
ORIGINAL ARTICLE

MapReduce-based fuzzy c-means clustering algorithm:
implementation and scalability

Simone A. Ludwig1

Received: 30 October 2014 /Accepted: 20 April 2015 / Published online: 29 April 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract The management and analysis of big data has

been identified as one of the most important emerging

needs in recent years. This is because of the sheer volume

and increasing complexity of data being created or col-

lected. Current clustering algorithms can not handle big

data, and therefore, scalable solutions are necessary. Since

fuzzy clustering algorithms have shown to outperform hard

clustering approaches in terms of accuracy, this paper in-

vestigates the parallelization and scalability of a common

and effective fuzzy clustering algorithm named fuzzy

c-means (FCM) algorithm. The algorithm is parallelized

using the MapReduce paradigm outlining how theMap and

Reduce primitives are implemented. A validity analysis is

conducted in order to show that the implementation works

correctly achieving competitive purity results compared to

state-of-the art clustering algorithms. Furthermore, a scal-

ability analysis is conducted to demonstrate the perfor-

mance of the parallel FCM implementation with increasing

number of computing nodes used.

Keywords MapReduce � Hadoop � Scalability

1 Introduction

Managing scientific data has been identified as one of the

most important emerging needs of the scientific community

in recent years. This is because of the sheer volume and

increasing complexity of data being created or collected, in

particular, in the growing field of computational science

where increases in computer performance allow ever more

realistic simulations and the potential to automatically

explore large parameter spaces. As noted by Bell et al. [1]:

‘‘As simulations and experiments yield ever more data, a

fourth paradigm is emerging, consisting of the techniques

and technologies needed to perform data intensive sci-

ence’’. The question to address is how to effectively gen-

erate, manage and analyze the data and the resulting

information. The solution requires a comprehensive, end-

to-end approach that encompasses all stages from the initial

data acquisition to its final analysis.

Data mining is a relatively broad field that deals with the

automatic knowledge discovery from databases, and is one

of the most developed fields in the area of artificial intel-

ligence. Given the rapid growth of data collected in various

fields and their potential usefulness requires efficient tools

to extract and make use of the potentially gathered

knowledge [2].

One of the important data mining tasks is classification,

which is an effective method that is used in many different

fields. The main idea behind the classification task is to

build a model (classifier) that assigns items in a collection

to target classes with the goal to accurately predict the

target class for each item in the data [3]. There are many

techniques that can be used to do a classification process

such as decision trees, Bayes networks, genetic algorithms,

genetic programming and many others [4]. Another im-

portant data mining technique used when analyzing data is

clustering [5]. The main goal of clustering algorithms is to

divide a set of unlabeled data objects into different groups

called clusters (each group has common specifications

between the group members). The cluster membership

measure is based on a similarity measure. To obtain high

quality clusters, the similarity measure between the data

& Simone A. Ludwig

simone.ludwig@ndsu.edu

1 Department of Computer Science, North Dakota State

University, Fargo, ND, USA

123

Int. J. Mach. Learn. & Cyber. (2015) 6:923–934

DOI 10.1007/s13042-015-0367-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0367-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0367-0&domain=pdf

objects in the same cluster is to be maximized, and the

similarity measure between the data objects from different

groups is to be minimized [6].

Clustering is the classification of objects into different

groups, i.e., the partitioning of data into subsets (clusters),

such that data in each subset shares some common features,

often proximity according to some defined distance mea-

sure. Unlike conventional statistical methods, most clus-

tering algorithms do not rely on the statistical distribution

of data, and thus can be usefully applied in situations where

little prior knowledge exists [7].

Most sequential classification/clustering algorithms

suffer from the problem that they do not scale with larger

sizes of data sets, and most of them are computationally

expensive, both in terms of time and space. For these

reasons, the parallelization of the data classification/clus-

tering algorithms is paramount in order to deal with large

scale data. To develop a good parallel classification/clus-

tering algorithm that takes big data into consideration, the

algorithm should be efficient, scalable and obtain high

accuracy solutions.

In order to enable big data to be processed, the paral-

lelization of data mining algorithms is paramount. Paral-

lelization is a process where the computation is broken up

into parallel tasks. The work done by each task, often

called its grain size, can be as small as a single iteration in

a parallel loop or as large as an entire procedure. When an

application can be broken up into large parallel tasks, the

application is called a coarse grain parallel application.

Two common ways to partition computation are task par-

titioning, in which each task executes a certain function,

and data partitioning, in which all tasks execute the same

function but on different data.

This paper proposes the parallelization of a fuzzy

c-means (FCM) clustering algorithm. The parallelization

methodology used is the divide-and-conquer methodology

referred to as MapReduce. The implementation details are

explained in details outling how the FCM algorithm can

be parallelized. Furthermore, a validity analysis is con-

ducted in order to demonstrate the correct functioning of

the implementation measuring the purity and comparing

these to state-of-the art clustering algorithms. Moreover, a

scalability analysis is conduced to investigate the per-

formance of the parallel FCM implementation by mea-

suring the speedup for increasing number of computing

nodes used.

The remainder of this paper is as follows. Section 2

introduces clustering and fuzzy clustering in particular. The

following section (Sect. 3) discusses related work in the

area of big data processing. In Sect. 4, the implementation

is described in details. The experimental setup and results

are given in Sects. 5 and 6 concludes this work outlining

the findings obtained.

2 Background to clustering

Clustering can be applied to data that are quantitative

(numerical), qualitative (categorical), or a mixture of both.

The data usually are observations of some physical process.

Each observation consists of n measured variables (fea-

tures), grouped into an n-dimensional column vector

zk ¼ ½z1k; . . .; znk�T , zk 2 R
n.

