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Abstract With the rapid growth of high dimensional

data, dimensionality reduction is playing a more and more

important role in practical data processing and analysing

tasks. This paper studies semi-supervised dimensionality

reduction using pairwise constraints. In this setting, domain

knowledge is given in the form of pairwise constraints,

which specifies whether a pair of instances belong to the

same class (must-link constraint) or different classes

(cannot-link constraint). In this paper, a novel semi-su-

pervised dimensionality reduction method called adaptive

semi-supervised dimensionality reduction (ASSDR) is

proposed, which can get the optimized low dimensional

representation of the original data by adaptively adjusting

the weights of the pairwise constraints and simultaneously

optimizing the graph construction. Experiments on UCI

classification and image recognition show that ASSDR is

superior to many existing dimensionality reduction

methods.

Keywords Adaptive dimensionality reduction �
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1 Introduction

In many practical applications, such as face recognition,

information retrieval and bioinformatics, etc, one is often

confronted with high dimensional data. However, high

dimensionality is a major cause of the practical limitations

of many pattern recognition technologies. Specifically, it

has been observed that a large number of features may

actually degrade the performance of classifiers if the

number of training samples is small relative to the number

of the features. This is called the ‘‘Curse of Dimension-

ality’’ [1]. Fortunately, there might be reason to suspect

that the naturally generated high dimensional data probably

reside on a lower dimensional manifold. This leads one to

consider methods of dimensionality reduction that allow

one to represent the data in a lower dimensional subspace.

The goal of dimensionality reduction is to reduce the

complexity of the input data with some desired intrinsic

information of the data preserved. Two of the most popular

methods for dimensionality reduction are principal com-

ponent analysis (PCA) [2, 3] and linear discriminant ana-

lysis (LDA) [1, 4], which are unsupervised and supervised

respectively. PCA tries to preserve the global covariance

structure of the data in a low dimensional projection sub-

space without knowing the class labels of the data; while

LDA aims to minimize the within-class similarity and

maximize the between-class similarity simultaneously in a

low dimensional projection subspace when the class labels

of the data are available.

In recent years, dimensionality reduction in semi-su-

pervised situation has attracted more and more attention

[5–7]. In many practical applications such as image seg-

mentation, web page classification and gene-expression

clustering [8], a labeling process is costly and time-con-

suming; in contrast, unlabeled examples can be easily
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obtained. Therefore, in such situations, it can be beneficial

to incorporate the information which is contained in unla-

beled examples into a learning problem, i.e., semi-super-

vised learning (SSL), instead of supervised learning, should

be applied.

However, in many cases, people cannot tell which

category an instance belongs to, that is, we do not know the

exact label of an instance; what we know is the constraint

information of whether a pair of instances belong to the

same class (must-link constraint) or different classes

(cannot-link constraint) [9, 10]. The above pairwise con-

straint information is called ‘‘Side Information’’. It can be

seen that side information is more general than label in-

formation, because we can get side information form label

information but it cannot work contrariwise [11]. So

learning with side information is becoming an important

area in the field of machine learning.

Recently, some related works have been proposed,

which make use of the pairwise constraints to extract low

dimensional structure in high dimensional data. Bar-Hillel

et al. proposed relevant component analysis (RCA) which

can make use of the must-link constraints for semi-super-

vised dimensionality reduction [12]. Xing et al. [13], Tang

et al. [14], Yeung et al. [15] and An et al. [16] proposed

different constraints based semi-supervised dimensionality

reduction methods, which can make use of both the must-

link constraints and cannot-link constraints. Zhang et al.

proposed semi-supervised dimensionality reduction

(SSDR) [17] and Chen et al. used SSDR in hyperspectral

image classification recently [18]. SSDR can use the

pairwise constraints as well as preserve the global covari-

ance structure of the unlabeled data in the projected low

dimensional subspace. Cevikalp et al. proposed constrained

locality preserving projections (CLPP) [19] which is the

semi-supervised version of LPP [20]. The method can

make use of the information provided by the pairwise

constraints and can also use the unlabelled data by pre-

serving the local structure used in LPP. Wei et al. proposed

neighborhood preserving based semi-supervised dimen-

sionality reduction (NPSSDR) [21] by using the pairwise

constraints and preserving the neighborhood structure used

in LLE [22]. Baghshah et al. used the idea of NPSSDR in

metric learning and used a heuristic search algorithm to

solve the proposed constrained trace ratio problem [23].

