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Abstract The analysis and prediction of financial time-

series data are difficult, and are the most complicated tasks

concerned with improving investment decisions. In this

study, we forecasted a financial derivatives instrument (the

commodity futures contract index) using techniques based

on recently developed machine learning techniques. These

methods have been shown to perform remarkably well in

other applications. In particular, we developed a hybrid

method that combines a support vector machine (SVM)

with teaching–learning-based optimization (TLBO). The

proposed SVM–TLBO model avoids user-specified control

parameters, which are required when using other opti-

mization methods. We assessed the viability and efficiency

of this hybrid model by forecasting the daily closing prices

of the COMDEX commodity futures index, traded in the

Multi Commodity Exchange of India Limited. Our ex-

perimental results show that the proposed model is effec-

tive and performs better than the particle swarm

optimization (PSO) ? SVM hybrid and standard SVM

models. For example, the proposed model improved the

MAE by 65.87 % (1-day-ahead forecast), 55.83 % (3-days-

ahead forecast), and 67.03 % (5-days-ahead forecast),

when compared with standard SVM regression.

Keywords Support vector machine (SVM) � Teaching–
learning-based optimization (TLBO) � Commodity futures

contract � Financial time series

1 Introduction

In the business environment, we wish to accurately and

efficiently forecast various kinds of financial variables to

develop successful strategies and avoid large losses [43].

Many researchers have considered financial time series

data forecasts since the 1980s, with the objective of beating

the financial market. There are a huge number of factors

(economic, political, environmental, and psychological)

that make financial forecasting an interesting and chal-

lenging field. Further, financial time series are inherently

noisy, nonstationary, and deterministically chaotic [2, 38].

Conventional statistical methods such as time series and

multivariate analyses have been used in most prediction

techniques. However, researchers have started to apply arti-

ficial intelligence (AI) methods to financial markets, because

of recent successful developments such as artificial neural

networks (ANNs), support vector machines (SVMs), particle

swarm optimization (PSO), genetic algorithms (GAs), and

fuzzy technologies. Refenes et al. [34], Tsibouris and Zei-

denberg [40], and Steiner and Wittkemper [37] used ANN

models to predict stock prices in the UK, US, and German

markets, respectively. Wittkemper and Steiner [42] and

Shazly et al. [36] used ANNs with GAs (hybrid models) to

predict stock prices and currency exchange rates inGermany,

the United Kingdom, Japan, and Switzerland.

Vapnik [41] introduced SVM methods to overcome the

problems of ANNs (such as getting trapped in local

minima, overfitting to training data, and long training

times). Since then, several authors have proposed financial
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instruments pricing using SVMs. For example, Tay and Cao

[38] and Cao and Tay [2] developed pricing models for five

specific financial futures in the US market using SVMs, and

Gestel et al. [7] used LS-SVM (Least squares support vector

machine) for T-bill (Treasury bill) rate and stock index

pricing in the US and German markets. Their simulated

results show that SVM outperforms ANNs. Moreover, SVM

has also been shown to perform better than ANNs and other

statistical methods in other domains [23, 24].

Nicholas and Ravi [25] published an exhaustive survey

on SVMs for time series prediction. They surveyed papers

in the areas of financial market prediction, electric utility

load forecasting, environment states, weather prediction,

and reliability forecasting. In their survey, they noted that

the free parameters chosen for the SVM are significant. The

experimental result by Kim [14] showed that SVM pre-

dictions are sensitive to these free parameters, and that it is

important to select optimal values. Improperly selected free

parameters can cause over- or under-fitting problems [14].

The nonlinear nature of financial time series data means

that we use nonlinear kernel functions such as the Gaussian

and polynomial functions, which require appropriate, user

chosen parameter(s). Current approaches for choosing

these free parameters are typically based on domain

knowledge, cut and try, and ergodic search methods [4].