A set of N observations is denoted by

Z ¼ fzkjk ¼ 1; 2; . . .;Ng, and is represented as an n� N

matrix:

Z ¼

z11 z12 . . . z1N

z21 z22 . . . z2N

.

zn1 zn2 . . . znN

0
BBB@

1
CCCA: ð1Þ

There are several definitions of how a cluster can be for-

mulated depending on the objective of clustering. In gen-

eral, a cluster is a group of objects that are more similar to

one another than to members of other clusters [8, 9]. The

term ‘‘similarity’’ is defined as mathematical similarity and

can be defined by a distance norm. Distance can be mea-

sured among the data vectors themselves or as a distance

from a data vector to some prototypical object (prototype)

of the cluster. Since the prototypes are usually not known

beforehand, they are determined by the clustering algo-

rithms simultaneously with the partitioning of the data. The

prototypes can be vectors of the same dimension as the data

objects, however, they can also be defined as ‘‘higher-

level’’ geometrical objects such as linear or nonlinear

subspaces or functions. The performance of most clustering

algorithms is influenced by the geometrical shapes and

densities of the individual clusters, but also by spatial re-

lations and distances among the clusters. Clusters can be

well-separated, continuously connected or overlapping [7].

Many clustering algorithms have been introduced and

clustering techniques can be categorized depending on

whether the subsets of the resulting classification are fuzzy

or crisp (hard). Hard clustering methods are based on

classical set theory and require that an object either does

or does not belong to a cluster. Hard clustering means that

the data is partitioned into a specified number of mutually

exclusive subsets. Fuzzy clustering methods, however,

allow the objects to belong to several clusters simulta-

neously with different degrees of membership. Fuzzy

clustering is seen as more natural than hard clustering

since the objects on the boundaries between several

classes are not forced to fully belong to one of the classes,

but rather are assigned membership degrees between 0

and 1 indicating their partial membership. The concept of

fuzzy partition is vital for cluster analysis, and therefore,

also for the identification techniques that are based on

924 Int. J. Mach. Learn. & Cyber. (2015) 6:923–934

123

fuzzy clustering. Fuzzy and possibilistic partitions are

seen as a generalization of hard partition which is for-

mulated in terms of classical subsets [7].

The objective of clustering is to partition the data set Z

into c clusters. For now let us assume that c is known based

on prior knowledge. Using classical sets, a hard partition

of Z can be defined as a family of subsets Ai 1� i� c �
PðZÞ1 with the following properties [7, 8]:

[c
i¼1

Ai ¼ Z ð2aÞ

Ai \ Aj ¼ ;; 1� i 6¼ j� c ð2bÞ

; � Ai � Z; 1� i� c: ð2cÞ

Equation 2a denotes that the union subset Ai contains all

the data. The subsets have to be disjoint as stated by Eq. 2b,

and none of them can be empty nor contain all the data in Z

as given by Eq. 2c. In terms of membership (characteristic)

function, a partition can be conveniently represented by the

partition matrix U ¼ ½lik�c�N . The ith subset Ai of Z. It

follows from Eqs. 2 that the elements of U must satisfy the

following conditions [7]:

lik 2 f0; 1g; 1� i� c; 1� k�N ð2dÞ
Xc

i¼1

lik ¼ 1; 1� k�N ð2eÞ

0\
XN
k¼1

lik\N; 1� i� c: ð2fÞ

Thus, the space of all possible hard partition matrices for Z

referred to as the hard partitioning space is defined by [7]:

MHC ¼ U 2 R
c�N jlik 2 f0; 1g; 8i; k;

Xc
i¼1

lik ¼ 1;

(

8k; 0\
XN
k¼1

lik\N; 8ig:

ð2gÞ

Generalization of the hard partitioning to the fuzzy

partitioning follows by allowing lik to obtain values in

½0; 1�. The conditions for a fuzzy partition matrix, analo-

gous to hard clustering equations, is given by [7, 10]:

lik 2 ½0; 1�; 1� i� c; 1� k�N ð3aÞ
Xc

i¼1

lik ¼ 1; 1� k�N ð3bÞ

0\
XN
k¼1

lik\N; 1� i� c: ð3cÞ

The ith row of the fuzzy partition matrix U contains values

of the ith membership function of the fuzzy subset Ai of Z.

Equation 3b constrains the sum of each column to 1, and

thus the total membership of each zk in Z equals one. The

fuzzy partitioning space for Z is the set [7]:

MFC ¼ U 2 R
c�N jlik 2 ½0; 1�; 8i; k;

Xc

i¼1

lik ¼ 1;

(

8k; 0\
XN
k¼1

lik\N; 8ig:

ð3dÞ

3 Related work

In this section, first related work in the area of clustering is

introduced, and afterwards clustering techniques that make

use of parallelization mechanisms applied to big data are

described. Given that this paper is concerned with the

implementation and evaluation of a parallelized FCM al-

gorithm, the related work outlines other research conducted

in this area.

Fuzzy clustering can be categorized into three cate-

gories: hierarchical fuzzy clustering methods, graph-

theoretic fuzzy clustering methods, and fuzzy clustering

based on objective functions [11].

Hierarchical clustering techniques generate a hierarchy

of partitions by means of agglomerative and divisive

methods [11]. The agglomerative algorithms produce a

sequence of clusters of decreasing number by merging two

clusters from the previous level. The divisive algorithms

perform the clustering the other way around [6]. Lee [12]

proposed a hierarchical clustering algorithm in the area of

business systems planning. The best cluster number is de-

termined by a matching approach. Another technique

called fuzzy equivalent relation-based hierarchical clus-

tering handles the clustering without needing a predefined

number of clusters [13].

Graph-theoretic fuzzy clustering methods are based on

the notion of connectivity of nodes of a graph representing

the data set. In graph-theoretic fuzzy clustering, the graph

representing the data structure is a fuzzy graph and dif-

ferent types of connectivity lead to different types of

clusters. The idea of fuzzy graphs was first mentioned in

[14], whereby the fuzzy analogues of several basic graph-

theoretic concepts such as bridges, cycles, paths, trees were

introduced. Fuzzy graphs were first used for cluster ana-

lysis in [15].

Fuzzy clustering based on objective functions has shown

to give the most precise formulation of the clustering. The

FCM clustering model was first introduced in 1974 [16],

Int. J. Mach. Learn. & Cyber. (2015) 6:923–934 925

123

and was later extended and generalized in [8]. Since then,

some variations of the method and model improvements

were suggested.

The Gustafson–Kessel algorithm [17] is a fuzzy clus-

tering technique that estimates the local covariance by

partitioning the data into subsets that can be fitted with

linear submodels. However, considering a general structure

for the covariance matrix can have a substantial effect on

the modeling approach, and therefore, the Gath–Geva al-

gorithm [18] was proposed to overcome this. The fuzzy

c-varieties [19] clustering algorithm is a fuzzy clustering

algorithm where the prototype of each cluster is of type

multi-dimensional linear.

