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Abstract The cooperative multi-targets assignment for

multiple unmanned aerial vehicles (UAV) is a complex

combinatorial optimization problem. Multi-UAVs coop-

eration increases the scale of problems which cause a no-

ticeable increase in task planning time. Moreover, it is

difficult to build a unified assignment model because dif-

ferent tasks often require different numbers of UAVs and

targets. Besides, the cooperative constraints of multi-UAVs

in a three-dimensional environments are more complex

than that in a two-dimensional environments, which makes

it difficult to obtain an optimal solution. To solve these

problems, we present a unified gene coding strategy to

handle various models in a consistent framework. Then, a

cooperative target assignment algorithm in a three-dimen-

sional environments based on discrete mapping differential

evolution is given. First, we use flight path cost to indicate

the assignment relationship between the UAV and the

target, which turns the optimization problem from discrete

space to continuous space, and so the solving process can

be simplified. Secondly, in order to obtain reasonable off-

spring for differential evolution, we map the solution back

to the assignment relationship space according to inverse

mapping rules. Finally, to avoid falling into a local optimal,

a balance between exploration and exploitation is achieved

by combining the dynamic crossover rate with the hybrid

evolution strategy. The simulation results show that the

proposed discrete mapping differential evolution algorithm

with the unified gene coding strategy not only effectively

solves the cooperative multi-targets assignment problem,

but also improves the accuracy of the multi-targets as-

signment. It is also suitable for solving the large scale

problem of assignment.

Keywords Multi-UAVs � Cooperative target assignment �
Combinatorial optimization � Mapping rules � Discrete
differential evolution

1 Introduction

Compared with single unmanned aerial vehicles (UAV),

multi-unmanned aerial vehicles (Multi-UAVs) system has

the advantages of high speed, reliability and flexibility by

cooperation and coordination [1]. Many combat tasks such

as Wide Area Search, Suppression of Enemy Air Defense

(SEAD), and Intelligence Surveillance and Reconnaissance

(ISR) need to be executed by a Multi-UAVs cooperative in

complex battlefield situations [2, 3]. Thus, the Multi-UAVs

system has gradually replaced the single UAV in per-

forming a variety of complex tasks. However, the coop-

eration of Multi-UAVs increases the problem scale, and

thus the computational complexity grows exponentially.

Moreover, the cooperation of Multi-UAVs is affected by

other issues, such as environmental constraints, equipment

degradation, resource competition, cooperative constraints

and the conflict of UAVs [4–9] etc. Therefore, it is a

challenge to search for the optimal solution for Multi-

UAVs cooperation at a minimum cost.

The problem of Multi-UAVs cooperative multi-targets

assignment (MUCMTA) plays an important role in the task

planning system. How to minimize the total cost or max-

imize the total benefits is the key to properly assigning a

series of UAVs to implement multiple targets [6]. In
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particular, the target assignment problem is a well-known

discrete combinatorial optimization problem with multi-

constraints and multi-models. It is a non-deterministic

polynomial (NP) and is hard to find an optimal solution [7],

especially in a three-dimensional (3D) environment.

The MUCMTA has been tackled with some classical

optimization methods, such as mathematical programming

and distribution approaches. Mathematical programming

approaches have included the Hungarian algorithm [8–10],

mixed integer linear programming [11], and Dijikstra al-

gorithm [12]. The assignments based on those techniques

work well using simple models in a two-dimensional (2D)

scenario, but they are not suitable for the complicated

MUCMTA in 3D environments. The distributed ap-

proaches have a negotiation scheme based on the contract

net [13] and market mechanism [14–19]. These distributed

methods balance the conflict by consultation and infor-

mation sharing. So they can solve the multi-target assign-

ment problem even in a larger scale. However, those

methods emphasize avoidance of conflict without taking

into account the practical cost between the UAVs and the

targets, so it cannot provide an accurate assignment result.

Inspired by the good performance of artificial intelli-

gence, intelligence algorithms have been widely used in the

field of MUCMTA. For example, Genetic Algorithm (GA)

is extended to seek the optimal solution of an assignment

[20–23], because it mimics the process of natural selection

and is not restricted by continuity, differentiability, or

unimodality in a search domain. But GA usually converges

rapidly and falls into local optimization easily. The particle

swarm optimization (PSO) algorithm is another commonly

used intelligence method. It was improved in [24–28] for

solving the assignment problem. This approach finds the

best solution by particles swirling around, but it has the

potential failure in achieving the global optimization.

Moreover, the ant colony optimization (ACO) and the bee

colony methods have also been introduced [29–33], which

have better performance in MUCMTA. However, it de-

generates very fast when its situations become more

complicated, especially in 3D. So it is hardly suitables for

the assignment problem with a large scale.

The MUCMTA research in a 3D environment has more

practical applications than 2D [34]. However, It is difficult

to establish an effective representation by using a graph

structure in 3D environment because it has a more exten-

sive searching space. On the other hand, the UAVs should

fly through the complex uneven terrain and avoid various

threatening zones and no fly zones, furthermore the UAVs

should to satisfy their own and cooperative constraints. The

less the 3D environment is considered, the greater damage

probability the UAV will be suffered, which will lead to

task failure. So the reality task cost should be estimated by

the flight distance, execution time and other various

constraints, but not the linear distance between the start

location and target position nor the shortest path on a

graph. Research has also been proposed for the task as-

signment in 3D environments [34, 35]. An approach of a

self-organizing map (SOM) neural network has been used

for task assignment and path planning of multiple au-

tonomous underwater vehicles (AUV) [34] in a 3D work-

space. The approach combines task assignment with path

planning, and the AUV is similar to a UAV in a 3D

environment.

Differential evolution (DE) algorithm is a stochastic,

parallel and population based search method, using the

distance and direction difference of individuals to guide the

search process [36–39]. Characterized by continuous pa-

rameters it has a strong search capability and fast conver-

gence. The improved DE has been proved to be quite

appropriate for the combinatorial optimization problems

with discrete parameters, and it is effective and competitive

with other approaches in this domain [39]. In our previous

work [40], we have also used a DE algorithm to deal with a

uniform assignment model using partially mapped cross-

over (PMX). This approach has provided better simulation

results. But because it performs differential operations with

only sequenced targets as well as rounding the differential

results directly into integer, physical properties are ignored

and the rationality of the problem is reduced.