Davidson proposed a graph driven constrained dimen-

sionality reduction approach GCDR-LP for clustering [24].

In this approach, a constraint graph is firstly created by

propagating the constraints due to transitivity and entail-

ment in the graph, and then the dimensionality reduction

can be conducted by the constraint graph. Yan et al. pro-

posed a method named dual subspace projections (DSP)

[25]. The method first integrates the must-link constraints

in the kernel space to get kernel null space and then

integrates the cannot-link constraints and the nearby/far-

away data structure by using the pairwise distances in the

kernel null space to get the transformation matrix of the

original input space.

However, a common problem of the aforementioned

methods is that the pairwise constraints are equally treated

in the algorithms which ignore the fact of unequally

amount of information owned by different pairwise con-

straints. For example, consider a binary-class case in

Fig. 1a–d are two must-link constraints of class 1, (e, f) and

(g, h) are two cannot-link constraints between class 1 and

class 2. It is sound to say that the must-link constraint (c, d)

has more information than (a, b), because the distance of

(c, d) is larger than that of (a, b), which indicates c and d

are more likely to be located on the margin of class 1. On

the contrary, the cannot-link constraint (e, f) has more in-

formation than (g, h), because the distance of (e, f) is

smaller than that of (g, h), which indicates e and f are more

likely to be located on the margin between class 1 and class

2. So, it is sensible to handle different pairwise constraints

according to different importance.

On the other hand, in order to utilize unlabeled data,

most graph-based semi-supervised dimensionality reduc-

tion methods (e.g., CLPP and NPSSDR) generally con-

struct a neighborhood graph using the available data.

However, such graph is constructed using the nearest

neighbor criterion in advance which tends to work poorly

due to the high dimensions of the original space, and it is

hard to compute appropriate values for the neighborhood

size and the adjacency weight matrix involved in graph

construction. To solve the problem, one should integrate

graph construction with specific semi-supervised

Fig. 1 Illustration of pairwise constraints
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dimensionality reduction process into a unified framework,

which results in an optimized graph rather than a prede-

fined one.

In this paper, we first propose a semi-supervised di-

mensionality reduction method called weighted pairwise

constraints based semi-supervised dimensionality reduction

(WPCSSDR). Then, a novel semi-supervised dimension-

ality reduction method called adaptive semi-supervised

dimensionality reduction (ASSDR) is proposed which uses

WPCSSDR as a subprogram. ASSDR first initialize all the

pairwise constraints with equal weights and construct a

neighborhood graph with initial adjacency weight matrix,

and then the following procedure is repeated until the stop

condition is satisfied: (1) reducing the dimensionality of the

original space with the current weighted pairwise con-

straints and the current adjacency weight matrix using

WPCSSDR; (2) clustering in the reduced subspace; (3)

updating the weights of the pairwise constraints according

to the clustering result; (4) updating the adjacency weight

matrix. As a result, we can get the optimized weights of the

pairwise constraints and the optimized adjacency weight

matrix of the neighborhood graph, as well as the projection

matrix.