By replacing the Euclidean distances with other distance

measures and enriching the cluster prototypes with further

parameters, other shapes than only spherical clusters can be

discovered. Clusters might be ellipsoidal, linear, manifolds,

quadrics or have even different volumes [11]. Fuzzy clus-

tering has been proven to handle ambiguous data that share

properties of different clusters using the idea of member-

ship degrees to be assigned to data objects.

The use of fuzzy clustering, especially the FCM algorithm,

has been successfully applied to image segmentation [20]

where it showed to be very efficient. However, the FCM al-

gorithm still lacks robustness to noise and outliers, especially

in absence of prior knowledge of noise. A crucial parameter,

used to balance between robustness to noise and effectiveness

of preserving the details of the image, ismanually set based on

experience. In addition, the time of segmenting an image

depends on the image size, and hence the larger the size of the

image, the longer the segmentation time [21].

In [22], a k-means clustering variant is proposed. The

approach is based on a prototype-based hybrid approach

that speeds-up the k-means clustering method. The method

first partitions the data set into small clusters (grouplets).

Each grouplet is first represented by a prototype, and then

the set of prototypes is partitioned into k clusters using the

modified k-means method. The modified k-means method

avoids empty clusters. Each prototype is replaced by its

corresponding set of patterns to derive a partition of the

data set. The proposed method has shown to be much faster

in terms of processing time than basic k-means.

Big data clustering has recently received significant

amount of attention. In particular, the aim is to build effi-

cient and effective parallel clustering algorithms. Many of

these algorithms use the MapReduce methodology that was

proposed by Google [23]. In the following we will review

research that has used and applied the MapReduce para-

digm to the clustering of big data sets.

A MapReduce design and implementation of an efficient

DBSCAN algorithm is introduced in [24]. The proposed

algorithm addresses the drawbacks of existing parallel

DBSCAN algorithms such as the data balancing and scal-

ability issues. The algorithm tackles these issues using a

parallelized implementation that removes the sequential

processing bottleneck and thereby improves the algo-

rithm’s scalability. Furthermore, the algorithm showed the

largest improvement when the data was imbalanced. The

evaluation conducted using large scale data sets demon-

strate the efficiency and scalability of their algorithm.

A parallel k-means clustering algorithm based on

MapReduce was proposed in [25]. The algorithm locates

the centroids by calculating the weighted average of each

individual cluster points via the Map function. The Re-

duce function then assigns a new centroid to each data

point based on the distance calculations. At the end, a

MapReduce iterative refinement technique is applied to

locate the final centroids. The authors evaluated the im-

plementation using the measures of speedup, scaleup, and

sizeup. The results showed that the proposed algorithm is

able to process large data sets of 8 GB using commodity

hardware effectively.

In [26], an algorithm for solving the problem of docu-

ment clustering using the MapReduce-based k-means al-

gorithm is proposed. The algorithm uses the MapReduce

paradigm to iterate over the document collection in order to

calculate the term frequency and inverse document fre-

quency. The algorithm represents the documents as hkey,
valuei pairs, where the key is the document type and the

value is the document text. The authors compare a non-

parallelized version of k-means with the parallelized ver-

sion to show the speedup gain. Furthermore, the ex-

periments of the parallelized k-means algorithm on 50,000

documents showed that the algorithm performs very well in

terms of accuracy for this text clustering task while having

a reasonable execution time.

Another k-means clustering algorithm using MapReduce

by merging the k-means algorithm with the ensemble

learning bagging method is introduced in [27]. The pro-

posed algorithm addresses the instability and sensitivity to

outliers. Ensemble learning is a technique that uses a col-

lection of models to achieve better results than any model

in the collection, and bagging is one of the most popular

type of ensemble techniques. The evaluation was per-

formed on relatively small data sets (instances around

5000) and only four nodes were used for the parallelization.

The authors show that a speedup is obtained on data sets

consisting of outliers.

A self-organizing map (SOM) was modified to work

with large scale data sets by implementing the algorithm

using the MapReduce concept to improve the performance

of clustering as shown in [28]. A SOM is an unsupervised

neural network that projects high-dimensional data onto a

low-dimensional grid and visually represents the

926 Int. J. Mach. Learn. & Cyber. (2015) 6:923–934

123

topological order of the original data. Unfortunately, the

details of the MapReduce implementation are not given,

but the experiments that were conducted with a small data

set demonstrated the efficiency of the MapReduce-based

SOM.

In [29], the authors applied the MapReduce framework

to solve co-clustering problems by introducing a frame-

work called distributed co-clustering with MapReduce.

Unlike clustering which groups similar rows or columns

independently, co-clustering searches for interrelated sub-

matrices of rows and columns. The authors proved that

using MapReduce is a good solution for co-clustering

mining tasks by applying the algorithm to data sets such as

collaborative filtering, text mining, etc. The experiments

demonstrated that co-clustering with MapReduce can scale

well with large data sets using up to 40 nodes.

In [30], a fast clustering algorithm with a constant factor

approximation guarantee was proposed. The authors use a

sampling technique to reduce the data size first, and then

apply the Lloyd’s algorithm on the remaining data set. A

comparison of this algorithm with several sequential and

parallel algorithms for the k-median problem was con-

ducted using randomly generated data sets to evaluate the

performance of the algorithm. The randomly generated

data sets contained up to 10 million points. The results

showed that the algorithm achieves better or similar solu-

tions compared to the existing algorithms especially on

very large data sets.

A big data clustering method based on the MapReduce

framework was proposed in [31]. The authors used an ant

colony approach to decompose the big data into several

data partitions to be used in parallel clustering. Applying

MapReduce to the ant colony clustering algorithm lead to

the automation of the semantic clustering to improve the

data analysis task. The proposed algorithm was developed

and tested on data sets with large number of records (up to

800 K) and showed acceptable accuracy with good

speedup.