In this paper, we continue improving the DE algorithm

for solving the MUCMTA more elaborately. Although the

DE algorithm has a better effect on the combinatorial op-

timization problems, there are still some major challenges

to solve for practical problems. They are summarized as

follows:

1. How do we design a unified gene code that indicates

the task assignment? A population with unified coding

can not only represent various assignment models, but

can also be processed by a uniform algorithm frame-

work in 3D environment.

2. How do we define reasonable mapping rules for DE

with discrete parameters relating to MUCMTA? They

should properly transform the problem from discrete

space to continuous space by physical properties, so

that it can correctly guide the direction of search.

3. How to dynamically select a differential strategy

during the evolutionary process? Because the DE

algorithm improves the efficiency by creating a

balance between the exploration and the exploitation,

another challenge lies in the selection of the differen-

tial strategy.

Therefore, this paper presents a novel discrete mapping

differential evolution (DMDE) approach based on a unified

gene code strategy in 3D, which can handle various as-

signment models in a uniform algorithm framework. Then
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we improved the differential operation by discrete mapping

and inverse mapping rules. The map of the flight path cost

transforms the problem from discrete space to continuous

space, so that the rational optimal result with physical

properties can easily be found. Moreover, the inverse

mapping with matched strategies inverses the differential

result back to the assignment relationship for generating

feasible offspring of DE. Furthermore, a hybrid differential

strategy with a dynamic crossover rate is used to improve

the efficiency of the DMDE algorithm. Finally, we replace

the constraint of arriving at the same time with the asyn-

chronous initial waiting time, which further enhances the

cooperative capacity of UAVs.

The rest of this paper is organized as follows. Section 2

describes the unified algorithm framework for MUCMTA.

The unified encoding strategy based on the cost of the flight

path is given in Sect. 3. In Sect. 4 we present the differential

mapping rules for discrete parameters. Simulation results are

shown in Sect. 5 before the conclusion is given in Sect. 6.

2 The unified algorithm framework

2.1 Unified assignment model

We have previously worked on the unified assignment

model for the MUCMTA problem in a 3D environment,

and estimated the flight path cost by using the vertical

section between a UAV and a target [40]. In the meanwhile

the assignment situations have been summarized as these

three basic cases: N[M, N\M and N = M, which are

classified by the number of UAV and target.

Based on the previous research, the scenario of

MUCMTA is described as a set of UAVs N ¼
fU1;U2; . . .;Ung to attack a set of targets M ¼
fT1; T2; . . .; Tmg in a complex 3D environment. The ob-

jective of this problem is to find an assignment sequence,

which has the optimal total cost of the flight path and the

shortest flying time for all UAVs. Meanwhile, all UAVs fit

a variety of constraints and avoid radar threat by cooper-

ating with each other. The typical scenario and simulation

environment are shown in Fig. 1.

The objective function of the unified assignment model

can be formulated as follows:

minðf ðxÞÞ ¼
Xn

i¼1

Xm

j¼1

wjdði;jÞxði;jÞ

þ a max
Xn

i¼1

Xm

j¼1

tði;jÞxði;jÞ

 ! !
þ b

XK

k¼1

ck

ð1Þ

Where dði;jÞ is the distance of flight path from UAV to the

target. tði;jÞ is the flying time of the UAV. ck is the penalty

corresponding to the constraints. wj is the weight of target

j, and 0\wj � 1, a and b are scale factors for keeping the

balance of polynomial in the objective function, which can

be empirically set. xði;jÞ is the decision variable, which

decides the corresponding of UAV and target. The forms of

xði;jÞ with different assignment cases are as follows.

xði;jÞ ¼
xði;jÞ N ¼ M

xði0;jÞ; i
0 2 ½is; . . .; il�; s; l 2 N N[M

xði;j0Þ; j
0 2 ½jp; . . .; jq�; p; q 2 M N\M

8
><

>:
ð2Þ

In (2), while N[M, xði0;jÞ is the decision between many

UAVs and one target. That means many UAVs can attack

the same target. While N\M, xði;j0Þ is the decision be-

tween one UAV and many targets, and that means a single

UAV can attack a group of targets.

According to the discussion in the previous research

[40], a variety of constraints can be described as follows.

Xn

i¼1

Xij ¼ 1; 8j ¼ 1; . . .;m; n�m ð3Þ

Xm

j¼1

Xij ¼ 1; 8i ¼ 1; . . .; n; n�m ð4Þ

s ¼ TðjÞmin � TðiÞmax
tj � ti þ s i; j 2 1; . . .;m

�
ð5Þ

½Tk�1; Tk� 6¼ U

max fti; . . .; tjg� Tk i; j 2 1; . . .;m

min fti; . . .; tjg� Tk�1 i; j 2 1; . . .;m

8
><

>:
ð6Þ

Xn

i¼1

Xm

j¼1

dði;jÞxði;jÞ �
Xn

k¼1

Dk 8k ¼ 1; . . .; n ð7Þ

max
Xn

i¼1

Xm

j¼1

tði;jÞxði;jÞ

( )
� Tk 8k ¼ 1; . . .; n ð8Þ

Fig. 1 The scenario of MUCMTA in 3D environment
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\K

i¼1

½tðiÞmin; tðiÞmax�
� �

6¼ U K 2 1; . . .; n ð9Þ

Where (3) and (4) indicate the relationship between UAV

and target; (5) represents the perform sequence of targets

and s is the minimum time interval. Then, (6) is the con-

straint of time window, (7) is the constraint of maximum

flight path, (8) is the constraint of maximum flying time,

and (9) is the constraint of arriving at the same time.