2 Adaptive semi-supervised dimensionality
reduction algorithm (ASSDR)

2.1 The problem

Here we define the weighted pairwise constraints based

semi-supervised dimensionality reduction problem as fol-

lows: Suppose we have a set of D-dimensional data sam-

ples X ¼ fx1; x2; :::; xng � RD together with some pairwise

must-link constraints (M) and cannot-link constraints (C) as

domain knowledge: ðxi; xjÞ 2 M, if xi and xj belong to the

same class; ðxi; xjÞ 2 C, if xi and xj belong to the different

classes. In addition, each pairwise constraint ðxi; xjÞ has a
weight Sij to indicate the importance of information owned

by itself, which means one should be paid more attention to

the pairwise constraint ðxi; xjÞ if Sij is large. In this case,

what we want to do is to find a set of linear projection

vectors W ¼ ½w1;w2; :::;wd� 2 RD�d, where d\\D, such

that the transformed low dimensional projections

Y ¼ fy1; y2; :::; yng � Rd, where yi ¼ WTxi, can preserve

some properties of the original dataset as well as the

pairwise constraints in M and C. For the convenience of

discussion, one dimensional case is discussed below,

namely yi ¼ wTxi, which is easy to be extended to the high

dimensional case.

2.2 Weighted pairwise constraints based semi-

supervised dimensionality reduction

(WPCSSDR)

To make use of the pairwise constraints, the pairwise points

in M should end up close to each other while the pairwise

points in C should end up far from each other. This means

the instances belonging to the same class in the original

space should be close to each other in the reduced sub-

space, and the instances belonging to different classes in

the original space should be far from each other in the

reduced subspace. In addition, if ðxi; xjÞ 2 M and Sij is

large, it means the Euclidean distance of xi and xj in the

low dimension should be smaller to each other than with

small weight; if ðxi; xjÞ 2 C and Sij is large, it means the

Euclidean distance of xi and xj in the low dimension should

be larger from each other than with small weight.

As for the weighted must-link constraints M, the in-

traclass compactness is characterized by the term as follows:

QMðwÞ ¼
X

ðxi;xjÞ 2 M or ðxj;xiÞ 2 M

wTxi � wTxj
� �2

Sij

¼ 2
X

i

wTxiD
M
ii x

T
i w

� �
� 2

X

i;j

wTxiS
M
ij x

T
j w

� �

¼ 2wTXðDM � SMÞXTw

¼ 2wTXLMXTw

ð1Þ

SMij ¼
Sij ðxi; xjÞ 2 M or ðxj; xiÞ 2 M

0 else

�
ð2Þ

where DM is a diagonal matrix whose entries are column

sums of SM (or row sums, since SM is symmetric),

DM
ii ¼

P
j S

M
ij , L

M ¼ DM � SM is the Laplacian matrix [26].

QMðwÞ should be as small as possible, which means the

weighted distance sum in the transformed low dimensional

subspace between instances involved in the must-link

constraints M should be small.

On the other hand, the interclass separability of the

weighted cannot-link constraints C can be characterized by

the term:

QCðwÞ ¼
X

ðxi;xjÞ 2 C or ðxj;xiÞ 2 C

wTxi � wTxj
� �2

Sij

¼ 2
X

i

wTxiD
C
ii x

T
i w

� �
� 2

X

i;j

wTxiS
C
ij x

T
j w

� �

¼ 2wTXðDC � SCÞXTw

¼ 2wTXLCXTw

ð3Þ
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SCij ¼
Sij ðxi; xjÞ 2 Cor ðxj; xiÞ 2 C

0 else

�
ð4Þ

where DC is a diagonal matrix, DC
ii ¼

P
j S

C
ij ,

LC ¼ DC � SC.

QCðwÞ should be as large as possible, which means the

weighted distance sum in the transformed low dimensional

subspace between instances involved in the cannot-link

constraints C should be large.

With the above preparation, we can define the objective

function of the dimensionality reduction as maximizing the

following equation:

JðwÞ ¼ 1

2

1

nC
QCðwÞ � a

nM
QMðwÞ

� �
ð5Þ

where nC and nM are the number of the cannot-link con-

straints and the must-link constraints, respectively. a is the

scaling parameter to balance the contribution of the must-

link constraints.