In [32], the authors introduced a new approach, called

the best of both worlds method to minimize the I/O cost of

cluster analysis with the MapReduce model by minimizing

the network overhead among the processing nodes. They

proposed a subspace clustering method to handle very large

data sets in a reasonable amount of time. Experiments on

terabyte data sets were conducted using 700 mappers and

up to 140 reducers. The results showed very good speedup

results.

As can been seen by the related work, different parallel

clustering methods have been proposed in the past. The

aim of this paper is to parallelize the FCM algorithm using

the MapReduce concept in order to conduct a thorough

experimentation and scalability analysis.

4 MapReduce-based fuzzy c-means
implementation

4.1 Fuzzy c-means algorithm

Most analytical fuzzy clustering algorithms are based on

the optimization of the basic c-means objective function, or

some modification of the objective function. The opti-

mization of the c-means functional represents a nonlinear

minimization problem, which can be solved by using a

variety of methods including iterative minimization [7].

The most popular method is to use the simple Picard it-

eration through the first-order conditions for stationary

points, known as the FCM algorithm. Bezdek [8] has

proven the convergence of the FCM algorithm. An optimal

c partition is produced iteratively by minimizing the

weighted within group sum of squared error objective

function:

J ¼
Xn
i¼1

Xc

j¼1

ðuijÞmd2ðyi; cjÞ ð4Þ

where Y ¼ ½y1; y2; . . .; yn� is the data set in a d-dimensional

vector space, n is the number of data items, c is the number

of clusters which is defined by the user where 2� c� n, uij
is the degree of membership of yi in the jth cluster, m is a

weighted exponent on each fuzzy membership, cj is the

center of cluster j, d2ðyi; cjÞ is a square distance measure

between object yi and cluster cj. An optimal solution with c

partitions can be obtained via an iterative process described

in Algorithm 1. First, the fuzzy partition matrix is initial-

ized, then within an iterative loop the following steps are

executed: the cluster centers are updated using Eq. 5, then

the membership matrix is updated using Eqs. 6 and 7. The

loop is repeated until a certain threshold value is reached.

Algorithm 1 FCM Algorithm
Input: c: centroid matrix, m: weighted exponent of fuzzy membership, : threshold value

used as stopping criterion, Y = [y1, y2, ..., yn]: data

Output: c: updated centroid matrix

Randomly initialize the fuzzy partition matrix U = [uk
ij]

repeat

Calculate the cluster centers with Uk:

cj =
n
i=1(u

k
ij)

myi
n
i=1(u

k
ij)m

(5)

Update the membership matrix Uk+1 using:

uk+1
ij =

1
c
k=1(

dij
dkj

)
2

(m−1)
(6)

where

dij = ||yi − cj ||2 (7)

until maxij ||uk
ij − uk+1

ij ||
Return c

Int. J. Mach. Learn. & Cyber. (2015) 6:923–934 927

123

4.2 MapReduce-based fuzzy c-means algorithm

(MR-FCM)

The growth of the internet has challenged researchers to

develop new ideas to deal with the ever increasing amount

of data. Parallelization of algorithms is needed in order to

enable big data processing. Classic parallel applications

that were developed in the past either used message passing

runtimes such as message passing interface (MPI) [33] or

parallel virtual machines [34].

A parallel implementation of the FCM algorithm with

MPI was proposed in [35]. The implementation consists of

three Master/Slave processes, whereby the first computes

the centroids, the second computes the distances and up-

dates the partition matrix as well as updates the new cen-

troids, and the third calculates the validity index.

Moderately sized data sets were used to evaluate the ap-

proach and good speedup results were achieved.

However, MPI utilizes a rich set of communication and

synchronization constructs, which need to be explicitly

programmed. In order to make the development of parallel

applications easier, Google introduced a programming

paradigm called MapReduce that uses the Map and Re-

duce primitives that are present in functional programming

languages. The MapReduce implementation enables large

computations to be divided into several independent

Map functions. MapReduce provides fault tolerance since

it has a mechanism that automatically re-executes Map or

Reduce tasks that have failed.

The MapReduce model works as follows. The input of

the computation is a set of key-value pairs, and the output

is a set of output key-value pairs. The algorithm to be

parallelized needs to be expressed by Map and Re-

duce functions. The Map function takes an input pair and

returns a set of intermediate key-value pairs. The frame-

work then groups all intermediate values associated with

the same intermediate key and passes them to the Re-

duce function. The Reduce function uses the intermediate

key and set of values for that key. These values are merged

together to form a smaller set of values. The intermediate

values are forwarded to the Reduce function via an iterator.

More formally, the Map and Reduce functions have the

following types:

mapðk1; v1Þ ! listðk2; v2Þ
reduceðk2; listðv2Þ ! listðv3Þ:

In order to consider the mapping of the FCM algorithm to

the Map and Reduce primitives, it is necessary for FCM to

be partitioned into two MapReduce jobs since only one

would not be sufficient. The first MapReduce job calculates

the centroid matrix by iterating over the data records, and a

second MapReduce job is necessary since the following

calculations need the complete centroid matrix as the input.

The second MapReduce job also iterates over the data

records and calculates the distances to be used to update the

membership matrix as well as to calculate the fitness.

The details of the proposed implementation in the form

of block diagrams are given in Figs. 1 and 2. As can be

seen, in the first MapReduce job the mappers have a por-

tion of the data set and a portion of the membership matrix

and produce centroid sub-matrices. The reducer of the first

MapReduce job then merges the sub-matrices into the

centroid matrix.

The second MapReduce job compared to the first in-

volves more computations to be executed. During the

Map phase, portions of the data set are received and the

distance sub-matrices and membership matrices, and sub-

objective values are computed. Again, in the Reduce phase

the membership sub-matrices are merged, and the sub-

objective values are summed up. Please note that even

though the figure shows three Map arrows, however, these

steps are done in one Map phase.

An algorithmic description detailing the Main procedure

and the two MapReduce jobs is given in Algorithms 2–6.