Moreover, in order to ensure the UAVs simultaneous

arrival, we introduce the vector of maximum initial waiting

time Twait, which allows some UAVs to wait until other

UAVs take off in a certain time period. It can be described

as:

Twait ¼ ½twaitð1Þ; twaitð2Þ; . . .; twaitðkÞ�; k 2 f1; . . .; ng
ð10Þ

Then the penalty of the simultaneous arrival constraint can

be changed as:

Cconstrain¼
0
TL

i¼1

ð½TminðiÞ;ðTmaxðiÞþTwaitðiÞÞ�Þ 6¼U; L2N

Kp

TL

i¼1

ð½TminðiÞ;ðTmaxðiÞþTwaitðiÞÞ�Þ¼U; L2N

8
>>><

>>>:

ð11Þ

Where the TminðiÞ is the time of the UAV flying at the

highest speed, and the TmaxðiÞ is the time of the UAV flying

at the lowest speed. The Kp is a penalty term, when the

cooperative tasks have no intersection.

The objective function presents the optimal direction of

search, so it can measure the evolution of individual merits.

Therefore, we use the objective function to be the fitness

function of DE. The individual with high fitness has more

chances to survive and reproduce in the evolutionary pro-

cess, and the fitness function can make the algorithm

search toward the direction of the optimal solution.

2.2 The DE algorithm framework

The DE algorithm developed by Storn and Price in 1995 is

similar to other evolution algorithms in the characters of

population transfer, crossover and mutation [41–44].

However it significantly differs from other evolution

methods in using the vector of distance and direction dif-

ference between individuals to guide the search process,

which performs quickly and efficiently searching in con-

tinuous space. The main performance advantage of the DE

algorithm is reflected in the differential strategies [36, 37,

42]. The general strategies used by DE are indicated by the

notation of DE/x(base)/y(number)/z(cross), where x repre-

sents the base of the differential tendentious, y is the

number of individuals involved in the differential, and z is

the type of crossover. The crossover z should usually be

chosen between binomial (bin) and exponential (exp),

where the binomial crossover is randomly selected from

the set of possible crossover points, and the exponential

crossover is selected from a sequence of adjacent crossover

points in one loop. The research of [37] has stated that the

exponential and binomial crossovers yield similar results

for discrete optimization problems, so we selected the

commonly used type of binomial crossover in our research.

The DE strategies most frequently used in the literatures

are shown in Table 1.

However, the traditional DE only handles the problem

with continuous parameters. If using DE to solve the

combinatorial optimization problem with discrete pa-

rameters, the discrete parameters should be changed to

continuous space by some translation approaches. Through

the translation, DE can easily solve the discrete problem

with continuous parameters. Therefore, in order to avoid

the defects of DE for MUCMTA, we developed a reason-

able translation method with map and inverse mapping

strategies. The proposed strategy not only takes advantage

of the DE algorithm, but also reduces the differential error

by involving the physical properties of MUCMTA.

In this paper, we first propose a unified gene encoding

for assignment models of N = M, N[M and N\M, so

that different models can be processed in a consistent

framework of the DE algorithm. Then we convert the

discrete parameters into continuous space by mapping the

matrix of the flight path cost, while we obtain the differ-

ential result with the matrix. Next we inverse the differ-

ential result to that of the relationship of assignment by the

inverse mapping rules. Those translation processes can

easily produce reasonable offspring of a DE individual

with practical properties. Finally, we make the evolution

always move toward the optimized direction of MUCMTA

by using a cooperative fitness function with various con-

straints. In addition, we also use a hybrid differential

strategy to enhance the efficiency of DMDE. The algorithm

framework is shown in Fig. 2.

Table 1 Common formulas of DE strategies

Strategy Formula

DE/best/1/bin v ¼ x
ðGÞ
best þ F � ðxðGÞr2 � x

ðGÞ
r3 Þ

DE/rand/1/bin v ¼ x
ðGÞ
r1 þ F � ðxðGÞr2 � x

ðGÞ
r3 Þ

DE/ rand-to-best/1/

bin
v ¼ x

ðGÞ
i þ k � ðxðGÞbest � x

ðGÞ
i Þ þ F � ðxðGÞr1 � x

ðGÞ
r2 Þ

DE/best/2/bin v ¼ x
ðGÞ
best þ F � ðxðGÞr1 þ x

ðGÞ
r2 � x

ðGÞ
r3 � x

ðGÞ
r4 Þ

DE/rand/2/bin v ¼ x
ðGÞ
r5 þ F � ðxðGÞr1 þ x

ðGÞ
r2 � x

ðGÞ
r3 � x

ðGÞ
r4 Þ
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3 The Unified encoding strategies

3.1 Encoding strategies

The efficiency and complexity of a search algorithm relies

heavily on the representation scheme [36]. Therefore, the

key to an evolution algorithm is to find an efficient repre-

sentation scheme. For MUCMTA, it usually uses the per-

mutation of targets to represent the individual of evolution.

The gene of an individual is a serial number of targets,

while the length of individual gene is the total of combat

tasks. Moreover, If the number of UAVs is more than that

of the targets, a target can be randomly assigned to multiple

UAVs. If the number of UAVs is less than that of the

targets, many targets can consist of a sequence for UAV

cruising. This approach easily represents the MUCMTA by

the individual of evolution algorithm, but it is difficult to

deal with different models in a uniform framework. Fur-

thermore, the algorithm randomly assigns the UAVs to

targets and blindly searches the optimal solution during the

evolution process, resulting in the reduction of the algo-

rithm efficiency.

Therefore, we propose a uniform gene encoding for

various assignment models (N = M, N[M and N\M)

based on the flight cost of UAVs and targets. In [40], we

have introduced that the cost matrix of various models has

a similar form, so we can unify the gene encoding by the

assignment relationship of UAVs, targets and their flight

path cost. Then the uniform gene encoding of DE can be

represented by a triple vector ðUi; Tj;Cði; jÞÞ or

ðTj;Tðjþ1Þ; Tcðj; ðjþ 1ÞÞÞ, where Ui denotes the UAV i, Tj

denotes the target j, Cði; jÞ the cost of the UAV i flying to

the target j, and Tcðj; ðjþ 1ÞÞ the cost of the target j flying

to the next target ðjþ 1Þ (target j is treated as a new

starting point for a UAV when the UAV cruises a group of

targets). Thus, the genes of an individual composes a fea-

sible solution for the MUCMTA. Figure 3 describes an

example of the cost matrix and the individual encoding.