However, Equation (5) considers only the pairwise

constraints. When there are abundant unlabeled samples in

the semi-supervised case, Equation (5) should be extended

such that both the pairwise constraints and the unlabeled

samples can be used. Here, we use the idea proposed in

LPP [20] to utilize the unlabeled samples in the semi-su-

pervised case. Given the data samples X ¼ fx1; x2; :::; xng,
the geometric structure of the data can be modeled by a k-

nearest neighbor graph G ¼ fX;Pg with the vertex set X

and the affinity weight matrix P. More specifically, nodes

xi and xj are linked by an edge if xi is among the k-nearest

neighbors of xj or xj is among the k-nearest neighbors of xi.

Then, the weights of these edges are assigned by the heat

kernel function Pij ¼ expð�kxi � xjk2=2r2Þ or assigned by

Pij ¼ 1 simple-minded which avoids the necessity of

choosing r. According to [20], the object of LPP is to

minimize the following function:

QLðwÞ ¼
X

i;j

wTxi � wTxj
� �2

Pij

¼ 2wTXðDL � PÞXTw

¼ 2wTXLLXTw

ð6Þ

where DL is a diagonal matrix, DL
ii ¼

P
j Pij, L

L ¼ DL � P.

So, the extended objective function is defined as

maximizing J(w), where

lJðwÞ ¼ 1

2

1

nC
QCðwÞ � a

nM
QMðwÞ � b

n2
QLðwÞ

� �

¼ wTX
1

nC
LC � a

nM
LM � b

n2
LL

� �
XTw

¼ wTXLJXTw

ð7Þ

where LJ ¼ ð 1
nC
LC � a

nM
LM � b

n2
LLÞ, b is the scaling pa-

rameter to balance the contribution of the unlabeled data,

n is the number of all the data samples.

Obviously, the problem expressed by Eq. (7) is a typical

eigen-problem, which can be easily and efficiently solved

by computing the eigenvectors of XLJXT corresponding to

the largest eigenvalues. Let W ¼ ½w1;w2; :::;wd�, where wi

(i ¼ 1; :::; d) are the eigenvectors corresponding to the

maximum eigenvalues of XLJXT . The linear dimensionality

reduction is shown as followed:

x ! y ¼ WTx ð8Þ

The time complexities of calculating the k-nearest neigh-

bors and calculating the eigen-problem are OðDn2logkÞ and
OðD3Þ respectively. So, the time complexity of WPCSSDR

is OðDn2logkÞ ? OðD3Þ. The WPCSSDR algorithm is

given in Table 1.

2.3 The ASSDR algorithm

Obviously, it is hard to determine the weights of the

pairwise constraints in practice and it is also hard to

compute appropriate values for the neighborhood size and

the adjacency weight matrix as described in Introduction.

Here, we propose a heuristic iteration scheme to solve

these problems.

At the beginning, initialize the weights of the pairwise

constraints with a weight matrix S and initialize an affinity

weight matrix P of a k-nearest neighbor graph. Then, the

Table 1 WPCSSDR algorithm

Input:

X—data matrix

M—must-link constraints

C—cannot-link constraints

S—pairwise constraints weight matrix

k—nearest neighborhood size

r—parameter of the heat kernel function

a—scaling parameter of must-link constraints

b—scaling parameter of unlabeled data

d—dimensions of the reduced subspace

Output:

W—projection matrix

Procedure

Calculate the affinity weight matrix P of the k-nearest neighbor

graph

Calculate LJ according to Eq. (7)

Calculate the projection matrix W by the eigen-decomposition of

XLJXT
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iterative procedure consists of the following four main

steps:

Step 1: Calling WPCSSDR procedure to get the pro-

jection matrix W from the original space to the reduced

subspace with current S and P.

Step 2: Clustering in the current reduced subspace. For

simplicity, we use K-Means procedure in our experiments,

where K can be provided by the user or estimated as the

number of the chunklets [12] derived from the pairwise

constraints if there are many must-link constraints, that is,

small subsets of points that are known to belong to the

same although unknown class.