The Algorithm 2 proceeds as follows. First, the member-

ship matrix is randomly initialized. Then, the data set needs

to be prepared such that the data set itself and the mem-

bership matrix are merged together vertically in order for

Fig. 1 First MapReduce job

Fig. 2 Second MapReduce job

928 Int. J. Mach. Learn. & Cyber. (2015) 6:923–934

123

the first MapReduce job to have the data (both the data set

as well as the membership matrix) available. This data set

is stored in Hadoop distributed file system (HDFS) to be

ready for the first MapReduce job. After this, the Hadoop

framework calls the first and then the second MapReduce

job. The resulting updated membership matrix is copied

from the HDFS to the local file system for the second

iteration to begin. The algorithm iterates calling the two

mapreduce jobs several times until the stopping condition

is met. Once this is completed the purity value is calculated

using Eq. 8.

Algorithm 2 Main Procedure of MR-FCM Algorithm
Input: data set

Output: purity

randomly initialize membership matrix

while stopping condition is not met do

vertically merge data set with membership matrix and store in HDFS

Hadoop calls map and reduce jobs of first and then second mapreduce operation

copy membership matrix from HDFS and store locally

end while

calculate purity (Equation 8) and write result to file

Algorithm 3 shows the pseudo code for the Map func-

tion of the first MapReduce job. The inputs are the data

record values and the membership matrix (which are ver-

tically merged), and the output is the intermediate centroid

matrix. During this Map function the intermediate centroid

matrix values are calculated using Equation 5, which are

then emitted.

Algorithm 3 Map(key,value) of MapReduce job 1
Input: key: data record, value: data record values and membership matrix

Output: <key’,value’> pair, where value’ is the intermediate centroid matrix

for each key do

calculate intermediate centroid matrix using Equation 5 and store in value’

emit <key’,value’> pair

end for

The intermediate centroid matrices are then merged by

the Reduce function of the first MapReduce job 1 as shown

in Algorithm 4.

Algorithm 4 Reduce(key,value) of MapReduce job 1
Input: key: data record, value: intermediate centroid values

Output: <key’,value’> pair, where value’ is the centroid values

for each key do

calculate centroid values by summing over intermediate centroid values and store in

value’

emit <key’,value’> pair

end for

Algorithm 5 shows the Map function of the second

MapReduce job. The function takes as the inputs the data

record values and the centroid matrix. The output is an

intermediate membership matrix. This Map function first

calculates the distances between the data points and the

centroids using Equation 7, and then updates the interme-

diate membership matrix using Equation 6, which is then

emitted.

Algorithm 5 Map(key,value) of MapReduce job 2
Input: key: data record, value: data record values and centroid matrix

Output: <key’,value’> pair, where value’ is the intermediate membership matrix

for each key do

calculate distances using Equation 7

update intermediate membership matrix using Equation 6 and store in value’

emit <key’,value’> pair

end for

The Reduce function then merges the intermediate

membership matrices and emits the membership matrix to

be used in the next iteration. Algorithm 6 shows the details.

Algorithm 6 Reduce(key,value) of MapReduce job 2
Input: key: data record, value: intermediate membership matrix

Output: <key’,value’> pair, where value’ is the membership matrix

for each key do

merge intermediate membership matrices and store in value’

emit <key’,value’> pair

end for

5 Experiments and results

5.1 Clustering data set

The cover type data [36] set was used as the base for the

experimentation. The data set contains data regarding 30�
30 meter patches of forest such as elevation, distance to

roads and water, hillshade, etc. The data set is used to

identify which type of cover a particular patch of forest

belongs to, and there are seven different types defined as

output. The data set provides useful information to natural

resource managers in order to allow them to make appro-

priate decisions about ecosystem management strategies.

The data set characteristics are the following: number of

instances is 581,012, number of attributes (categorical,

numerical) is 54, and number of classes/labels is 7.

5.2 Computing environment

Most of the experiments were conducted on the Longhorn

Hadoop cluster hosted by the Texas Advanced Computing

Center (TACC)1 consisting of 48 nodes containing 48 GB

of RAM, 8 Intel Nehalem cores (2.5 GHz each), which

1 https://portal.longhorn.tacc.utexas.edu/.

Int. J. Mach. Learn. & Cyber. (2015) 6:923–934 929

123

https://portal.longhorn.tacc.utexas.edu/

results in 384 compute cores with 2.304 TB of aggregated

memory. For the experiments with the Mahout algorithms,

another cluster, the Rustler Hadoop cluster2 was used. The

Rustler cluster consists of 66 nodes computing cluster for

data intensive computing. Each node has dual eight core

Ivy Bridge CPUs [Intel(R) Xeon(R) CPU E5-2650] run-

ning at 2.60 GHz, with 128 GB DDR3 memory and 16

1 TB SATA drives providing the backing for the HDFS file

system. All nodes are connected via a 10 Gbps network.

Hadoop version 0.21 was used for the MapReduce frame-

work, and Java runtime 1.7 for the system implementation.

The Apache Hadoop software library is a framework al-

lowing distributed processing of large data sets across

clusters of computers using simple programming models

such as MapReduce [37]. Hadoop consists of MapReduce

(processing element), and the HDFS (storage element).

5.3 Validation of the MR-FCM algorithm

In order to guarantee that the parallelized version of the

FCM algorithm works appropriately, a performance mea-

sure needs to be used to quantify the resulting clustering

quality. Given that the cover type data set is a ‘‘classifi-

cation data set’’, which includes the correct labels, there-

fore, the clustering quality can be measured in terms of

purity [38]. Purity is defined as:

Purity ¼ 1

n

Xk
j¼1

max
i
ðj Li \ Cj jÞ ð8Þ

where Cj contains all data instances assigned to cluster j by

the clustering algorithm, n is the number of data instances

in the data set, k is the number of clusters that is generated

from the clustering process, Li denotes the true assignments

of the data instances to cluster i.

In order to compare the MR-FCM algorithm, the fol-

lowing comparison algorithms are used: clustering toolkit

(CLUTO) [39], approximate kernel possibilistic c-means

(akPCM) [40], and approximate kernel fuzzy c-means

(akFCM) [40]. The difference between the different algo-

rithms are the membership update equations. CLUTO uses

the hard c-means membership update, akPCM uses the

possibilistic c-means membership update, and akFCM uses

the FCM membership update, which our algorithm also

uses. More details on the membership update equations can

be found in [41]. In addition, the k-means as well as a

recently released fuzzy k-means (FKM) algorithm (re-

leased in 2014) from the Mahout library [42] were also

used for comparison.