Several studies proposed selecting the optimal free pa-

rameters for SVM/ANNs using PSO, GAs, artificial bee

colonies (ABCs), ant colony optimization (ACO), differ-

ential evolution (DE), simulated annealing (SA), and so on

[3, 11, 12, 21, 22, 44]). However, the optimization model

itself introduces additional user-specified controlling pa-

rameter(s), making the user’s task even more complex. For

example, GAs need optimal controlling parameter values

for crossover and mutation probabilities; PSO needs spe-

cified optimal controlling parameters such as inertia weight

and social and cognitive parameters; SA needs cooling

temperature and cooling constants; DE requires a differ-

entiation factor and a crossover probability; and ABC re-

quires the optimal controlling parameters for the number of

bees (employed, scout, and onlookers), limits, and so on.

Variations to the controlling parameters alter the effec-

tiveness of the optimization algorithm.

Rao et al. [30] proposed the teaching–learning-based

optimization (TLBO) algorithm, which is an optimization

technique for a mechanical design problem that does not

require user defined parameters. They tested their novel

technique using different benchmark functions. Their re-

sults show that TLBO can outperform many optimization

algorithms such as particle evolutionary swarm optimiza-

tion, ABC, and cultural DE. Similarly, Rao et al. [31]

compared TLBO with well-known optimization techniques

such as GA, ABC, PSO, HS, DE, and hybrid-PSO, by

applying the methods to different benchmark problems

[such as Griewank (D ¼ 10), Hyper Sphere (D ¼ 6),

Rosenbrock (D ¼ 1, D ¼ 3), Rastrigin, and Ackley].

They considered the effectiveness of TLBO in terms of

different performance criteria (such as the average number

of function evaluations, success rate, convergence rate, and

mean solution). These results also showed that the TLBO

method performed better than other nature-inspired opti-

mization techniques, for the considered benchmark func-

tions. The TLBO optimization technique developed by Rao

et al. [30] performed well in many studies [26–33, 35, 45].

In this study, we propose an SVM–TLBO hybrid regres-

sion prediction model for forecasting the multicommodity

futures index (COMDEX) traded in the Multi Commodity

Exchange of India Limited (MCX). We use the TLBO al-

gorithm to select the free parameter(s) of the SVM, and the

free parameter(s) of the kernel function. We compared the

standard SVM method with the SVM–TLBO hybrid tech-

nique. The commodity futures index under consideration is a

significant indicator for the performance of the Indian

commodities market. MCX COMDEX is composed of fu-

tures contracts on 15 physical commodities with three sub-

indices, representing the key commodity sectors within the

index: metals, energy, and agricultural. Investors can use

MCXCOMDEX futures to efficiently hedge commodity and

inflation exposure and lay off residual risk [1].We developed

the SVM–TLBO hybrid regression model because the most

important consideration when using the standard SVM

model is to properly select the free parameters [C (regular-

ization) and e (insensitive loss function radius)] and the

kernel parameter(s) for training the data.

TLBO does not require any user-defined, controlling

parameters(s), which means that can it effectively deter-

mine the free parameter(s) of the SVM without any user

input. Our experimental results show that the proposed

hybrid SVM–TLBO regression model produces better

forecasts than the PSO ? SVM hybrid and standard SVM

models. The remainder of this paper is structured as fol-

lows. In Sect. 2, we provide a summary of SVM regression

and the SVM-TLBO hybrid regression model for selecting

the optimal free parameters. Section 3 contains the pro-

posed method for predicting the commodity futures index,

followed by our results, comparisons, and analysis in

Sect. 4. Section 5 concludes the study and outlines some

future work.

2 SVM for regression and the SVM–TLBO hybrid
regression model

2.1 SVM for regression

Vapnik and his coworkers have developed an SVM tech-

nique for regression. The method was presented as follows.
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Given a training data-set fðx1; y1Þ; . . . ; ðx‘; y‘Þg (where

each xi 2 X � Rn, and X denotes the input sample space),

and matching target values yi 2 R for i ¼ 1; : : : ; l

(where l corresponds to the size of the training data), the

objective of the regression problem is to find a function

f : Rn ! R that can approximate the value of y when x is

not in the training set.

The estimating function f is defined as

f ðxÞ ¼ ðwTUðxÞÞ þ b ; ð1Þ

where w 2 Rm; b 2 R is the bias, and U denotes a nonlinear

function from Rn to high-dimensional space Rm (m [ n).

