1) and (2) as follows

min
a

1

2
aTPðQTQÞ�1

PTa� eT2a

s.t. 0� a� c1e2

ð3Þ

and

min
c

1

2
cTQðPTPÞ�1

QTc� eT1 c

s.t. 0� c� c1e1:

ð4Þ

Here, Q ¼ ½A; e1�, P ¼ ½B; e2�, and a ¼ ða1; a2; . . .; am2
ÞT

and c ¼ ðc1; c2; . . .; cm1
ÞT are the vectors of Lagrange

multipliers.

Define u ¼ ½wð1Þ; bð1Þ�T and v ¼ ½wð2Þ; bð2Þ�T . Then the

two nonparallel hyperplanes can be obtained from the

solution of problems (3) and (4), which are given by

u ¼ �ðQTQÞ�1
PTa ð5Þ

and

v ¼ ðPTPÞ�1
QTc ð6Þ

respectively. Once vectors u and v are known from (5) and

(6), the two separating hyperplanes xTwð1Þ þ bð1Þ ¼ 0 and

xTwð2Þ þ bð2Þ ¼ 0 are obtained and the training process is

finished. For predicting, a new data point x 2 R
n is

assigned to class iði ¼ 1; 2Þ, depending on which of the two
hyperplanes it lies closer to, i.e.,

labelðxÞ ¼ argmin
i¼1;2

jxTwðiÞ þ bðiÞj; ð7Þ

where j � j is the absolute value operation that computes

perpendicular distance of x to each hyperplane.

It should be noted that, QTQ and PTP in (5) and (6) are

positive semidefinite, and hence it is possible that they may

not be well defined when taking inverse. Therefore, a

regularization term �I can be introduced to avoid the

possible ill-condition of QTQ and PTP, where �[0 and

I is the identity matrix of appropriate dimension.

2.2 Projection twin support vector machine

Different from TWSVM who finds nonparallel hyper-

planes, projection twin support vector machine (PTSVM)

[22] aims at finding two projection axes w1 and w2, one for

each class, such that the within-class variance of projected

data points of its own class is minimized while projected

data points from other class scatter away as far as possible.

This idea leads to the formulations of PTSVM as

min
w1

1

2

Xm1

i¼1

wT
1 ai � wT

1

1

m1

Xm1

j¼1

aj

 !2

þc1
Xm2

k¼1

nk

s.t. wT
1 bk � wT

1

1

m1

Xm1

j¼1

aj þ nk � 1; nk � 0; k ¼ 1; 2; . . .;m2

ð8Þ

and

min
w2

1

2

Xm2

i¼1

wT
2 bi � wT

2

1

m2

Xm2

j¼1

bj

 !2

þc2
Xm1

k¼1

gk

s.t. � wT
2 ak � wT

2

1

m2

Xm2

j¼1

bj

 !
þ gk � 1; gk � 0;

k ¼ 1; 2; . . .;m1; ð9Þ

where c1 and c2 are trade-off parameters, and nk; gk are

nonnegative slack variables.

Before determining solutions of (8) and (9), we first

define

S1 ¼
Xm1

i¼1

ai �
1

m1

Xm1

j¼1

aj

 !
ai �

1

m1

Xm1

j¼1

aj

 !T

ð10Þ

and

S2 ¼
Xm2

i¼1

bi �
1

m2

Xm2

j¼1

bj

 !
bi �

1

m2

Xm2

j¼1

bj

 !T

; ð11Þ

as the covariance matrices of the first and second class,

respectively. Then problems (8) and (9) can be solved

through their Wolf dual forms [30] which are given by

min
a

1

2
aT B� 1

m1

e2e
T
1A

� �
S�1
1 B� 1

m1

e2e
T
1A

� �T

a� eT2a

s.t. 0� a� c1e2 ð12Þ

and

min
c

1

2
cT A� 1

m2

e1e
T
2B

� �
S�1
2 B� 1

m2

e1e
T
2B

� �T

c� eT1 c

s.t. 0� c� c2e1; ð13Þ

Int. J. Mach. Learn. & Cyber. (2016) 7:411–426 413

123

respectively, where a ¼ ða1; a2; . . .; am2
ÞT and c ¼

ðc1; c2; . . .; cm1
ÞT are Lagrange multiplier vectors, e1 2 R

m1

and e2 2 R
m2 are vectors of ones.

After obtaining a and b, w1 and w2 can be expressed by

w1 ¼ S�1
1 B� 1

m1

e2e
T
1A

� �T

a;

w2 ¼ S�1
2 A� 1

m2

e1e
T
2B

� �T

c:

ð14Þ

For a new coming data point x 2 R
n, it is assigned to class

iði ¼ 1; 2Þ depending on which of the two projected class

centers it is closer to, i.e.,

labelðxÞ ¼ argmin
i¼1; 2

fd1; d2g; ð15Þ

where d1 and d2 represent the distances between the pro-

jection of x and the projected center of corresponding class,

which are given by

d1 ¼ wT
1 x� wT

1

1

m1

Xm1

j¼1

aj

�����

����� ð16Þ

and

d2 ¼ wT
2 x� wT

2

1

m2

Xm2

j¼1

bj

�����

�����; ð17Þ

respectively.

It should be noticed that the above procedure requires

the two variance matrices defined by (10) and (11) to be

nonsingular. However, when there are not sufficient

samples, the two variance matrices can be singular. To

deal with this problem, PCA plus LDA [31, 32] tech-

nique has been employed in PTSVM. Furthermore, to

enhance the performance, a recursive procure is intro-

duced in PTSVM to obtain multiple projection axes for

each class.

2.3 Least squares projection twin support vector

machine

By considering equality constraints in the primal prob-

lems of PTSVM, least squares projection twin support

vector machine (LSPTSVM) [24] is proposed. However,

LSPTSVM is not a direct least squares version of

PTSVM. In fact, LSPTSVM introduces a regularization

term in the primal objective function to remove the sin-

gularity problem that may happen in PTSVM and gains

better generalization ability. This leads to following

optimal problems

min
w1

1

2

Xm1

i¼1

wT
1 ai � wT

1

1

m1

Xm1

j¼1

aj

 !2

þ c1

2

Xm2

k¼1

n2k þ
v1

2
kw1k2

s.t. wT
1 bk � wT

1

1

m1

Xm1

j¼1

aj þ nk ¼ 1; k ¼ 1; 2; . . .;m2

ð18Þ

and

min
w2

1

2

Xm2

i¼1

wT
2 bi�wT

2

1

m2

Xm2

j¼1

bj

 !2

þc2

2

Xm1

k¼1

g2k þ
v2

2
kw2k2

s.t. � wT
2 ak�wT

2

1

m2

Xm2

j¼1

bj

 !
þgk ¼ 1; k¼ 1;2; . . .;m1;

ð19Þ

where c1 [0; c2 [0 are trade-off parameters,

v1 [0; v2 [0 are regularization parameters, and nk; gk are
slack variables.