In Fig. 3, fU1; . . .;U6g indicates the UAVs, fT1; . . .; T6g
is the targets, Cði; jÞ is the flight path cost of the UAV i to

the target j, and Tcði; jÞ is the flight path cost of the target i

to the next target j. In the left sub-region of the graph in

Fig. 3, the area enclosed by the black solid lines shows the

cost matrix in which the number of UAVs equals to the

targets (N = M). The area enclosed by the blue dotted lines

represents the cost matrix in which the number of UAVs is

larger than the targets (N[M). And, the area enclosed by

the red span lines indicates the cost matrix in which the

number of UAVs is less than the targets (N\M). In the

right sub-region of the graph in Fig. 3, there are the genes

encoding of the individuals for the three models.

3.2 The rules of code generation

The unified encoding of various models has a similar

form but different meaning, so the rules of code generation

are slightly different. They are described as follows:

1. While N = M, the relationship of the UAV and the

target is one to one. So each gene denotes a set of a

UAV Ui, a target Tj and their cost Cði; jÞ. Cði; jÞ is the
flight path cost of Ui to Tj. Because each target is

performed by a UAV and a UAV only executes one

target, the code of the evolutionary individuals has no

Fig. 2 Framework of unified targets assignment algorithm based on the improved discrete DE
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repetitive Ui and Tj. Figure 4 shows the gene code of

the individuals.

2. While N[M, the relationship of UAV and target is

many to one. Each gene has the same meaning as N

equals to M. However, because many UAVs can attack

the same target, a repetitive Ui does not exist, but Tj
could be repetitive in a code of evolutionary indi-

viduals. Moreover, each target is at least performed by

one UAV, so Tj occurs at least once in an individual. It

is shown in Fig. 5.

3. While N\M, the relationship of UAV and target is

one to many. Each gene may have relations with other

genes because a UAV can cruises to a group of targets.

Those targets assigned to the same UAV, can be

grouped into a swarm team. In the swarm team, the

UAV implements all those targets sequentially. There-

fore, the UAV Ui corresponds to a group of targets

½Tj; . . .; Tk�. Cði; jÞ is the flight path cost of Ui to Tj.

Then we set the current finished target Tj as a new

starting point for the UAV. Then, Tcðj; kÞ is the flight

path cost from the new starting point Tj to next target

Tk. The sequence of ½Tj; . . .; Tk� is based on the

principle of the shortest path, so that the UAV can

cruises to all targets in the team with a minimum cost.

In the code of evolutionary individuals, a repetitive Tj
does not exist but Ui could be repetitive. The Ui occurs

in an individual at least once, because every UAV

should be involved. The gene code of the individual is

shown in Fig. 6.

The above code rules represent the evolutionary indi-

vidual of three basic MUCMTA missions. It can unify

various assignment models to be dealt with in a consistent

algorithm framework. Meanwhile, this approach stores the

flight path cost in a gene, so that the distance information

between the UAV and a target can be used to guide the

direction of search. So it is a more general and more rea-

sonable algorithm.

4 Improved DE by discrete mapping rules

4.1 Discrete mapping rules

The feasible solution of MUCMTA is constituted by the

discrete integer set of UAVs, targets and their cost. So the

classical DE algorithm can’t solve this problem directly. If

only the integer part of the float differential result is uti-

lized, the new individual would have invalid duplicate

values, zero values, negative values and over bounds val-

ues. Such an individual cannot be used in subsequent

evolutionary computation, which will inevitably lead to the

failure of the searching algorithm.

Fig. 3 Uniform code based on

cost matrix

Fig. 4 The gene code sequence

of individuals when N = M
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Some approaches such as the partially matched cross-

over method [23, 40] or the sorting differential results

method [37] have solved the invalidation of DE. But, they

are variants of random search, and neglect the actual

physical features of MUCMTA. Therefore, it is difficult to

achieve optimal results.

To solve this problem, the improved algorithm uses the

cost value in the gene code to map the discrete relationship

of the UAV and the target, so that the search process makes

the differential in continuous space. Then we inverse the

search results from the continuous space back to the ori-

ginal discrete space by employing the inverse mapping

strategies, while a new feasible individual is obtained. The

space conversion with map and inverse mapping strategies

can generate new feasible individuals and avoid the failures

of the other approaches.

In the physical significance of the MUCMTA problem,

the relationship of the UAV and target connects with the

flight path cost. The main goal of the search is to find the

assignment with a set of minimum cost. Therefore, we

calculate the differential of individuals in DMDE with the

corresponding cost of the UAV and the target. Because the

individual can be encoded as an nd-dimensional bivariate

vector, we set the discrete space as fðUi; TjÞ 2 Zndg and the

continuous cost space as Rn
c . So the mapping function for

conversion can be interpreted by the following expression:

φ : {(Ui, Tj) ∈ Znd} Ccost−−−−→ Rn
c ð12Þ

The cost value matrix of Ccost is the permutation matrix of

the mapping function. As we discussed before, the flight

path cost has been added in the unified gene encoding, so it

is easy to get the cost value of the permutation matrix in the

genes of individuals. According to DE strategies, the al-

gorithm calculates the differential temporary solution with

the cost value as follows:

C
ðiÞ0
j ðtÞ¼

C
ðr1Þ
j ðtÞþF �ðCðr2Þ

j ðtÞ�C
ðr3Þ
j ðtÞÞ; rand½0;1�\CR

C
ðiÞ
j ðtÞ; Otherwise

8
<

:

ð13Þ

In (13), F is the scale factor which controls the amplifi-

cation of the differential variation rate. CR is the crossover

rate. C
ðiÞ0
j ðtÞ is a temporary result given by the DE differ-

ential strategy, which represents the distance difference

between father individuals. It also may be a reasonable

value or an invalid duplicate value, zero value, negative

value or over bounds value. Therefore, in order to get

feasible new offspring individuals, we need inverse map-

ping the temporary result to correspond to the relationship

of the UAV and the target by some matching rules. The

inverse mapping function can be defined as:

φ : Rn
c

Matchrules(1, 2, 3)−−−−−−−−−−−−−→ {(Ui, Tj) ∈ Znd} ð14Þ

In the inverse mapping strategies we adopt three matching

rules, which ensure that the temporary result transforms

Fig. 5 The gene code sequence

of individuals when N[M

Fig. 6 The gene code sequence

of individuals when N\M
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into a new feasible offspring of an individual. Those match

rules can be described as follows:

1. Rule 1 (Nearest neighbor matching): For each reason-

able value in a differential temporary result, we find

out the nearest value Cði; jÞ in the cost matrix, and

make the corresponding ðUi; Tj;Cði; jÞÞ the new gene

position of offspring individual. The nearest value is

the minimum value compared with all the cost values

in the matrix, which is described as follows:

C0
ði;jÞ ¼ Cði;jÞjminfðxðiÞ

0

j ðtÞ � Cði;jÞÞ; 0\i\n; 0\j\mg
ð15Þ

2. Rule 2 (Unique matching): The match should guaran-

tee the reasonable value uniquely corresponding to a

relationship of the UAV and the target, and meanwhile

avoid the duplicate value of mapping to the same

position. So some strategies are required to choose the

position of the genes in the cost matrix. The different

assignment model need different strategies, which are

as follows:

a. While N = M, both of UAVs and targets are not

repetitive in a gene sequence. After the match

element in the cost matrix is found and added to

the new offspring individuals, we delete the row

and the column of this element in the matrix, so

that the cost values of that row and column are no

longer involved in the next matching.

b. While N[M, the UAVs are not repetitive but the

same target can be repetitively matched by differ-

ent UAVs. When we matched the element in the

cost matrix and add it to the new offspring

individuals, we delete the row of this element in

matrix, which can prevent any UAV duplication.

c. While N\M, the UAVs may cruises to a group of

different targets and the targets can’t be repetitive

in a gene sequence. So we adopt the iterative

replacement method to match the results. First, we

match all the UAVs in the upper part of cost

matrix, so that each UAV matches at least one

target. Then we use the row in the lower part of

matrix to replace the row of UAV in upper part of

matrix. The replacement uses current visited target

point as the UAV’s new start point, so that the

UAV can visit the next target from this new

location. Finally we iteratively execute this re-

placement process, and match the target in the

changed upper part of cost matrix until the rest of

targets are matched.

3. Rule 3 (Invalid mutation matching): After matching

the reasonable values of the temporary result by Rule 1

and 2, the invalid values and the unmapped matrix are

left. Those invalid zero values, negative values and

over bounds values in the temporary result can be

matched by the local random mutation. Therefore, an

element is randomly assigned in the unmapped matrix

to an invalid value, and the unmapped matrix is

modified by Rule 2 until all the invalid values are

matched and the unmapped matrix is null.

During inverse mapping with the match rules, the operation

of deleting rows or columns seriously reduces the algo-

rithm’s efficiency. Therefore, we use an unlimited large

value Inf to reset those rows or columns instead of deleting

them. The Inf can easily improve the efficiency of the

algorithm, and ensures that the matching process is im-

plemented smoothly. Figure 7 shows how the match rules

work.

4.2 DMDE with hybrid evolution strategies

In the application of DMDE for the MUCMTA problem, a

main issue is to find the trade off between the exploration and

the exploitation of the search by setting the parameters and

differential strategies. The exploration effectively identifies

the optimal solution in the search regions, exploitation ac-

celerates the convergence to the local optimal solution [44].

To improve the performance of DMDE, something is needed

to be done to not only enhance the exploration to cover more

space, but also to increase the exploitation to refine the search.

However, those two aspects interact with each other. Exces-

sive explorationmaymake the algorithm difficult to converge

to the optimal solution, while the over exploitation may cause

the algorithm to fall into a local optimum. Consequently, only

by keeping a balance between exploration and exploitation,

can the performance of the DMDE algorithm rise in the

searching process.

The DE algorithm with a single strategy tends towards

better exploration (DE/rand/y/z) or faster convergent ex-

ploitation (DE/best/y/z), which only focuses on one aspect

of optimization. The DE with strategy of DE/rand-to-best/

y/z keeps a better balance of both aspects than the above.

However, this strategy also lowers the capability of opti-

mization, because the random or best parameter is still a

fixed proportion in the evolutionary process.

For the above reasons, we adopt a hybrid strategy to

solve this problem, which dynamically mixes two evolu-

tionary strategies. The hybrid strategy uses a dynamic

crossover rate to adjust the proportion of DE/rand/1/bin

and DE/best/2/bin in the evolutionary process. In the early

stages of evolution, the algorithm is dominated by the

strategy of DE/rand/1/bin, which maintains population di-

versity. Then the algorithm gradually turns to the strategy

of DE/best/2/bin, employing a more sophisticated search
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for the optimal solution. So, the hybrid pattern dynamically

adjusts the evolutionary strategies to trade off the explo-

ration and the exploitation in the search process. It can

effectively improve the efficiency of the DMDE algorithm.

The dynamic crossover rate CR is defined as follows:

CR ¼ 1� logðxÞ
logðSÞ

� �h

; x 2 ð1; 2; . . .; SÞ; h 2 N ð16Þ

Where x is the current generation, S the total generation,

and h the exponent of the curvature. The curves of CR with

different h are shown in Fig. 8.

From Fig. 8, it can be seen that the value of h deter-

mines the variation of the curves. So the appropriate value

of h can better balance the exploration and the exploitation.