Step 3: Updating the weights of the pairwise constraints

with the following rules: (1) For must-link constraint

ðxi; xjÞ 2 M, let Sij ¼ Sije
DSM , if xi and xj are mis-clustered

into two different clusters; otherwise, let Sij ¼ Sije
�DSM , if

xi and xj are clustered into the same cluster. Here, DSM [ 0

is a predefined updating parameter for the must-link con-

straints. (2) For cannot-link constraint ðxi; xjÞ 2 C, let

Sij ¼ Sije
DSC , if xi and xj are mis-clustered into the same

cluster; otherwise, let Sij ¼ Sije
�DSC , if xi and xj are clus-

tered into two different clusters. Here, DSC is a predefined

updating parameter for the cannot-link constraints.

Step 4: Updating the k-nearest adjacency weight matrix

P in the current reduced subspace with the following

equation:

Pij ¼ exp � WTxi �WTxj
		 		2=2rW 2

� �
ð9Þ

where rW is the parameter of the heat kernel function for

the current subspace with W.

In the iterative procedure, cluster assumption [27] is

implied in step 2, which means that the reduced subspace

should be well clustered. The weights of the pairwise

constraints are updated in step 3, which states that the mis-

clustered pairwise constraints should be paid more atten-

tion, and the correctly clustered pairwise constraints should

be paid less attention. The adjacency weight matrix P is

updated in step 4, which means that the neighborhood

graph constructed in the transformed space includes more

discriminative information than the one constructed in the

original space. The updating of S and P will result in the

updating of W in step 1, which will influence S and P in

turn. The procedures will continue until getting a stable

W or reaching the maximum number of iterations.

After the iterative procedure, the final pairwise con-

straints weight matrix can be calculated as follows:

S ¼
Pimax

i¼1 hiSiPimax
i¼1 hi

ð10Þ

where imax is the maximum number of iterations, Si is the

pairwise constraints weight matrix of the i-th iteration,

hi ¼ ln½ð1� EiÞ=Ei�, Ei is the unsatisfied pairwise con-

straints error of the clustering in the reduced subspace of

the i-th iteration as followed:

Ei ¼
numcþ nucc

nM þ nC
ð11Þ

where numc is the number of unsatisfied must-link con-

straints, nucc is the number of unsatisfied cannot-link

constraints.

In the same way, the final adjacency weight matrix can

be calculated as followed:

P ¼
Pimax

i¼1 hiPiPimax
i¼1 hi

ð12Þ

where Pi is the adjacency weight matrix of the i-th

iteration.

Finally, we can Call WPCSSDR procedure to get the

final projection matrix W with the final S and P.

The time complexity of Step 1 is OðDn2logkÞ þ OðD3Þ.
The time complexity of step 2 is O(IKnd), where I is the

fixed number of K-Means iterations. The time complexity

of step 3 is Oðn2Þ. The time complexity of step 4 is Oðdn2Þ.
So, the time complexity of ASSDR is OðimaxD3Þ ?

OðimaxIKndÞ ? OðimaxDn2logkÞ. The ASSDR algorithm is

given in Table 2.

Table 2 ASSDR algorithm

Input:

X, M, C, k, r, a, b, d—the same as WPCSSDR

K—number of clusters

DSM—paramater to update the weights of the must-link

constraints

DSC—paramater to update the weights of the cannot-link

constraints

imax—maximum number of iterations

Output:

Sfinal—final pairwise constraints weight matrix

Pfinal—final adjacency weight matrix

Wfinal—final projection matrix

Procedure:

Initialize S and P

For i = 1, 2, ..., imax

Calculating the projection matrix W as in step 1

Clustering in the reduced subspace as in step 2

Updating the matrix S as in step 3

Updating the matrix P as in step 4

EndFor

Calculate Sfinal according to Eq. (10)

Calculate Pfinal according to Eq. (12)

Calculate Wfinal by calling WPCSSDR with Sfinal and Pfinal
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2.4 A variation of ASSDR

ASSDR has a variation which uses pairwise constraints

only. We call it ASSDR-CM, which uses Eq. (5) as the

objective function, so the procedure is almost the same as

ASSDR except setting matrix P ¼ 0 without updating.