By substituting the equality constraint into the objective

function, we can derive the optimal axes w1 and w2 of (18)

and (19) as

w1¼
S1

c1
þ �Bþ 1

m1

e2e
T
1A

� �T

�Bþ 1

m1

e2e
T
1A

� �
þv1

c1
I

" #�1

� B� 1

m1

e2e
T
1A

� �T

e2 ð20Þ

and

w2 ¼� S2

c2
þ A� 1

m2

e1e
T
2B

� �T

A� 1

m2

e1e
T
2B

� �
þ v2

c2
I

" #�1

� A� 1

m2

e1e
T
2B

� �T

e1; ð21Þ

where e1 2 R
m1 , e2 2 R

m2 are vectors of ones, I is the

identity matrix with appropriate dimension, and S1; S2 are

defined as in (10) and (11) respectively. It is clear that

different from PTSVM, LSPTSVM will not encounter the

singularity problem due to the nonsingularity of the

involved matrices ðS1
c1
þ ð�Bþ 1

m1
e2e

T
1AÞ

Tð�Bþ 1
m1
e2e

T
1AÞ

þ v1
c1
IÞ and ðS2

c2
þ ðA� 1

m2
e1e

T
2BÞ

TðA� 1
m2
e1e

T
2BÞ þ v2

c2
IÞ.

This makes LSPTSVM much more stable.

In order to further enhance the performance of

LSPTSVM, multiple orthogonal directions for each class

can also be obtained by using a recursive procedure. Sup-

pose that the two groups of desired projection axes are

W1 ¼ fwðtÞ
1 ; t ¼ 1; 2; . . .; rg and W2 ¼fwðtÞ

2 ; t¼ 1;2; . . .;rg,
where w

ðtÞ
1 and w

ðtÞ
2 are obtained from (20) and (21)

recursively, and r is the desired number of projection axes

for each class. For testing, the label of a new coming data

414 Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

123

point x2R
n can be similarly determined by (15), but with

d1 and d2 are newly defined by

d1 ¼ WT
1 x�WT

1

1

m1

Xm1

j¼1

aj

�����

�����

�����

����� ð22Þ

and

d2 ¼ WT
2 x�WT

2

1

m2

Xm2

j¼1

bj

�����

�����

�����

�����; ð23Þ

respectively, where jj � jj represents the 2-norm of a vector.

3 Multi-class least squares recursive projection
twin support vector machine

In this section, we consider multi-class classification

problem with the dataset T ¼ fðX; YÞg contains K� 2

classes, where X ¼ fx1; . . .; xmg consists of m data points

and each data point is an n-dimensional vector, and Y 2 R
m

is the corresponding output with each element belonging to

f1; . . .;Kg. We further organize data points in the i-th class

as Ai ¼ ðxi1; . . .; ximi
ÞT 2 R

mi�n and define Bi ¼
ðxi1; . . .; ximi

ÞT 2 R
mi�n as the set of the rest K � 1 classes,

where mi is the number of data points in the i-th class and

mi ¼ m� mi represents the number of data points in the

rest K � 1 classes. In the following, we will present our

multi-class least squares recursive projection twin support

vector machine (MLSPTSVM) for the above K classes

classification problem.

3.1 Linear MLSPTSVM

3.1.1 One projection axis

For K classes classification problem, linear MLSPTSVM

generates K projection axes in the primal space, one for

each class that separates one class from all the other classes

in the same manner of binary LSPTSVM. Specifically, it

requires that the projected points of one class are close to

its projected center as much as possible while the distance

from the projected center to the rest K � 1 classes are far

away to some extent. Denote wi the projection axis for the

i-th class, i ¼ 1; 2; . . .K. Then linear MLSPTSVM con-

siders the following problem

min
wi

1

2

Xmi

j¼1

wT
i xij � wT

i

1

mi

Xmi

s¼1

xis

 !2

þ ci

2

Xmi

k¼1

n2k þ
vi

2
kwik2

s.t. wT
i xik � wT

i

1

mi

Xmi

s¼1

xis þ nk ¼ 1; k ¼ 1; 2; . . .;mi;

ð24Þ

where ci [0 is the trade-off parameter, vi [0 is the reg-

ularization parameter, and nk are slack variables. We now

give the geometric interpretation of problem (24). By

employing the quadratic loss function, the first two terms of

the objective function and the constraint are committed to

minimize the empirical risk, which ensures the projected

points of its own class are clustered around its projected

center meanwhile the distances from the projected center to

the rest classes are far away to some extents. Note that the

nonnegative constraints of nk are abandoned due to the

usage of quadratic loss function. The last term in the

objective function is a regularization term which is utilized

to avoid the singularity problem of our model and reach

better generalization ability, which is similar to classical

SVM [1, 2] and improved TWSVM [15].

Problem (24) can be solved by the following process.

We first define the within-class variance matrix Si for the i-

th class as

Si ¼ Ai �
1

mi

eie
T
i Ai

� �T

Ai �
1

mi

eie
T
i Ai

� �
; ð25Þ

where ei 2 R
mi is the vector of ones. Substituting the

constraint into the objective function, problem (24) is

converted into an unconstrained problem which is given by

min
wi

1

2
wT
i Siwi þ

ci

2
�Biwi þ

1

mi

eie
T
i Aiwi þ ei

����

����
2

þ vi

2
kwik2;

ð26Þ

where ei 2 R
mi is the vector of ones. Set the gradient of the

objective function in (26) with respect to wi to zero, then

Siwiþ ci �Biþ
1

mi

eie
T
i Ai

� �T

�Biwiþ
1

mi

eie
T
i Aiwiþ ei

� �

þ viwi ¼ 0:

ð27Þ

For simplicity, we define Hi ¼ðAi� 1
mi
eie

T
i AiÞ2R

mi�n and

Gi ¼ðBi� 1
mi
eie

T
i AiÞ2R

mi�n. Therefore, the optimal projec-

tion vector wi of problem (24) can be obtained from (27) by

wi ¼
1

ci
HT

i Hi þ
vi

ci
I

� �
þ GT

i Gi

� ��1

GT
i ei: ð28Þ

Here I is the identity matrix with appropriate dimension.

Owes to the extra regularization term in problem (24), the

singularity issue is ruled out since the involved matrix in

(28) is positive definite.

After K optimal projection axes wiði ¼ 1; . . .;KÞ are

obtained from (28), the training stage is complete. For

predicting, the label of a new coming data point x 2 R
n is

determined depending on which of the class center it is

closer to in the projected space:

Int. J. Mach. Learn. & Cyber. (2016) 7:411–426 415

123

labelðxÞ ¼ arg min
i¼1;...;K

wT
i x� wT

i

1

mi

eTi Ai

����

����: ð29Þ

The whole process above leads to the following

Algorithm 1.