For example, when h ¼ 3, the dynamic crossover rate re-

duces very quickly at the beginning of the search, so that

the proportion of the exploration by random search quickly

approaches to the proportion of exploitation by the refined

search. Then the crossover rate changes more and more

slowly and the proportion of the exploitation is gradually

larger than the exploration, which ensures that the refined

search is dominant at the end of the search process.

Then, the new individual generated according to the

hybrid strategy and the dynamic crossover rate is as follows:

F¼
CR; rand½0; 1�6CR

ð1� CRÞ=2; rand½0; 1�[CR

�
ð18Þ

Equation (17) shows that the crossover strategy of DE/

rand/1/bin helps to explore more individuals when CR is a

Fig. 7 The schematic of match

action

Fig. 8 Crossover rate curve

C
ðiÞ0
j ðtÞ¼

C
ðr1Þ
j ðtÞþF �ðCðr2Þ

j ðtÞ�C
ðr3Þ
j ðtÞÞ; rand½0; 1�6CR

C
ðbestÞ
j ðtÞþF �ðCðr1Þ

j ðtÞþ C
ðr2Þ
j ðtÞ�C

ðr3Þ
j ðtÞ�C

ðr4Þ
j ðtÞÞ; rand½0; 1�[CR

8
<

: ð17Þ
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big value in the beginning. Then the proportion gradually

changes with CR. After evolution iterates many gen-

erations, solutions are close to the optimization, and CR is

near the minimum value. So the crossover strategy of DE/

best/2/bin guide the searching process to exploit the opti-

mal solution. Moreover, Eq. (18) shows that the value of

the scale factor F is related to CR so that it is also the value

of dynamic change.

On the other hand, we also utilize the generational

mutation mechanism in DMDE to enlarge the search cov-

erage. The generational mutation saves some excellence

individuals, and replaces all other common individuals in

the population during generation iteration. So, it sig-

nificantly changes the tendency of before search. It also

enhances the population diversity and random search

coverage. We set the generation mutation rate as

GMR ¼ 1� CR, which gradually increase with the reduc-

tion of CR.

5 Experimental results

To demonstrate the effectiveness of the improved DMDE

algorithm, several simulation cases are implemented on the

software platform of MATLAB R2011b in Windows 7.

The PC had a Core i5 3.20 GHz (quad-core) processor and

8GB of RAM. We also simulated the same 3D terrain,

randomly fixed radars coordinates, and different numbers

of UAVs and targets as the previous research to compare

the improved approach with previous common approach

under the unified assignment model.

5.1 The effectiveness and efficiency of DMDE

In order to verify the DMDE algorithm searching the

global optimal solution validity, we set two different scales

for the experiments. Exp1 has a small number of UAVs and

targets to verify the feasibility of the algorithm and in

comparison with the result of previous research’s method.

Exp2 has a big number of UAVs and targets to prove the

algorithm’s effectiveness in complex situations. We set the

initial data format as: the velocity matrix of UAVs as

V ¼
V1
min V1

max

..

. ..
.

Vn
min Vn

max

0

B@

1

CA, the constraint vector of maximum

flight path cost as D ¼ ½d1max; . . .; dnmax�, the constraint vec-

tor of maximum flying time as T ¼ ½d
1
max

v1min
; . . .;

dnmax
vnmin

�, the

weight vector of targets as W ¼ ½x1; . . .;xn�, the constraint

matrix of targets order as Tsort ¼
tðiÞ tðjÞ
..
. ..

.

 !
, the

constraint vector of arriving at the same time as

Ts ¼ ½k1; k2; . . .; kl�(k is the number of teams by assign-

ment), the vector of maximum initial waiting time as

Twait ¼ ½t1wait; t2wait; . . .; tkwait�, and the constraint of the time

window as Twin ¼ ½tstart; tend�. The initial data for Exp1 is

shown in Table 2. Moreover the scale factors in the ob-

jective function are chosen with a ¼ 2:5, b ¼ 1:5ðN�MÞ
and a ¼ 1:5, b ¼ 1ðN\MÞ. Then we set the dynamic

crossover rate as CR from Eq. (16) and assume the expo-

nent as h ¼ 3. The other evolution parameters of DMDE

for each experiment are shown in Table 3.

Where, ‘Pop’ denotes the number of individuals in

populations, ‘Gen’ is the number of iterations in gen-

erations, and ‘Num’ is the repeated times of the

experiments.

The statistical data from the results of experiments is

listed in Table 4.

Where ‘Avg time’ is the average running time, ‘Avg

cost’ is the average total cost of the flight path, ‘Best cost’

is the optimal total cost of the flight path over many runs of

the experiments, ‘Violation’ is cooperative violation rate,

which is defined as the sum of the violation percentage of

the total cost in the optimal solution, and the ‘Optimal’ is

the rate of optimal result times the percentage of ex-

periment times. The ‘Avg cost’ and ‘Best cost’ are all fit-

ness scores, which are composed of optimization goals and

various constraints violations. So they are dimensionless

values.

We can draw two conclusions from Table 4: (1) the

improved DMDE algorithm can get reasonable results of

targets assignments for various MUCMTA models; (2) the

algorithm can also handle the large scale MUCMTA

problem effectively.

For Exp2, if the larger scale experiment increases the

complexity and reduces the efficiency of the problem, the

DMDE algorithm can efficiently search for an optimal

solution. Furthermore, the average running time of both

Exp1 and Exp2 are lower and at the same level, which

Table 3 Evolution parameters

of each experiment
Model Exp1 Exp2

UAV Target Pop Gen Num UAV Target Pop Gen Num

N = M 10 10 50 1000 20 50 50 50 1000 10

N[M 10 4 50 1000 20 50 15 50 1000 10

N\M 4 10 50 1000 20 15 50 50 1000 10
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proves that the unified DMDE algorithm has more effi-

ciency for various assignment models and is suitable for

solving larger scale problems. Moreover, the average total

cost is very close to the optimal cost, which indicates that

the algorithm search is near the global optimal result.