The parameters for the proposed MR-FCM algorithm as

well as for the FKM algorithm were set as follows:

• cluster number ¼ 7

• fuzzification exponent ¼ 1.5

• epsilon ¼ 1.0E�5

Table 1 lists the purity values for the different algorithms.

For akPCM and akFCM the distinction is made using

different kernels: Radial Basis Functions abbreviated as

RBF, and degree-2 polynomial abbreviated as D2. We can

see that our MR-FCM implementation achieves compara-

ble purity results compared to akFCM and FKM, and better

results than CLUTO, k-means and akPCM.

5.4 Scalability results

Since different data set sizes are necessary for the perfor-

mance evaluation, the cover type data set has been split

into different portions as shown in Table 2. Listed is the

name of the data set, which corresponds to the number of

rows contained, as well as the file size is given in bytes.

Since the number of rows of the complete cover type data

set is 581,012, for the experiments of the larger data set

sizes, rows of the data sets were duplicated.

Three different experiments were conducted. The first

experiment compares the ratio of the number of mappers

and reducers used, and the second experiment uses the

findings from the first experiment to perform a scalability

analysis of the number of mappers/reducers used. The third

experiments compares the Mahout FKM implementation

with the proposed MR-FCM algorithm.

The difference between the two sets of measurements is

that for the first experiment the same number of mappers

and reducers are used for the second MapReduce job.

For the first MapReduce job preliminary experiments

showed that the best performance is achieved when the

number of reducers and the number of mappers is 7, since

there are seven outcomes (clusters) in the data set. Therefore,

in all experiments conducted the mappers and reducers for

the first MapReduce job were set to 7, however, the timings

of the first MapReduce (MR1) job are also be reported.

Figure 3 shows the execution time and the speedup of

the second MapReduce (MR2) job. The left hand side (Fig.

3a, c) shows the results of using equal number of mappers

Table 1 Purity results for dif-

ferent clustering algorithms
Algorithm Purity scores

CLUTO 0.49

k-means 0.50

akPCM (RBF) 0.50

(D2) 0.49

akFCM (RBF) 0.52

(D2) 0.53

FKM 0.52

MR-FCM 0.52

2 https://www.tacc.utexas.edu/systems/rustler.

930 Int. J. Mach. Learn. & Cyber. (2015) 6:923–934

123

https://www.tacc.utexas.edu/systems/rustler

and reducers, and the right hand side (Fig. 3b, d) shows the

results of using half the number of mappers for the re-

ducers. The speedup results are calculated based on the

time in ten mappers and ten reducers, and ten mappers and

five reducers, as shown in Fig. 3c, d, respectively. What

can be seen from this comparison is that the utilization of

the Hadoop framework is much better when only half the

number of mappers are used for the reducers. In particular,

using ten mappers and ten reducers, the MR2 time is 861 s,

whereas the MR2 time is 199 s when ten mappers and only

five reducers are used. Therefore, an improvement of factor

4 is achieved with the setup of number of reducers equals

half of the number of mappers. This finding is used

throughout the next set of experiments.

The second experiment conducts a scalability analysis

whereby the data set sizes are increased by 100,000 rows

starting with a data set of 100,000 rows all the way up to

900,000 rows. Again, the number of mappers and reducers

for the MR1 job was set to 7. Table 3 shows the execution

time of MR1 for varying data set sizes. We observe a

normal linear trend of the execution time for increasing

data set sizes given that the number of mappers and re-

ducers is fixed to 7.

Figure 4 shows the execution time of MR2 for in-

creasing numbers of mapper and reducers used. The ex-

periments use increments of 50, starting with 50 mappers

10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

Number of mappers and reducers

T
im

e
in

 s
ec

on
ds

(a)

10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

Number of mappers and half reducers

T
im

e
in

 s
ec

on
ds

(b)

10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

Number of mappers and reducers

S
pe

ed
up

(c)

10 15 20 25 30 35 40 45 50

2

4

6

8

10

12

14

16

18

Number of mappers and half reducers

S
pe

ed
up

(d)

Fig. 3 Time in seconds and speedup results for MR2. a No. of mappers equals no. of reducers. b No. of reducers is half no. of mappers. c No. of
mappers equals no. of reducers. d No. of reducers is half no. of mappers

Table 2 Data set description

for performance evaluation
Data set File size in bytes

100 K 18,237,388

200 K 36,606,436

300 K 55,011,262

400 K 73,387,535

500 K 91,761,302

600 K 109,998,690

700 K 128,367,738

800 K 146,772,564

900 K 165,148,837

1 M 183,522,604

2 M 367,045,208

3 M 550,567,812

4 M 734,090,416

5 M 917,613,020

Int. J. Mach. Learn. & Cyber. (2015) 6:923–934 931

123

(25 reducers) and ending with 500 mappers (250 reducers).

Looking at all the figures we can see that the first figures

with the lower numbers of mappers used show an ‘‘expo-

nential’’ increase, whereas the later figures with the higher

numbers of mappers used ‘‘flatten’’ and show an almost

linear increase. The execution times for the 900 K data set

are 669, 164, 88, 60, 46, and 41 s for 50, 100, 150, 200,

250, and 300 mappers, respectively.

The third experiment compares the two Mahout algo-

rithms k-means and FKM with MR-FCM for data set sizes

varying from 1 to 5 M. Since the infrastructure used at

TACC does not allow the number of mappers and reducers

Table 3 Time in seconds for

MR1 for varying data set sizes

(no. of mappers and reducers

equals 7)

Data set (K) MR1 time (s)

100 86 ± 3

200 156 ± 1

300 217 ± 2

400 285 ± 2

500 377 ± 11

600 429 ± 8

700 493 ± 9

800 553 ± 14

900 628 ± 9

100K 200K 300K 400K 500K 600K 700K 800K 900K
0

100

200

300

400

500

600

700

Data set

T
im

e
in

 s
ec

on
ds

(a)

100K 200K 300K 400K 500K 600K 700K 800K 900K
0

20

40

60

80

100

120

140

160

180

Data set
T

im
e

in
 s

ec
on

ds

(b)

100K 200K 300K 400K 500K 600K 700K 800K 900K
0

10

20

30

40

50

60

70

80

90

Data set

T
im

e
in

 s
ec

on
ds

(c)