3.1.2 Multiple orthogonal projection axes

In order to further enhance the performance of our

MLSPTSVM, we can obtain multiple orthogonal projec-

tion axes for each class by a recursive procure. The

recursive procure contains two steps: ðiÞ determine pro-

jection axes wiði ¼ 1; . . .;KÞ one for each class by carrying

out Algorithm 1, and normalize wi to have unit norm, i.e.,

wi ¼ wi=kwik; ðiiÞ generate new data points by projecting

the original data points into projection subspace which is

orthogonal to projection axis wi.

Denote Wi ¼ fwðjÞ
i jj ¼ 1; . . .; rg (1� i�K) as the set of

multiple projection axes of the i-th class, where w
ðjÞ
i is the j-

th projection axis and r is the desired number of projection

axes of the i-th class, respectively. Then, the decision

function of a new coming data x 2 R
n for multiple pro-

jection axes case is given by

labelðxÞ ¼ arg min
i¼1;...;K

WT
i x�WT

i

1

mi

eTi Ai

����

����: ð30Þ

Suppose that XðjÞ is the j-th projected dataset and x
ðjÞ
l is the

l-th data point in dataset XðjÞ (j ¼ 1; . . .; r; l ¼ 1; . . .;m).
Then, the proposed recursive MLSPTSVM algorithm

works as in Algorithm 2.

We show that the multiple projection axes obtained for

each class by Algorithm 2 is actually orthogonal to each

other.

Theorem 1 By implementing Algorithm 2, the resulting

Wi is an orthonormal set for each i ¼ 1; . . .;K.

Proof We here take the similar strategy in [22, 33, 34].

Since each w
ðjÞ
i is a unit vector by performing Algorithm2,

we need only to prove that w
j
i is orthogonal to w

ðj�kÞ
i for all

k ¼ 1; 2; . . .; j� 1. According to the definition of Gi and ei
in Sect. 3.1.1, GT

i ei is a linear combination of the row

vectors of matrices Ai and Bi, i.e. the input samples. By

observing (28), this implies that in the j-th iteration, each

projection axis w
ðjÞ
i is a linear combination of the input

samples x
ðjÞ
l , where l ¼ 1; . . .;m. For the newly obtained

projected data in the j-th iteration (Step (3) in Algorithm 2),

by multiplying w
ðj�1Þ
i

T
, we have

w
ðj�1Þ
i

T
x
ðjÞ
l ¼ w

ðj�1Þ
i

T
x
ðj�1Þ
l � w

ðj�1Þ
i

T
w
ðj�1Þ
i w

ðj�1Þ
i

T
x
ðj�1Þ
l ¼ 0:

This means w
ðj�1Þ
i is orthogonal to the input samples x

ðjÞ
l ,

which in turn implies that w
ðjÞ
i is orthogonal to w

ðj�1Þ
i .

In the same way, we can justify that w
ðjÞ
i is orthogonal to

w
ðj�kÞ
i for all k ¼ 2; . . .; j� 1. Therefore, Wi is an orthonor-

mal set for each i ¼ 1; . . .;K and the proof is completed.

From Theorem 1, we see that each Wi spans

an orthogonal subspace such that the discriminative

information for classification are contained as much as

possible.

3.2 Nonlinear MLSPTSVM

In this subsection, we extend the linear MLSPTSVM to the

nonlinear case, which is ignored in LSPTSVM [24]. Con-

sider the nonlinear kernel K, and let C ¼ ½A1; . . .;AK �T .
Then the within-class variance of the i-th class in the kernel

space can be written as

ðSiÞ/ ¼ KðAi;C
TÞ � 1

mi

eie
T
i KðAi;C

TÞ
� �T

� KðAi;C
TÞ � 1

mi

eie
T
i KðAi;C

TÞ
� �

;

ð31Þ

and nonlinear MLSPTSVM leads to the following uncon-

straint problem

min
wi

1

2
wT
i ðSiÞ

/
wi

þ ci

2
k � KðBi;C

TÞwi þ
1

mi

eie
T
i KðAi;C

TÞwi þ eik2 þ
vi

2
kwik2;

ð32Þ

where ci [0 is the trade-off parameter, vi [0 is the reg-

ularization parameter, and ei 2 R
mi , ei 2 R

mi are vectors of

ones. The optimal solution of problem (32) can be deter-

mined by

Algorithm 1 Linear MLSPTSVM for one projection axis.
Input: Dataset: X = {x1, . . . , xm}; test data: x.
Output: Projection axes: {wi|i = 1, . . . ,K}; the predicted label of x: y.
Process:
(1) Initialization: Let the class number i = 1.
(2) while i ≤ K.

do
Select the penalty parameters ci and vi;
Compute the corresponding variance matrix Si by (25);
Determine the solution wi of (24) by(28);
i = i + 1.

end
(3) Predicting: Assign x to class y = label(x) by (29).

Algorithm 2 Linear recursive MLSPTSVM for multiple projection axes.
Input: Dataset: X = {x1, . . . , xm}; test data: x; desired projection axes number: r.
Output: Projection axes: Wi = {w(j)

i |j = 1, . . . , r} (i = 1, . . . ,K); the predicted label of x: y.
Process:
(1)Initialization: Let the training set X(1) = X = {x(1)l = xl, l = 1, . . . ,m}, the class number

i = 1, and the axis number j = 1;
(2)Determine w

(j)
i on dataset X(j) by implementing Algorithm 1, and normalize w

(j)
i to have

unit norm, i.e., w(j)
i = w

(j)
i / w

(j)
i ;

(3)for j = 2, . . . , r
do

X(j) = {x(j)l |x(j)l = x(j−1)
l − w

(j−1)
i w

(j−1)
i

T
x(j−1)
l , l = 1, . . . ,m};

Implement (2);
end

(4) If i < K, let i = i+ 1, j = 1 and go back to step (2); otherwise, go to step (5);
(5) Predicting: Assign x to class y = label(x) by (30).

416 Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

123

wi ¼
1

ci
H

T

i Hi þ
vi

ci
I

� �
þ G

T

i Gi

� ��1

G
T

i ei; ð33Þ

where Hi ¼ KðAi;C
TÞ � 1

mi
eie

T
i KðAi;C

TÞ and Gi ¼ K
ðBi;C

TÞ � 1
mi
eie

T
i KðAi;C

TÞ.
After the K optimal projection axes wi (i ¼ 1; . . .;K) are

obtained, the label of a new coming data point x is clas-

sified in the same way as the linear case. To get multiple

projection axes, the similar procedure can be taken as in

Algorithm 2, which will be omitted here.

3.3 Computational analysis

We analyze the computation complexity of our

MLSPTSVM in this subsection. Suppose r is the desired

number of projection axes for each class. From (28), we see

that linear MLSPTSVM solves K classes classification

problem mainly by giving K matrix inverses of size n� n,

where n � m. Thus the time complexity of linear

MLSPTSVM is about OðKrn3Þ. Similarly, by observing

(33), the nonlinear MLSPTSVM requires K matrix inverses

of order m� m, and it takes OðKrm3Þ time.