Meanwhile, the smaller the cooperative violation rate is,

the stronger the cooperative capacity of the solution there

is. So the algorithm has less chance to violate constraints.

In addition, the higher optimal rate illustrates that ex-

periments have higher probability in finding the optimal

solution.

In order to present the assignment results directly,

Table 5 illustrates the optimal assignment results of Exp1

for various models, and Fig. 9 shows the corresponding

results in the 3D simulation battlefield environment with

radar threats and multi-constraints.

In Table 5, ‘U’ is the UAV, ‘T’ is the target, and the

value is the flight path cost by the UAV and the target.

Then, in Fig 9, the yellow circles indicate the UAVs

starting position. The yellow stars indicates the targets

position. The red lines show the assignment relationship of

the UAV and target, and it also indicates the flight path cost

between the UAV and the target.

From Fig. 9, we can see that the DMDE algorithm can

effectively deal with the assignment for different models,

when the distribution of radars is intensive and the targets

are randomly distributed in a 3D environment. Moreover,

when the radar is not very intensive in the battlefield, the

estimated cost of the flight path will be closer to the real

path, which can provide an important reference for the next

phase of the UAVs trajectory planning.

Comparing with the previous study in [40], we list the

data of two experiments in Table 6.

From Table 6, the average running time of the ex-

periments with DMDE is shorter than that in the previous

research. That is because the DMDE does not only modify

the genes generation strategies, but also introduces the

differential mapping rules. Thus, the optimal rate shows

that DMDE has more capacity to find the optimal result

than the previous research.

5.2 Performance of DMDE

The curves of convergence of the three models in Exp1 are

shown in Fig. 10, where we can analyze the tendency of

DMDE based on the following three aspects:

First, the blue line represents the convergence curve of a

single experiment with the optimal point in generation it-

eration, and the red line shows the average convergence

curve by statistical data of the experiments over many

running times. The curves of different models have similar

convergence trends. All of them can converge near to the

optimal solution after about 150 generations, which means

that the speed of convergence is high in the beginning of

the search. Consequently, the DMDE algorithm has better

convergence performance.

Secondly, the red circle in Fig. 10 indicates that the

current optimum is obtained by differential mutation, while

the blue star represents that the current optimum is

Table 4 Statistics data by

multi-groups assignment result
Exp Model Avg time(s) Avg cost Best cost Violation (%) Optimal (%)

Exp1 N = M 28.67 3879.50 3867.90 7.73 60

N[M 40.90 4963.80 4948.70 13.3 60

N\M 50.18 2108.50 2108.30 9.4 90

Exp2 N = M 92.51 25589.00 25183.50 8.36 50

N[M 81.83 33164.00 32284.30 7.10 60

N\M 158.71 17843.30 16853.00 6.26 80

Table 5 Experimental

assignment results of Exp1
Models Assignment results

N = M U(1) U(2) U(3) U(4) U(5) U(6) U(7) U(8) U(9) U(10)

T(7) T(5) T(4) T(9) T(6) T(8) T(3) T(10) T(2) T(1)

458.1 276.2 574.7 137.8 143.8 391.7 307.8 482.0 124.3 447.7

N[M U(1) U(2) U(3) U(4) U(5) U(6) U(7) U(8) U(9) U(10)

T(1) T(4) T(3) T(3) T(2) T(3) T(3) T(3) T(2) T(3)

642.9 564.3 448.6 404.5 388.4 330.2 307.8 521.4 124.3 290.6

N\M U(1) U(2) U(2) U(3) U(3) U(3) U(4) U(4) U(4) U(4)

T(7) T(5) T(1) T(2) T(3) T(10) T(9) T(6) T(8) T(4)

458.1 276.2 164.2 185.0 142.2 201.7 137.8 61.5 39.0 87.8

776 Int. J. Mach. Learn. & Cyber. (2017) 8:765–780

123



obtained by generation mutation. Then we can see that the

generation mutation not only increases the population di-

versity, but also can find some optimum randomly, while

differential mutation still plays a dominant role during the

searching process in DMDE. On the other hand, the DMDE

algorithm maps physical properties to guide the direction

of search, so that it rapidly moves towards the global op-

timum. Meanwhile, the hybrid strategy reduces the scale of

the random search. So the DMDE algorithm has substan-

tially stronger search capabilities.

Finally, in the last phase of the search process, conver-

gence still occurs. It proves that the dynamic crossover rate,

generation mutation and hybrid strategies increase the ca-

pacity of the algorithm to escape from a local optimum, and

ensures the balance between exploration and exploitation.

On the other hand, we compared the different DE

crossover strategies for the search. The average conver-

gence curves are shown in Fig. 11. From Fig. 11, it can be

seen that the hybrid strategy is better than the single stra-

tegy(DE/rand/1/bin or DE/best/2/bin). Moreover, when the

hybrid strategy is used in place of DE/rand/2 and DE/best/

1, they have very similar search results and convergence

curves.

5.3 A comparison between DMDE and other

algorithms

We also compared our algorithm with the general GA al-

gorithm, Sort DE algorithm, and PMXDE algorithm. The

experiments were set with the same evolution parameters,

Fig. 9 Simulation results of Exp1 in 3D simulation battlefield environment

Table 6 Comparison with the

previous experimental data
Models Exp UAV Target Pop Gen Avg time(s) Optimal (%)

N = M New 10 10 50 1000 28.67 80

Pre 10 10 50 1000 90.39 60

N[M New 10 4 50 1000 40.96 60

Pre 10 4 50 1000 244.6 60

N\M New 4 10 50 1000 50.38 90

Pre 4 10 50 1000 482.4 80
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Fig. 10 The Single convergence curve and average convergence curve of assignment result by Exp1
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population size, and iteration times for the four algorithms.

The results are shown in Table 7. In Table 7, the variable

CR is crossover rate, the variable MR is mutation rate and

the variable GMR is generation mutation rate for DE. The

average convergence curve are shown in Fig. 12.