ASSDR-CM is also a semi-supervised dimensionality re-

duction method, because of using unlabeled samples in the

clustering step implicitly, though unlabeled samples

through adjacency weight matrix explicitly, like ASSDR, is

not used.

3 Experiments

In this section, the performance of ASSDR and ASSDR-

CM are evaluated on the classification tasks and compared

with SSDR and CLPP, which are semi-supervised dimen-

sionality reduction methods, by preserving global structure

and local structure, respectively. Parameter analysis for

ASSDR is also discussed in this section.

3.1 Classification in the UCI datasets

In what follows, we first perform classification experiments

on four datasets from UCI machine learning repository1

which are widely used in machine learning field. The four

datasets include Iris, Wine, Soybean and Ionosphere. The

detailed descriptions are shown in Table 3.

In the experiments, the pairwise constraints are obtained

by randomly selecting pairs of instances from the training

samples (50 % of the samples are for training and the rest

samples are for testing) and creating must-link or cannot-

link constraints depending on whether the underlying

classes of the two instances are the same or not. The

number of must-link constraints is equal to the number of

cannot-link constraints in the experiments. After obtaining

the constraints, we firstly carry out these algorithms on the

training samples and learn the projection matrix; second,

each test sample is mapped into a low-dimensional sub-

space via the projection matrix; finally, we classify the test

samples by the nearest neighbor classifier using the ground

truth class labels of all the training data to evaluate the

performances of the dimensionality reduction methods.

Although the class labels are unavailable in our semi-su-

pervised scenario, the evaluation method is commonly used

in many pairwise constraints based dimensionality reduc-

tion methods [12, 17, 18, 21] due to its simplicity and

effectiveness.

As for the parameters of ASSDR, k is set to 3, r and rW
are set to the average pairwise Euclidean distance of the

original space and the reduced subspace with W respec-

tively, a is always set to 1 because ASSDR can adjust the

weights of the pairwise constraints adaptively, b is sear-

ched from f1; 10; 102; 103g. For simplicity, we set DSM ¼
DSC ¼ DS which is searched from f0:1; 0:2; 0:3; . . .; 1:0g.
In addition, K is set to the number of the ground truth

categories of the corresponding dataset, imax is set to 40 for

iris and 20 for other datasets. The parameters of other al-

gorithms are set by the methods of the corresponding pa-

pers. All the experimental results are the average over 20

random splits of training and testing samples. Figure 2

shows the results where NOC means the number of con-

straints (in our experiments, we set nM ¼ nC ¼NOC).

It can be seen from Fig. 2: (1) With the increasing of

NOC, the performance of ASSDR is getting better. (2)

ASSDR is nearly always one of the best two methods,

although it cannot get the best results in all cases. (3)

ASSDR is the most stable method in all the methods, be-

cause ASSDR-CM get the worst results at Iris, SSDR get

the worst results at Wine and Soybean, and CLPP get the

worst results at Ionosphere.

3.2 Image recognition

An image recognition task can be viewed as a multi-class

classification problem in high dimensional spaces. In this

section, the performance of ASSDR and ASSDR-CM are

evaluated on the PIE [28], extended Yale-B [29], MNIST

[30], and PolyU Palmprint [31] image databases. In the

experiments, we use the preprocessed versions of the PIE,

extended Yale-B, and MNIST database which are publicly

available from the web page of Cai,2 PolyU Palmprint

database which are publicly available from the web page of

Biometrics Research Centre.3

3.2.1 Database description

The PIE face database contains 41,368 images of 68 peo-

ple, each person under 13 different poses, 43 different il-

lumination conditions, and with 4 different expressions. In

this experiment, our dataset only contains five near frontal

Table 3 The four UCI datasets

Dataset Sample size Dimension Class

Iris 150 4 3

Wine 178 13 3

Soybean 47 35 4

Ionosphere 351 34 2

1 http://archive.ics.uci.edu/ml/.