In order to reduce the time complexity when calculating

matrix inverses for nonlinear MLSPTSVM, we resort to the

followingSherman–Morrison–Woodbury (SMW)formula [30]

ðAþ UVTÞ�1 ¼ A�1 � A�1UðI þ VTA�1UÞ�1
VTA�1:

ð34Þ

Specifically, by (34), we can rewrite (33) as

wi ¼ ðYi � YiG
T

i ðI þ GiYiG
T

i Þ
�1
GiYiÞG

T

i ei; ð35Þ

where Yi ¼ ð1
ci
H

T

i Hi þ vi
ci
IÞ�1

that can be further rewritten

by (34) as

Yi ¼
ci

vi
I � 1

vi
H

T

i ðI þ
1

vi
HiH

T

i Þ
�1
Hi

� �
: ð36Þ

As we can observe from (35) and (36), the calculation of

matrix inverse in (33) is converted into two smaller sized

m� m matrix inverses, that is, ðI þ 1
vi
HiH

T

i Þ
�1 2 R

mi�mi

and ðI þ GiYiG
T

i Þ
�1 2 R

mi�mi . Therefore, the computation

complexity of nonlinear MLSPTSVM can be reduced to

OðKrd3Þ, where d ¼ maxfmi;miji ¼ 1; . . .;Kg.
Furthermore, if the number of data points m in dataset T

is very large, then the rectangular kernel technique [8, 35]

can be applied to reduce the dimensionality of nonlinear

MLSPTSVM. Specifically, we can reduce KðAi;C
TÞ of size

mi � m and KðBi;C
TÞ of size mi � m to much smaller sizes

mi � em and mi � em, respectively. Here em is as small as

1–10 %ofm andC is an em � n random submatrix ofC. Thus

the complexity of nonlinear MLSPTSVM can be largely

reduced. The rectangular kernel technique not only makes

large scale problem tractable, but also leads to improved

generalization performance by avoiding data overfitting [8].

4 Experimental results

To demonstrate the classification ability of MLSPTSVM,

we perform our MLSPTSVM, the recently proposed

MPTSVM [29], together with other four state-of-the-art

binary classification methods, including SVM [1, 2],

GEPSVM [9], TWSVM [10], and LSTSVM [14] on arti-

ficial datasets, publicly available UCI datasets [36] and

some large datasets [37]. Note that the SVM, GEPSVM,

TWSVM and LSTSVM are applied here to multi-class

classification problem by using one vs rest technique. To

clarify the fact that these binary classifiers are used in the

multi-classification context, we re-term them as MSVM,

MGEPSVM, MTWSVM, and MLSTSVM respectively,

where the first letter ‘‘M’’ represents ‘‘multiple’’. All the

methods are implemented in MATLAB 2013a environment

on a PC with Intel i5 processor (2.67 GHz), 2 GB RAM.

MSVM is implemented by LIBSVM [38] due to its fast

training speed. The dual QPPs arising in MSVM,

MTWSVM and MPTSVM are solved using Mosek opti-

mization toolbox, the eigenvalue problems in MGEPSVM

are solved by a function ‘eig’, and the matrix inverse prob-

lems in several methods including MLSPTSVM are solved

by calling operation ‘n’. For parameter selection, all the

parameters except for the number of projection axes in

MPTSVM and MLSPTSVM, are selected from 2�8 to 28 by

employing the standard tenfold cross-validation technique

[39]. Experiments are repeated five times on each dataset and

the corresponding results are recorded, including the means

and standard deviations of test accuracies, computing time

which are obtained under the best parameters, and p values

which are calculated by performing paired t-test in 5 %

significance level. Specially, in order to compare the per-

formances of various methods intuitively, we mark the

highest accuracy on each dataset in bold.

4.1 Artificial examples

We first conduct experiments on two artificial examples to

evaluate the performance of our MLSPTSVM in comparison

to MPTSVM. The first dataset is a three-dimensional Xor

dataset that consists of 153 samples with three classes of the

same size, as shown in Fig. 1. This three-dimensional Xor

dataset is obtained by randomly perturbing points around

three intersecting lines. The second dataset is a cross plane

dataset containing three classes, with 600 samples are gen-

erated in a two-dimensional plane, as shown in Fig. 2.

Int. J. Mach. Learn. & Cyber. (2016) 7:411–426 417

123

For the experiment on the first dataset, the number of

projection axes for each class is set to 1 for both

MLSPTSVM and MPTSVM. Fig. 3a, b show the classifi-

cation results by plotting the distance distributions of

MPTSVM and MLSPTSVM. Specifically, di (i ¼ 1; 2; 3) in

Fig. 3 are the distances between the projected points and

the i-th projected center. MLSPTSVM classifies the Xor

dataset well with just two misclassified points, which is the

same for MPTSVM.

For the second artificial dataset, Fig. 4a, b depict the

three projection directions obtained by MPTSVM and

MLSPTSVM, respectively. From Fig. 4, we see that the

resulting directions for these two methods are very similar.

To make the comparison clearer, the specific performances

of MPTSVM and MLSPTSVM on the two datasets are

reported in Table 1. As we can observe in Table 1,

MLSPTSVM has comparable classification accuracy to

that of MPTSVM but with considerably less computing

time. Furthermore, by observing the p values, we see that

0.775 and 0.799 are much greater than 0.05, which implies

that the performance of these two methods are essentially

similar.

4.2 UCI datasets

In this subsection, we further experiment on six UCI

benchmark datasets [36], whose details are listed in

Table 2. The experimental results for linear and nonlinear

cases of our MLSPTSVM, as well as the other five meth-

ods, i.e., MSVM, MGEPSVM, MTWSVM, MLSTSVM

and MPTSVM are summarized in Tables 3 4, respectively.

For nonlinear classifiers, Gaussian kernel is selected for all

the methods. The SMW technique [30] is employed to

simplify the calculation of matrix inverses for our nonlin-

ear MLSPTSVM. The optimal numbers of projection axes

that are selected from 1 to the dimension of each dataset

are listed in the brackets for MPTSVM and MLSPTSVM.

For the linear case, from Table 3, we observe that

MLSPTSVM and MPTSVM can obtain the highest accu-

racies on most of the datasets among all the methods,

which indicate that they have better generalization capa-

bility than the others. Furthermore, we see that

MLSPTSVM has comparable accuracies to those of

MPTSVM since most of p values between them are larger

than 0.05. On the other side, MLSPTSVM takes signifi-

cantly less computing time than MPTSVM as one can see

in Table 3. For example, MLSPTSVM takes 0.017(s) on

Glass dataset while MPTSVM needs almost 0.431(s).

However, MLSPTSVM is a bit slower than MGEPSVM

and MLSTSVM, which mainly because multiple projection

axes are needed on most datasets for MLSPTSVM.