From Table 7 and Fig. 12, it can be seen that DMDE

algorithm obtains the optimal solution at a minimum cost,

the fastest speed of convergence and with the shortest

running time compared with the other algorithms. The Sort

DE algorithm has a shorter running time than GA and PMX

DE, when N = M and N[M. Although those three al-

gorithms can all converge near to the optimal solution, they

are worse than DMDE and need more running time.

Furthermore, we analyze the time complexity of the

DMDE algorithm. We set n, m to be the scale of indi-

viduals (the number of UAV and target), and d, l the scale

of DE (population size and generation iterators). Then the

time complexity of the DMDE algorithm is mainly affected

by the initialization operation ðn � mþ mÞ, differential op-
eration ðd � lÞ, mutation operation ððn � mþ mÞ � lÞ, fitness

and constraints calculation ð6nÞ, and inverse mapping

matching ðm � d � lÞ. So the time complexity is as follows:

f ðnÞ ¼ ðn � mþ mÞ þ ðd � lÞ þ ððn � mþ mÞ � lÞ
þð6nÞ þ ðm � d � lÞ

¼ 2n3 þ 3n2 þ 2n

ð19Þ

Thus the inverse mapping matched operation and mutation

operation mostly lead to the loss of algorithm performance,

but the overall efficiency of the algorithm does not reduce

because of directly calculating the differential by flight

path cost. So the worst-case of time complexity is Oðn3Þ.
In contrast, GA and PMX DE handle the cross and

mutation with the discrete sequence of the individual. So

the time complexity of evolution is mainly described as

ðd � l � ðn � mÞÞ, which has more loss of performance than

DMDE. The worst-case of time complexity is Oðn4Þ. The
other algorithm of Sort DE is simpler than GA and PMX

DE in differential operation. It has similar time complexity

as DMDE, whose worst-case of time complexity is also

Oðn3Þ.

0 100 200 300 400 500 600 700 800 900 1000
3800

3900

4000

4100

4200

4300

4400

4500

4600

Generation/Iteration

A
ss

ig
nm

en
t C

os
t V

al
ue

DE/rand/1 &DE/best/2
DE/rand/1
DE/best/2
DE/best/2 &DE/rand/1

0 100 200 300 400 500 600 700 800 900 1000
4900

5000

5100

5200

5300

5400

5500

5600

Generation/Iteration

A
ss

ig
nm

en
t C

os
t V

al
ue

0 100 200 300 400 500 600 700 800 900 1000
2000

2200

2400

2600

2800

3000

3200

Generation/Iteration

A
ss

ig
nm

en
t C

os
t V

al
ue

DE/rand/1 &DE/best/2
DE/rand/1
DE/best/2
DE/best/2 &DE/rand/1

DE/rand/1 &DE/best/2
DE/rand/1
DE/best/2
DE/best/2 &DE/rand/1

N>M N<MN=M

Fig. 11 Average convergence curve of assignment result by different crossover strategies

Table 7 A comparison between DMDE and other algorithms

Model Method Num Pop Gen Num CR MR GMR Best cost Avg cost Avg time(s)

N ¼ M DMDE N = M = 10 30 1000 10 CR Null 1-CR 3867.90 3890.20 17.48

PMXDE N = M = 10 30 1000 10 0.9 Null 0.3 3869.80 3902.80 77.25

SortDE N = M = 10 30 1000 10 0.9 Null 0.3 3869.80 3898.60 38.93

GA N = M = 10 30 1000 10 0.9 0.3 Null 3892.00 3916.60 91.60

N[M DMDE N = 10 M = 4 30 1000 10 CR Null 1-CR 4954.20 4991.30 29.19

PMXDE N = 10 M = 4 30 1000 10 0.9 Null 0.3 4993.10 5012.50 184.63

SortDE N = 10 M = 4 30 1000 10 0.9 Null 0.3 4993.10 5005.90 68.90

GA N = 10 M = 4 30 1000 10 0.9 0.3 Null 4993.10 5031.10 194.75

N\M DMDE N = 4 M = 10 30 1000 10 CR Null 1-CR 2108.30 2108.50 45.08

PMXDE N = 4 M = 10 30 1000 10 0.9 Null 0.3 2274.10 2303.30 478.48

SortDE N = 4 M = 10 30 1000 10 0.9 Null 0.3 2258.00 2297.00 471.13

GA N = 4 M = 10 30 1000 10 0.9 0.3 Null 2258.00 2285.60 549.68
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These experimental results indicate that the DMDE al-

gorithm has better performance than other algorithms in

solving the MUCMTA problem. Because other algorithms

still are variants of random search. A blind random search

not only leads to the reduction of efficiency, but also

rapidly declines the performance when the problem scale

increases. On the contrary, the DMDE algorithm is to some

degree free from the restriction of random searching, so it

is adaptable to solve a large-scale MUCMTA problem.

6 Conclusions

A novel method for UAVs cooperative multi-targets as-

signment based on a unified model is proposed in this

paper. The main contributions of our work include:

1. A unified gene coding strategy is proposed to unify

various target assignment models in a consistent

framework by analyzing the sequence of targets and

UAVs and their flight path cost. The flight path cost is

added into the gene code to make it easy to transform

the discrete space into continuous space.

2. Mapping and inverse mapping rules are proposed to

handle the combinational optimization problem in DE.

The improved DMDE algorithm converts the discrete

space between UAVs and targets into a continuous

space of flight path cost, and does differential

operations by using the cost value of flight cost. In

order to get rational offspring individuals, the tempo-

rary differential results are mapped back to the space

of the relationship between the UAV and the target

according to the inverse mapping rules. Besides, the

distance information is utilized to guide the direction

for searching for the global optimum and this could

help speed up the searching process.

3. In order to avoid falling into a local optimum, a

dynamic crossover rate and hybrid evolution strategies

are applied to balance the exploration and exploitation

during the searching process.

Compared with the current algorithms, the improved

DMDE algorithm is more efficient. Simulation results

show that feasible optimal solutions can be obtained in a

reasonable running time.

Future work is to apply the results of MUCMTA to

guide the multi-UAVs cooperative trajectory planning.
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