2 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
3 http://www4.comp.polyu.edu.hk/*biometrics/.
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poses (C05, C07, C09, C27, C29) and all the images under

different illuminations and expressions. As a result, there

are 170 images for each individual. All the face images are

aligned and cropped. The cropped images are 32� 32

pixels, with 256 gray levels per pixel. In the following

experiments, 20 images of each individual are for training

and the rest 150 images are for testing.

The extended Yale-B face database contains 21,888

images of 38 human subjects under 9 poses and 64 illu-

mination conditions. In this experiment, we choose the

frontal pose and use all the images under different

illumination, thus we get 64 images for each person. All the

face images are aligned and cropped. The cropped images

are 32� 32 pixels, with 256 gray levels per pixel. In the

following experiments, 30 images of each individual are

for training and the rest 34 images are for testing.

The MNIST database contains 70,000 handwritten digit

images. In this experiment, we choose 4000 images from

the original database, thus we get 400 images for each

number. All the face images are aligned and cropped. The

cropped images are 20� 20 pixels, with 256 gray levels

per pixel. In the following experiments, 100 images of each
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Fig. 2 Classification results of ASSDR on UCI datasets
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individual are for training and the rest 300 images are for

testing.

The PolyU Palmprint database contains 7,752 grayscale

images corresponding to 386 different palms in BMP im-

age format. Around 20 samples from each of these palms

were collected in two sessions, where around 10 samples

were captured in the first session and the second session,

respectively. The average interval between the first and the

second collection was two months. All the images are

aligned and cropped. The cropped images are 32� 24

pixels, with 256 gray levels per pixel. In the following

experiments, 5 images of each individual are for training

and the rest images are for testing.

3.2.2 Experimental results and discussions

The experimental settings is the same as that of the UCI

datasets, except we first project the face images into a PCA

subspace by retaining 99 % of the principal components to

deal with small sample size problem.

Figure 3 displays the experimental results on PIE data-

base.It can be seen from Fig. 3a: (1) When NOC is small

(i.e., 100), ASSDR is better than ASSDR-CM, which

means preserving local structure is useful and the updating

strategy of the adjacency weight matrix is effective in this

case. (2) When NOC is small (i.e., 100), ASSDR is a little

worse than SSDR, which means preserving global structure
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Fig. 3 Experimental results on PIE
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Fig. 4 Experimental results on extended Yale-B

800 Int. J. Mach. Learn. & Cyber. (2017) 8:793–805

123



is more effective than preserving local structure in this

case. (3) When NOC is large (i.e., >300), ASSDR is al-

most the same as ASSDR-CM, which means preserving

local structure is less helpful for ASSDR in this case. (4)

When NOC is large (i.e., >300), ASSDR and ASSDR-CM

are better than SSDR, CLPP and PCA, which means the

updating strategy of pairwise constraints weights of

ASSDR is effective in this case.

It can be seen from Fig. 3b: When NOC is large (i.e.,

600), with the varying of reduced dimensions, ASSDR and

ASSDR-CM are almost the same with each other and al-

ways the best methods. However, if d is too small or too

large, the performance of ASSDR and ASSDR-CM will be

descending.

Figure 4 displays the experimental results on extended

Yale-B database. From Fig. 4, we can get the similar

conclusions as Fig. 3.

Figure 5 displays the experimental results on MNIST

database. It can be seen from Fig. 5a: (1) ASSDR-CM is

better than ASSDR, which means preserving local structure

is less useful and the updating strategy of the adjacency

weight matrix is less effective in this case. (2) ASSDR and

ASSDR-CM are a little worse than PCA, but better than

SSDR and CLPP, which means the updating strategy of

pairwise constraints weights of ASSDR is effective, while

unsupervised learning might be more suitable in this case.