For the nonlinear case, the employed Gaussian kernel is

defined by Kðx; zÞ ¼ exp � x�zk k2
2p2

� �
, where p is the kernel

parameter. From Table 4, we can see that MLSPTSVM and

MPTSVM outperform the other methods in terms of clas-

sification accuracy, while these two methods achieve

comparable performance by observing both the accuracies

and p values. For example, MPTSVM and MLSPTSVM

obtain accuracies 97.47 and 98.01 % on Pathbased dataset,

while the corresponding p value is 0.084. With regard to

time consumption, from Table 4, it can be seen that

MLSPTSVM takes almost the fewest computing time

compared with its competitors. Specially, MLSPTSVM

takes significantly less time than MPTSVM as in the linear

case. Furthermore, only one projection axis is enough for

MLSPTSVM to get the highest accuracy on three datasets,

i.e., Seeds, Wine and Pathbased, while the corresponding

−10
−5

0
5

10
15

−1

−0.5

0

0.5

1
−10

−5

0

5

10

x
y

z

class1

class2

class3

Fig. 1 A three-dimensional Xor dataset with three classes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

class1

class2

class3

Fig. 2 A two-dimensional crossplane dataset with three classes

418 Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

123

computing times are very competitive. This demonstrates

the superiority of our MLSPTSVM.

In summary, from Tables 3 and 4, we conclude that

MLSPTSVM and MPTSVM outperform other methods in

both linear and nonlinear cases, and there is no statistical

difference in classification accuracy between these two

methods since most of corresponding p values are larger

than 0.05. However, it is evident that MLSPTSVM takes

considerable less computing time compared with

MPTSVM. In addition, the optimal number of projection

axes varies from different datasets for both MPTSVM and

our MLSPTSVM.

4.3 Large datasets

As one observes in Sect. 3, our MLSPTSVM tends to

extremely fast since it only needs to solve a series of linear

equations. In this subsection, we argue the above viewpoint

by exhibiting the ability of our MLSPTSVM on dealing

with large scale datasets. Note that MSVM, MTWSVM

and MPTSVM involve solving complex QPPs with high

computational complexity, which makes them fail on large

datasets. Therefore, we only present the experimental

results of our MLSPTSVM, MGEPSVM and MLSTSVM.

Eight large datasets [37] are used for comparison, whose

0
1

2
3

4
5

6

0
1

2
3

4
5

6
0

1

2

3

4

5

6

d1
d2

d3

class1
class2
class3

(a) MPTSVM

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0
0.2

0.4
0.6

0.8
1

1.2
1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

d1
d2

d3

class1
class2
class3

(b) MLSPTSVM

Fig. 3 Distance distribution of MPTSVM and MLSPTSVM on Xor dataset

Fig. 4 Projection directions of MPTSVM and MLSPTSVM on crossplane dataset

Int. J. Mach. Learn. & Cyber. (2016) 7:411–426 419

123

details are summarized in Table 5. Here, the Mnist dataset

is generated by randomly selecting 30 % samples in each

class of the original dataset, and the other datasets are

combined by the training set and testing set. Since our

linear MLSPTSVM requires to determine the inversion of

matrices whose orders are input space dimension, we per-

form dimensionality reduction step before classifying on

high-dimensional datasets. Therefore, we first employ LDA

[31] on USPS, Reuster300 and Mnist datasets for dimen-

sionality reduction. Furthermore, the number of projection

axes are selected from 1 to 8 for the convenience of further

analyzing in Sect. 4.4.

For the linear case, we report the experimental results of

the three involved methods on the above large datasets in

Table 6. Table 6 demonstrate that our MLSPTSVM out-

performs MLSTSVM and MGEPSVM on most datasets in

terms of classification accuracy, and the corresponding

p values between them are all much smaller than 0.05,

which indicates the effectiveness of our MLSPTSVM over

MLSTSVM and MGEPSVM. For example, for Shuttle

dataset, MGEPSVM and MLSTSVM gain 67.77 and

90.12 % accuracy respectively while MLSPTSVM can

reach to 91.19 %. Meanwhile, the two corresponding

p values are all close to 0. It can also be observed that our

MLSPTSVM is a bit slower than MGEPSVM and

MLSTSVM, which is mainly because that the optimal

number of projection axes is needed to be searched.

However, this also the source of great performance of

MLSPTSVM. In conclusion, the results in Table 6

demonstrate the feasibility of our linear MLSPTSVM on

large datasets.

For the nonlinear case, four datasets in Table 5 are

considered, i.e., Page-blocks, Satimage, Pendigits and

Mnist, and the Gaussian kernel is used in nonlinear

MLSPTSVM. We employ the rectangular kernel technique

[8, 35] to reduce the dimensionality and select 1 % of

training samples to perform the kernel transformation. The

corresponding experimental results of nonlinear

MGEPSVM, MLSTSVM and MLSPTSVM on these four

large datasets are reported in Table 7. From Table 7, we

find that nonlinear MLSPTSVM also handle large datasets

well while with acceptable computational time. For

example, for Pendigis dataset, nonlinear MLSPTSVM

gains as high as 98.42 % accuracy compared with 90.55 %

for linear MLSPTSVM, but with 1.56(s) computational

time. The phenomena further confirms the ability of our

MLSPTSVM to deal with large scale datasets. Besides,

nonlinear MLSPTSVM can obtain comparable classifica-

tion accuracy with MLSTSVM, while these two methods

outperform MGEPSVM to a large extent.

4.4 Parameters analysis

Linear MLSPTSVM contains two sets of penalty parame-

ters ci and vi, i ¼ 1; 2; . . .;K, which are needed to be

selected independently. Moreover, the number of projec-

tion axes is also considered as a parameter. In this sub-

section, we analyze the influence of these parameters to the

performance of our MLSPTSVM on four large datasets,

i.e., Page-blocks, USPS, Pendigits and Shuttle, respec-

tively. For convenience, we use the same ci and vi for each

i ¼ 1; 2; . . .;K, that is, ci = c and vi = v for some c and v.

We first consider the effect of parameters c and v on the

test accuracy, which is shown in Fig. 5. Here, the grid search

method is employed, and the corresponding accuracy is

obtained under the optimal number of projection axes, while

parameters c and v are changing within the set f2�8; . . .; 28g.
From Fig. 5, we observe that the accuracy varies greatly

along with the change of parameters c and v, which implies

that c and v have a great impact on the classification accu-

racy. Thus, to achieve better performance, it is necessary to

select the suitable parameters c and v.