100K 200K 300K 400K 500K 600K 700K 800K 900K
0

10

20

30

40

50

60

70

Data set

T
im

e
in

 s
ec

on
ds

(d)

100K 200K 300K 400K 500K 600K 700K 800K 900K
0

5

10

15

20

25

30

35

40

45

50

Data set

T
im

e
in

 s
ec

on
ds

(e)

100K 200K 300K 400K 500K 600K 700K 800K 900K
0

5

10

15

20

25

30

35

40

45

Data set

T
im

e
in

 s
ec

on
ds

(f)

Fig. 4 Time results of MR2

with varying data set sizes using

different number of mappers

and reducers. a 50 mappers and

25 reducers. b 100 mappers and

50 reducers. c 150 mappers and

75 reducers. d 200 mappers and

100 reducers. e 250 mappers

and 125 reducers. f 300 mappers

and 150 reducers

932 Int. J. Mach. Learn. & Cyber. (2015) 6:923–934

123

to be set explicitly, both algorithms are run without

specifying the number of mappers/reducers in order to al-

low for a fair comparison. In addition, a maximum of 10

iterations are used to evaluate the execution time of both

algorithms. Table 4 lists the results. We can see that k-

means performs best as expected since it is the computa-

tionally less expensive algorithm. As for FKM and MR-

FCM being very similar algorithms, we can see that the

Mahout FKM implementation scales better than our MR-

FCM algorithm. A possible reason for this might be that the

Mahout library uses the vector format of the data set

whereas the MR-FCM does not.

6 Conclusions

Since current clustering algorithms can not handle big data,

there is a need for scalable solutions. Fuzzy clustering al-

gorithms have shown to outperform hard clustering algo-

rithms. Fuzzy clustering assigns membership degrees

between 0 and 1 to the objects to indicate partial mem-

bership. This paper investigated the parallelization of the

FCM algorithm and outlined how the algorithm can be

parallelized using the MapReduce paradigm that was in-

troduced by Google. Two MapReduce jobs are necessary

for the parallelization since the calculation of the centroids

need to be performed before the membership matrix can be

calculated.

The accuracy of the MR-FCM algorithm was measured

in terms of purity and compared to different clustering

algorithms (both hard clustering and fuzzy clustering

techniques) showed to produce comparable results.

The experimentation and scalability analysis revealed

that the optimal utilization is achieved for the first

MapReduce job using seven mappers and seven reducers,

which is equal to the number of clusters in the data set.

Furthermore, it was shown that for the second MapReduce

job the best utilization is achieved when using half the

number of mappers for the reducers. A factor of 4 in terms

of speedup was achieved. The scalability analysis showed

that for the data sets investigated (100 up to 900 K), a

nearly linear increase can be observed when 250 mappers

and 125 reducers and more are used. Another evaluation

compared the two Mahout algorithms k-means and FKM

with MR-FCM for data set sizes varying from 1 to 5 M.

This comparison showed that k-means, being the less

computationally expensive algorithm performed best. FKM

and MR-FCM are computationally very similar, however,

the Mahout FKM algorithm showed to scale better than the

MR-FCM algorithm.

Overall, with the implementation we have shown how a

FCM algorithm can be parallelized using the MapReduce

framework, and the experimental evaluation demonstrated

that comparable purity results can be achieved. Furthermore,

the MR-FCM algorithm scales well with increasing data set

sizes as shown by the scalability analysis conducted.

Future work includes applying the MR-FCM algorithm

to different clustering data sets emphasizing on the purity

and scalability. Furthermore, larger data set sizes contain-

ing GBs of data should be investigated. For this however,

another Hadoop cluster needs to be utilized where big data

sets can be processed to achieve larger data clustering.

Acknowledgments The author acknowledges the Texas Advanced

Computing Center (TACC) at the University of Texas at Austin for

providing HPC resources that have contributed to the research results

reported within this paper.

References

1. Bell G, Hey AJG, Szalay A (2009) Beyond the data deluge.

Science 323(AAAS):1297–1298. doi:10.112/science.1170411

2. Ghosh A, Jain LC (2005) Evolutionary computation in data

mining series: studies in fuzziness and soft computing, vol 163.

Springer, New York

3. Tan P, Steinbach M, Kumar V (2005) Introduction to data min-

ing. Addison-Wesley, New York. ISBN: 0-321-32136-7

4. Jabeen H, Baig AR (2010) Review of classification using genetic

programming. Int J Eng Sci Technol 2(2):94–103

5. Han J (2005) Data mining: concepts and techniques. Morgan

Kaufmann Publishers Inc., San Francisco

6. Ludwig SA (2014) Clonal selection based fuzzy C-means algo-

rithm for clustering. In: GECCO ’14 Proceedings of the 2014

conference on genetic and evolutionary computation, pp 105–112

7. Babuska R (2014) Fuzzy clustering lecture. http://homes.di.

unimi.it/ valenti/SlideCorsi/Bioinformatica05/Fuzzy-Clustering-

lecture-Babuska. Accessed Oct 2014

8. Bezdek JC (1981) Pattern recognition with fuzzy objective

function algorithms. Kluwer Academic Publishers, Norwell

9. Jain AK, Dubes RC (1988) Algorithms for clustering data.

Prentice-Hall Inc, Upper Saddle River

10. Ruspini EH (1970) Numerical methods for fuzzy clustering. Inf

Sci 2:319350

11. Yang MS (1993) A survey of fuzzy clustering. Math Comput

Model 18:1–16

12. Lee HS (1999) Automatic clustering of business process in

business systems planning. Eur J Oper Res 114:354–362

13. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic theory and

application. Prentice Hall PTR, Upper Saddle River

14. Rosenfeld A (1975) Fuzzy graphs. In: Zadeh LA, Fu KS, Shimura

M (eds) Fuzzy sets and their applications to cognitive and deci-

sion processes. Academic Press, New York

Table 4 Time in seconds comparing k-means, FKM, and MR-FCM

for varying data set sizes

Data set (M) Time (k-means) Time (FKM) Time (MR-FCM)