(3) As NOC varies, the performance of ASSDR and

ASSDR-CM vary little.
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Fig. 5 Experimental results on MNIST
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Fig. 6 Experimental results on PolyU Palmprint
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It can be seen from Fig. 5b : When NOC is large (i.e.,

600), with the varying of reduced dimensions, ASSDR and

ASSDR-CM are still no better than PCA. When d is small,

the performance of ASSDR and ASSDR-CM will be as-

cending on a small scale; however, if d is too large, the

performance of ASSDR and ASSDR-CM will be

descending.

Figure 6 displays the experimental results on PolyU

Palmprint database. From Fig. 6, we can get the similar

conclusions with Fig. 5, except (1) SSDR, instead of PCA,

performances better than ASSDR and ASSDR-CM. (2)

When NOC is small (i.e., 200), ASSDR is better than

ASSDR-CM, which means preserving local structure is

useful and the updating strategy of the adjacency weight

matrix is effective in this case. (3) When NOC is large (i.e.,

600), with the varying of reduced dimensions, if d is too

small, the performance of ASSDR and ASSDR-CM will be

descending.

Figure 7 shows the experimental results of the influ-

ences of k and K to ASSDR on PIE.

It can be seen from Fig. 7a: (1) When k is small (i.e.,

1, 2, 3, 4), the performance of ASSDR is good and

stable. (2) When k is relatively large (i.e., >5), the per-

formance of ASSDR is descending. The observation
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implies that we should select a relatively small k in the

experiments.

It can be seen from Fig. 7b: Although the number of the

ground truth categories of PIE is 68, we can get a satis-

factory result by setting the value of K in a wide range (i.e.,

>13). This implies that ASSDR is not sensitive to the value

of K, which is very useful in practice.

Figures 8, 9, 10 shows the experimental results of the

influences of k and K to ASSDR on extended Yale-B,

MNIST, PolyU Palmprint, respectively. From Figs. 8, 9,

10, we can get the similar conclusions as Fig. 7, except that

K is better to be set to 10 and 386 as for MNIST and Poly U

Palmprint, respectively.

Figure 11 shows the experimental results of the influ-

ences of i to ASSDR and ASSDR-CM on the four

databases.

It can be seen from Fig. 11a, b: (1) When i is small (i.e.,

1, 2, 3, 4), the performance of ASSDR and ASSDR-CM

will be ascending. (2) When i is relatively large (i.e., >5),

the performance of ASSDR and ASSDR-CM vary little.

It can be seen from Fig. 11c: The performance of

ASSDR and ASSDR-CM will be descending as i ascends,

which shows i in ASSDR and ASSDR-CM might not work

that well on this database.

It can be seen from Fig. 11d: (1) When i is small (i.e.,

69), the performance of ASSDR and ASSDR-CM will be
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ascending. (2) When i is relatively large(i.e., >9), the

performance of ASSDR will be descending. (3) The per-

formance of ASSDR-CM will be descending as i ascends,

which shows i in ASSDR-CM might not work that well on

this database.

4 Conclusions

In this paper, we present a novel pairwise constraints based

semi-supervised dimensionality reduction method called

ASSDR. Different from existing methods such as SSDR

and CLPP, which treat the pairwise constraints equally,

ASSDR can take into account the importance of different

pairwise constraints respectively by updating the weights

of the pairwise constraints. In addition, it can simultane-

ously optimize graph construction at each updating

iteration in order to utilize unlabeled data. Although

ASSDR does not turn out to be the best method all the

time, when used on different databases, it turns out to

perform relatively well in most cases. Experiments on

classification tasks have been conducted to demonstrate the

effectiveness of our method.

Future work is needed both with respect to theory and

application. In particular, the convergence property for this

problem is unknown yet. Furthermore, the power of the

method would be increased, for example, by incorporating

kernels in an adaptive way. In addition, decreasing the

number of the parameters would be further studied.
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