We next depict the relationship between the number of

projection axes and classification accuracy in Fig. 6. Here,

the number of projection axes is selected from 1 to 8. As

we can see from Fig. 6, multiple orthogonal projection

axes are required for the four datasets in order to reach

higher accuracy, and for different datasets, the optimal

number of projection axes varies. For example, USPS

dataset needs six projection axes while Shuttle dataset only

Table 1 Performance comparison of MPTSVM and MLSPTSVM on

artificial datasets

Datasets MPTSVM MLSPTSVM

Acc ± std (%) Acc ± std(%)

Time (s) Time (s)

p value p value

Xor 98.81 ± 0.20 98.83 ± 0.06

0.007 0.002

0.775 –

Crosspalne 97.58 ± 0.31 97.53 ± 0.16

0.038 0.004

0.799 –

Table 2 Details of the benchmark UCI datasets

Dataset Points Features Clusters

(a) Glass 214 9 6

(b) Seeds 210 7 3

(c) Dermatology 366 34 6

(d) Wine 178 13 3

(e) Pathbased 300 2 3

(f) Zoo 101 16 7

420 Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

123

Table 3 Performance comparison for various methods using the linear kernel

Dataset MSVM MGEPSVM MTWSVM MLSTSVM MPTSVM(r) MLSPTSVM(r)

Acc ± std (%) Acc ± std (%) Acc ± std (%) Acc ± std (%) Acc ± std (%) Acc ± std (%)

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

p value p value p value p value p value p value

(a) 58.92 ± 1.26 42.69 ± 1.72 60.34 ± 1.41 59.77 ± 1.28 63.28 ± 1.37(1) 61.41 ± 1.19(7)

0.033 0.003 0.045 0.005 0.431 0.017

0.069 0.000 0.159 0.004 0.080 –

(b) 95.47 ± 0.27 89.29 ± 1.14 95.26 ± 0.45 93.77 ± 0.32 96.91 ± 0.32(2) 97.42 ± 0.23(1)

0.030 0.002 0.022 0.002 0.362 0.003

0.001 0.000 0.001 0.000 0.050 –

(c) 96.67 ± 0.29 84.27 ± 0.59 94.43 ± 0.28 97.31 ± 0.30 97.86 ± 0.49(1) 97.90 ± 0.22(3)

0.077 0.008 0.124 0.008 0.370 0.020

0.002 0.000 0.000 0.034 0.853 –

(d) 98.38 ± 0.61 84.07 ± 0.77 98.39 ± 0.38 98.87 ± 0.62 98.91 ± 0.47(4) 98.92 ± 0.58(2)

0.011 0.002 0.032 0.002 0.148 0.005

0.014 0.000 0.168 0.453 0.937 –

(e) 65.69 ± 1.31 63.54 ± 0.25 63.28 ± 0.36 65.90 ± 0.99 62.73 ± 0.40(2) 62.43 ± 0.96(2)

0.024 0.002 0.014 0.003 0.236 0.005

0.001 0.082 0.225 0.014 0.558 –

(f) 92.51 ± 1.13 87.48 ± 1.78 94.29 ± 0.46 94.65 ± 1.15 97.05 ± 0.07(6) 95.18 ± 1.25(5)

0.012 0.005 0.011 0.004 0.438 0.009

0.049 0.001 0.168 0.567 0.032 –

Table 4 Performance comparison for various methods using the nonlinear kernel

Dataset MSVM MGEPSVM MTWSVM MLSTSVM MPTSVM(r) MLSPTSVM(r)

Acc ± std (%) Acc ± std (%) Acc ± std (%) Acc ± std (%) Acc ± std (%) Acc ± std (%)

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

p value p value p value p value p value p value

(a) 69.77 ± 1.14 60.07 ± 2.21 70.86 ± 1.70 69.65 ± 0.50 72.54 ± 0.50(1) 72.45 ± 0.49(3)

0.072 0.519 0.083 0.050 0.607 0.084

0.006 0.000 0.107 0.000 0.642 –

(b) 95.34 ± 0.58 91.95 ± 1.55 95.48 ± 0.42 96.32 ± 0.52 94.87 ± 0.29(1) 96.40 ± 0.38(1)

0.018 0.200 0.028 0.022 0.326 0.019

0.035 0.003 0.044 0.813 0.002 –

(c) 97.82 ± 0.34 74.06 ± 0.78 96.01 ± 0.25 96.40 ± 0.25 97.47 ± 0.21(2) 98.01 ± 0.40(2)

0.084 2.163 0.260 0.202 2.954 0.274

0.570 0.000 0.000 0.003 0.084 –

(d) 98.42 ± 0.56 88.44 ± 1.67 98.56 ± 0.37 99.34 ± 0.20 99.06 ± 0.11(3) 99.58 ± 0.24(1)

0.013 0.132 0.029 0.017 0.321 0.015

0.014 0.000 0.002 0.045 0.005 –

(e) 98.71 ± 0.64 90.76 ± 0.91 99.07 ± 0.19 99.52 ± 0.25 99.58 ± 0.14(2) 99.70 ± 0.22(1)

0.053 0.548 0.061 0.061 0.487 0.047

0.024 0.000 0.013 0.339 0.233 –

(f) 94.26 ± 1.96 70.74 ± 2.43 96.05 ± 0.45 95.50 ± 1.46 96.26 ± 1.75(1) 95.41 ± 0.83(2)

0.017 0.063 0.025 0.018 0.285 0.025

0.198 0.000 0.227 0.919 0.341 –

Int. J. Mach. Learn. & Cyber. (2016) 7:411–426 421

123

needs two. However, it should be noted that sometimes one

projection axis is enough for MLSPTSVM, as we can

observe in Tables 3 and 4. This shows that on one hand,

multiple orthogonal projection axes may necessary for

some datasets; on the other hand, for some datasets,

redundant projection axes may bring confused classifica-

tion information [40]. Moreover, by observing Fig. 6, we

see that with the increase of the number of projection axes,

the accuracy increases until it is up to a maximum, and then

decreases in general, although there may be some specifi-

cations as in Fig. 6a. In summary, a proper number of

projection axes can improve the performance of

MLSPTSVM to a much extent.

For nonlinear MLSPTSVM, the kernel parameter p

needs to be considered. We next show the relationship

between kernel parameter p and classification accuracy on

four UCI datasets in Table 2, i.e., Seeds, Dermatology,

Wine, and Pathbased. We draw the parameter-accuracy

curves in Fig. 7 on these four datasets with parameter p

belonging to f2�8; . . .; 28g. Here, each accuracy is obtained

under the optimal parameters c, v and the number of pro-

jection axes. From Fig. 7, we can see that kernel parameter

p has a great influence on classification accuracy. For

example, for dataset Wine, the lowest accuracy is 38.12 %

while the highest one can reach to 100 %. Thus, a suitable

kernel parameter is crucial for nonlinear MLSPTSVM to

achieve better performance.