1 352 769 797

2 365 773 925

3 368 789 1103

4 379 846 1318

5 388 875 1683

Int. J. Mach. Learn. & Cyber. (2015) 6:923–934 933

123

http://dx.doi.org/10.112/science.1170411
http://homes.di.unimi.it/%20valenti/SlideCorsi/Bioinformatica05/Fuzzy-Clustering-lecture-Babuska
http://homes.di.unimi.it/%20valenti/SlideCorsi/Bioinformatica05/Fuzzy-Clustering-lecture-Babuska
http://homes.di.unimi.it/%20valenti/SlideCorsi/Bioinformatica05/Fuzzy-Clustering-lecture-Babuska

15. Matula DW (1970) Cluster analysis via graph theoretic tech-

niques. In: Proceedings of the Louisiana conference on combi-

natorics, graph theory and computing, Winnipeg

16. Dunn JC (1973) A fuzzy relative of the ISODATA process and its

use in detecting compact well-separated clusters. J Cybern

3:32–57

17. Guerrero-Bote VP, Lopez-Pujalte C, de Moya-Anegon F, Her-

rero-Solana V (2003) Comparison of neural models for document

clustering. Int J Approx Reason 34:287–305

18. Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering.

IEEE Trans Pattern Anal Mach Intell 11(7):773–781

19. Bezdek JC, Coray C, Gunderson R, Watson J (1981) Detection

and characterization of cluster substructure—linear structure,

fuzzy c-varieties and convex combinations thereof. SIAM J Appl

Math 40(2):358–372

20. Yang Y, Huang S (2007) Image segmentation by fuzzy c-means

clustering algorithm with a novel penalty term. Comput Inform

26:17–31

21. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means

clustering algorithms incorporating local information for image

segmentation. Pattern Recognit 40(3):825–838

22. Sarma TH, Viswanath P, Reddy BE (2013) A hybrid approach to

speed-up the k-means clustering method. Int J Mach Learn Cy-

bern 4:107–113

23. Dean J, Ghemawat S (2004) Mapreduce: simplified data pro-

cessing on large clusters. In: Proceedings of the 6th conference on

symposium on operating systems design and implementation

(OSDI’04), vol 6, p 10

24. He Y, Tan H, Luo W, Feng S, Fan J (2014) Mr-dbscan: a scalable

mapreduce-based dbscan algorithm for heavily skewed data.

Front Comput Sci 8(1):83–99

25. Zhao W, Ma H, He Q (2009) Parallel k-means clustering based on

mapreduce. In: Proceedings of the CloudCom’09. Springer,

Berlin, pp 674–679

26. Zhou P, Lei J, Ye W (2011) Large-scale data sets clustering based

on mapreduce and hadoop. Comput Inf Syst 7(16):5956–5963

27. Li H-G, Wu G-Q, Hu X-G, Zhang J, Li L, Wu X (2011) K-means

clustering with bagging and mapreduce. In: Proceedings of the

44th Hawaii international conference on system sciences. IEEE

Computer Society, Washington, DC, pp 1–8

28. Nair S, Mehta J (2011) Clustering with Apache Hadoop. In:

Proceedings of the international conference, workshop on

emerging trends in technology (ICWET’11), New York. ACM,

New York, pp 505–509

29. Papadimitriou S, Sun J (2008) Disco: distributed co-clustering

with map-reduce: a case study towards petabyte-scale end-to-end

mining. In: Proceedings of the IEEE ICDM’08, Washington, DC,

pp 512–521

30. Ene A, Im S, Moseley B (2011) Fast clustering using mapreduce.

In: Proceedings of KDD’11. ACM, New York, pp 681–689

31. Yang J, Li X (2013) Mapreduce based method for big data se-

mantic clustering. In: Proceedings of the 2013 IEEE international

conference on systems, man, and cybernetics (SMC’13). IEEE

Computer Society, Washington, DC, pp 2814–2819

32. Cordeiro F, Traina Jr C, Traina AJM, Lopez J, Kang U, Taloutsos

C (2011) Clustering very large multi-dimensional datasets with

mapreduce. In: Proceedings of KDD’11. ACM, New York,

pp 690–698

33. MPI (Message Passing Interface). http://www-unix.mcs.anl.gov/

mpi/. Accessed 25 Apr 2015

34. PVM (Parallel Virtual Machine). http://www.csm.ornl.gov/pvm/.

Accessed 25 Apr 2015

35. Modenesi MV, Costa MCA, Evsukoff AG, Ebecken NF (2007)

Parallel fuzzy c-means cluster analysis. In: Lecture notes in

computer science on high performance computing for computa-

tional science (VECPAR’06). Springer, New York

36. Blackard JA (1998) Comparison of neural networks and dis-

criminant analysis in predicting forest cover types. Ph.D. dis-

sertation, Department of Forest Sciences, Colorado State

University, Fort Collins, Colorado

37. Apache Hadoop. http://hadoop.apache.org/. Accessed 25 Apr

2015

38. Han J (2005) Data mining: concepts and techniques. Morgan

Kaufmann, San Francisco

39. Karypis G (2003) CLUTO: a clustering toolkit. University of

Minnesota, Computer Science. Tech. Rep. 02-017

40. Havens TC, Chitta R, Jain AK, Rong J (2011) Speedup of fuzzy

and possibilistic kernel c-means for large-scale clustering. In:

Proceedings of IEEE international conference on fuzzy systems

(FUZZ), pp 463–470

41. Hathaway R, Bezdek J (1995) Optimization of clustering criteria

by reformulation. IEEE Trans Fuzzy Syst 3:241245

42. Mahout Library. http://mahout.apache.org/. Accessed 25 Apr

2015

934 Int. J. Mach. Learn. & Cyber. (2015) 6:923–934

123

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/
http://www.csm.ornl.gov/pvm/
http://hadoop.apache.org/
http://mahout.apache.org/

	MapReduce-based fuzzy c-means clustering algorithm: implementation and scalability
	Abstract
	Introduction
	Background to clustering
	Related work
	MapReduce-based fuzzy c-means implementation
	Fuzzy c-means algorithm
	MapReduce-based fuzzy c-means algorithm (MR-FCM)

	Experiments and results
	Clustering data set
	Computing environment
	Validation of the MR-FCM algorithm
	Scalability results

	Conclusions
	Acknowledgments
	References