5 Conclusions

In this paper, a novel multiple least squares recursive

projection twin support vector machine for multi-class

classification is proposed, termed as MLSPTSVM. For

K classes classification problem, our MLSPTSVM solves

K groups of primal problems directly by solving a series of

linear equations, which leads to its fast training speed. A

recursive procure is further introduced to MLSPTSVM to

generate multiple projection directions. Preliminary

Table 5 Details of the large datasets

Dataset Points Features Clusters

(a) Page-blocks 5473 10 5

(b) Satimage 6435 36 6

(c) USPS 9298 9 10

(d) Reuster300 9555 9 10

(e) Pendigits 10,992 16 10

(f) Mnist 15,000 9 10

(g) Letter 20,000 16 26

(h) Shuttle 58,000 9 7

Table 6 Performance comparison on large datasets when using the

linear kernel

Dataset MGEPSVM MLSTSVM MLSPTSVM

Acc (%) ± std Acc (%) ± std Acc (%) ± std

Time (s) Time (s) Time (s)

p value p value p value

(a) 85.63 ± 0.13 94.30 ± 0.08 93.67 ± 0.11(5)

0.025 0.037 0.047

0.000 0.000 –

(b) 56.79 ± 0.14 78.34 ± 0.08 78.68 ± 0.06(8)

0.076 0.112 0.637

0.000 0.001 –

(c) 38.86 ± 0.16 90.58 ± 0.08 91.16 ± 0.09(6)

0.106 0.147 0.240

0.000 0.000 –

(d) 31.51 ± 0.47 56.78 ± 0.03 60.55 ± 0.19(8)

0.095 0.134 0.374

0.000 0.000 –

(e) 64.18 ± 0.32 88.53 ± 0.06 90.55 ± 0.10(6)

0.118 0.165 0.405

0.000 0.000 –

(f) 39.79 ± 0.14 87.54 ± 0.02 86.78 ± 0.09(8)

0.181 0.278 0.605

0.000 0.000 –

(g) 28.68 ± 0.26 57.76 ± 0.07 53.86 ± 0.12(5)

0.534 0.799 1.868

0.000 0.000 –

(h) 67.77 ± 0.06 90.12 ± 0.01 97.05 ± 0.04(2)

0.371 0.516 0.665

0.000 0.000 –

Table 7 Performance comparison on large datasets when using the

nonlinear kernel

Dataset MGEPSVM MLSTSVM MLSPTSVM

Acc (%) ± std Acc (%) ± std Acc (%) ± std

Time (s) Time (s) Time (s)

p value p value p value

(a) 68.18 ± 7.82 95.89 ± 0.09 94.54 ± 0.09(1)

0.11 0.14 0.16

0.002 0.000 –

(b) 71.17 ± 1.18 87.69 ± 0.17 84.86 ± 0.29(1)

0.243 0.293 0.317

0.000 0.000 –

(e) 76.18 ± 0.98 98.39 ± 0.11 98.42 ± 0.07(1)

1.002 1.395 1.560

0.000 0.652 –

(f) 87.34 ± 0.11 90.23 ± 0.09 90.81 ± 0.10(1)

1.625 2.612 3.050

0.000 0.000 –

422 Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

123

−8
−6

−4
−2

0
2

4
6

8

−8
−6

−4
−2

0
2

4
6

8
90

90.5

91

91.5

92

92.5

93

93.5

94

c(2*)v(2*)

A
cc
ur
ac

y(
%
)

(a) Page-blocks

−8
−6

−4
−2

0
2

4
6

8

−8
−6

−4
−2

0
2

4
6

8
89

89.5

90

90.5

91

91.5

c(2*)v(2*)

A
cc
ur
ac

y(
%
)

(b) USPS

−8
−6

−4
−2

0
2

4
6

8

−8
−6

−4
−2

0
2

4
6

8
75

80

85

90

95

c(2*)
v(2*)

A
cc
ur
ac

y(
%
)

(c) Pendigtis

−8
−6

−4
−2

0
2

4
6

8

−8
−6

−4
−2

0
2

4
6

8
75

80

85

90

95

100

c(2*)v(2*)

A
cc
ur
ac

y(
%
)

(d) Shuttle

Fig. 5 Relationship between parameters c, v and classification accuracy

Int. J. Mach. Learn. & Cyber. (2016) 7:411–426 423

123

1 2 3 4 5 6 7 8
92.2

92.4

92.6

92.8

93

93.2

93.4

93.6

93.8

axis

A
cc
ur
ac

y(
%
)

(a) Page-blocks

1 2 3 4 5 6 7 8
90.6

90.7

90.8

90.9

91

91.1

91.2

91.3

91.4

axis

A
cc
ur
ac

y(
%
)

(b) USPS

1 2 3 4 5 6 7 8
88.6

88.8

89

89.2

89.4

89.6

89.8

90

90.2

90.4

90.6

axis

A
cc
ur
ac

y(
%
)

(c) Pendigits

1 2 3 4 5 6 7 8
95.4

95.6

95.8

96

96.2

96.4

96.6

96.8

97

97.2

axis

A
cc
ur
ac

y(
%
)

(d) Shuttle

Fig. 6 Relationship between the numbers of projection axes and classification accuracy

424 Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

123

experimental results show that our MLSPTSVM has

comparable classification accuracy with MPTSVM but

with dramatically less computing time. Besides, experi-

ments on some large datasets further demonstrate the

effectiveness of our MLSPTSVM. For practical conve-

nience, we upload our MLSPTSVM MATLAB code upon

http://www.optimal-group.org/Resource/MLSPTSVM.html.

As we know, extracting features is crucial for classification,

especially when faced with high-dimensional data. Thus,

exploring effective feature selection/extraction methods to

improve the performance of MLSPTSVM will be one of our

future works.

Acknowledgments The authors would like to thank the editors and

reviewers for their valuable comments and helpful suggestions, which

improved the quality of this paper. This work is supported by the

National Natural Science Foundation of China (Nos. 11201426,

11371365, 11426202 and 11426200), the Zhejiang Provincial Natural

Science Foundation of China (Nos. LQ12A01020, LQ13F030010,

LY15F030013, and LQ14G010004), the Ministry of Education,

Humanities and Social Sciences Research Project of China

(No. 13YJC910011) and the Science Foundation of Chongqing

Municipal Commission of Science and Technology (Grant No.

CSTC201 4jcyjA40011) and Scientific and Technological Research

Program of Chongqing Municipal Education Commission (Grant No.

KJ1400513).

References

1. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn

20(3):273–297

−8 −6 −4 −2 0 2 4 6 8
20

30

40

50

60

70

80

90

100

p(2*)

A
cc
ur
ac

y(
%
)

(a) Seeds

−8 −6 −4 −2 0 2 4 6 8
30

40

50

60

70

80

90

100

p(2*)

A
cc
ur
ac

y(
%
)

(b) Dermatology

−8 −6 −4 −2 0 2 4 6 8
30

40

50

60

70

80

90

100

p(2*)

A
cc
ur
ac

y(
%
)

(c) Wine

−8 −6 −4 −2 0 2 4 6 8
85

90

95

100

p(2*)

A
cc
ur
ac

y(
%
)

(d) Pathbased

Fig. 7 Relationship between the kernel parameter and classification accuracy

Int. J. Mach. Learn. & Cyber. (2016) 7:411–426 425

123

http://www.optimal-group.org/Resource/MLSPTSVM.html

2. Burges C (1998) A tutorial on support vector machines for pattern

recognition. Data Min Knowl Discov 2:121–167

3. Noble W (2004) Support vector machine applications in com-

putational biology. In: Schöelkopf B, Tsuda K, Vert J-P (eds)

Kernel methods in computational biology. MIT Press, Cam-

bridge, pp 71–92

4. Li Y, Shao Y, Jing L, Deng N (2011) An efficient support vector

machine approach for identifying protein s-nitrosylation sites.

Protein Pept Lett 18(6):573–587

5. Li Y, Shao Y, Deng N (2011) Improved prediction of palmi-

toylation sites using PWMs and SVM. Protein Pept Lett

18(2):186–193(8)

6. Vapnik V (1998) Statistical learning theory. Wiley, New York

7. Suykens J, Vandewalle J (1999) Least squares support vector

machine classifiers. Neural Process Lett 9(3):293–300

8. Fung G, Mangasarian O (2005) Multicategory proximal support

vector machine classifiers. Mach Learn 59:77–97

9. Mangasarian O, Wild E (2006) Multisurface proximal support

vector classification via generalize eigenvalues. IEEE Trans

Pattern Anal Mach Intell 28(1):69–74

10. Jayadeva R, Khemchandani R, Chandra S (2007) Twin support

vector machines for pattern classification. IEEE Trans Pattern

Anal Mach Intell 29(5):905–910

11. Qi Z, Tian Y, Shi Y (2015) Successive overrelaxation for lapla-

cian support vector machine. IEEE Trans Neural Netw Learn Syst

26(4):674–683

12. Tanveer M (2015) Robust and sparse linear programming twin

support vector machines. Cogn Comput 7(1):137–149

13. Shao Y, Deng N, Chen W, Wang Z (2013) Improved generalized

eigenvalue proximal support vector machine. IEEE Signal Pro-

cess Lett 20(3):213–216

14. Kumar M, Gopal M (2009) Least squares twin support vector

machines for pattern classification. Expert Syst Appl

36(4):7535–7543

15. Shao Y, Zhang C, Wang X, Deng N (2011) Improvements on

twin support vector machines. IEEE Trans Neural Netw

22(6):962–968

16. Shao Y, Deng N (2012) A coordinate descent margin based-twin

support vector machine for classification. Neural Netw

25:114–121

17. Qi Z, Tian Y, Shi Y (2012) Laplacian twin support vector

machine for semi-supervised classification. Neural Netw

35:46–53

18. Shao Y, Chen W, Deng NY (2014) Nonparallel hyperplane

support vector machine for binary classification problems. Inf Sci

263(1):22–35

19. Tian Y, Qi Z, Ju X (2014) Nonparallel support vector machine for

pattern classification. IEEE Trans Cybern 44(7):1067–1079

20. Wang Z, Shao Y, Bai L, Deng N (2014) Twin support vector

machine for clustering. IEEE Trans Neural Netw Learn Syst.

doi:10.1109/TNNLS.2014.2379930

21. Ye Q, Zhao C, Ye N, Chen Y (2010) Multi-weight vector pro-

jection support vector machines. Pattern Recognit Lett

31(13):2006–2011

22. Chen X, Yang J, Ye Q, Liang J (2011) Recursive projection twin

support vector machine via within-class variance minimization.

Pattern Recognit 44(10):2643–2655

23. Shao Y, Wang Z, Chen W, Deng N (2013) A regularization for

the projection twin support vector machine. Knowl-Based Syst

37:203–210

24. Shao Y, Deng N, Yang Z (2012) Least squares recursive pro-

jection twin support vector machine for classification. Pattern

Recognit 45(6):2299–2307

25. Weston J, Watkins C (1998) Multi-class support vector

machines. Technical report CSD-TR-98-04

26. Schwenker F (2000) Hierarchical support vector machines for

multi-class pattern recognition. In: Fourth international confer-

ence on knowledge-based intelligent information engineering

systems & allied technologies, vol 2, pp 561–565

27. Lee Y, Lin Y, Wahba G (2004) Multicategory support vector

machines: theory and application to the classification of

microarray data and satellite radiance data. J Am Stat Assoc

99(465):67–81

28. Yang Z, Shao Y, Zhang X (2013) Multiple birth support vector

machine for multi-class classification. Neural Comput Appl

22(1Suppl):153–161

29. Li C, Huang Y, Wu H, Shao Y, Yang Z (2014) Multiple recursive

projection twin support vector machine for multi-class classifi-

cation. Int J Mach Learn Cybern. doi:10.1007/s13042-014-0289-

2

30. Golub G, Van Loan C (1996) Matrix computations, 3rd edn.

Johns Hopkins University Press, Baltimore

31. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs.

fisherfaces: recognition using class specific linear projection.

IEEE Trans Pattern Anal Mach Intell 19(7):711–720

32. Yang J (2003) Why can LDA be performed in PCA transformed

space? Pattern Recognit 36(2):563–566

33. Bishop C (2006) Pattern recognition and machine learning.

Springer, New York

34. Tao Q, Chu D, Wang J (2008) Recursive support vector machines

for dimensionality reduction. IEEE Trans Neural Netw

19(1):189–193

35. Lee YJ, Mangasarian O (2001) RSVM: reduced support vector

machines. Technical report 00-07. Data Mining Institute, Com-

puter Sciences Department, University of Wisconsin, Madison

(2001)

36. Blake C, Merz C (1998) UCI repository for machine learning

databases. http://www.ics.uci.edu/mlearn/MLRepository.html

37. Chang C, Lin C (2011) LIBSVM: a library for support vector

machines. http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets

38. Chang C, Lin C (2011) LIBSVM : a library for support vector

machines. ACM Trans Intell Syst Technol 2(27):1–27

39. Duda R, Hart P, Stork D (2012) Pattern classification, 2nd edn.

Wiley, New York

40. Jin Z, Yang J, Hu Z, Lou Z (2001) Face recognition based on the

uncorrelated discriminant transformation. Pattern Recognit

34:1405–1416

426 Int. J. Mach. Learn. & Cyber. (2016) 7:411–426

123

http://dx.doi.org/10.1109/TNNLS.2014.2379930
http://dx.doi.org/10.1007/s13042-014-0289-2
http://dx.doi.org/10.1007/s13042-014-0289-2
http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets

	Least squares recursive projection twin support vector machine for multi-class classification
	Abstract
	Introduction
	Preliminaries
	Twin support vector machine
	Projection twin support vector machine
	Least squares projection twin support vector machine

	Multi-class least squares recursive projection twin support vector machine
	Linear MLSPTSVM
	One projection axis
	Multiple orthogonal projection axes

	Nonlinear MLSPTSVM
	Computational analysis

	Experimental results
	Artificial examples
	UCI datasets
	Large datasets
	Parameters analysis

	Conclusions
	Acknowledgments
	References