The aim is to find w and b such that the value of f ðxÞ can be
determined by minimizing the risk

Rregðf Þ ¼ C
Xn

i¼1

L2ðyi; f ðxiÞÞ þ
1

2
wk k2: ð2Þ

Here, L2 is the extension of the 2-insensitive loss

function originally proposed by Vapnik [41], which is de-

fined as

L2 ¼ y� zj � 2; y � zj � 2
0; otherwise

� �
: ð3Þ

By introducing the slack variables fi and f�i , the problem
in Eq. (2) can be reformulated to the following.

(P) Minimize C
Pl

i¼1

ðfi þ f0iÞ
� �

þ 1
2

wk k2 subject to

yi � wTUðxiÞ � b � 2 þfi;

wTUðxiÞ þ b� yi � 2 þf0i;

fi � 0 ;

f0i � 0 ;

ð4Þ

where i ¼ 1; . . . ; l, and C is a user-specified constant

known as regularization parameter.

We can solve (P) using the primal dual method to get

the following dual problem.

Determine the Lagrange multipliers

( aif gli¼1and a�i
� �l

i¼1
) that maximize the objective function

Qðai; a�i Þ ¼
Xl

i¼1

yiðai � a�i Þ� 2
Xl

i¼1

ðai � a�i Þ

�1

2

Xl

i¼1

Xl

j¼1

ðai � a�i Þ ðaj � a�i Þ Kðxi; xjÞ;
ð5Þ

subject to

Xl

i¼1

ðai � a�i Þ ¼ 0; ð6Þ

and

0� ai �C; 0� a�i �C: ð7Þ

Here, i ¼ 1; . . .; l, and K : X � X ! R is the Mercer

kernel defined by

Kðx; zÞ ¼ UðxÞT UðzÞ: ð8Þ

The solution of the primal dual method yields

w ¼
Xl

i¼1

ðaj � a�i Þ UðxiÞ; ð9Þ

where b is calculated using the Karush–Kuhn–Tucker

conditions. That is,

aiðeþ fi � yi þ wTUðxiÞ þ bÞ ¼ 0;

a�i ðeþ f�i þ yi � wTUðxiÞ � bÞ ¼ 0;
ð10Þ

ðC � aiÞ fi ¼ 0 and ðC � a�i Þ f
�
i ¼ 0; where i ¼ 1; . . .; l:

ð11Þ

Since ai 	 a�i ¼ 0 both ai and a�i cannot be simultane-

ously non-zero, there exists some i for which either ai 2
ð0;CÞ or a�i 2 ð0;CÞ and hence b can be computed using

b¼ yi �
Xl

j¼1

ðaj � a�j Þ Kðxj;xiÞ � e for 0\ai\C;

b¼ yi �
Xl

j¼1

ðaj � a�j Þ Kðxj;xiÞ þ e for 0\a�i\C:

ð12Þ

The xi corresponding to 0\ai \C and 0\a�i\C are

called support vectors. Using the expressions for w and b in

Eqs. (9) and (12), f ðxÞ can be computed using

f ðxÞ ¼
Xn

i¼1

ðai � a�i ÞðUðxiÞ
TUðxÞÞ þ b;

¼
X‘

i¼1

ðai � a�i ÞKðxi; xÞ þ b:

ð13Þ

Note that we do not require function U to compute f ðxÞ,
which is an advantage of using the kernel.

Advantages of SVM

SVMs have become a well-established tool within ma-

chine learning. Conceptually, they have many advantages,

which include the following.

a. The technique is methodical and derived from statis-

tical learning theory.

b. The SVM process requires convex function optimiza-

tion, so there is a unique optimal solution (global

minima).

c. The model has an explicit strong dependence on a

subset of the data points (support vectors), which

improves model design.

d. The relatively easy training process is a major strength

of SVM.

e. There are no local optima, unlike ANNs.
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f. The method scales moderately well to high-dimen-

sional data, and the tradeoff between model com-

plexity and errors can be explicitly controlled using

appropriate optimal parameters.

Disadvantage of SVM

SVMs have the following disadvantage.

• The training time is roughly between a quadratic and

cubic function of the number of samples in the training

set.

2.2 Teaching–learning-based optimization

technique

TLBO is a newly developed novel and effective meta-

heuristic population based optimization algorithm [30]. It is

similar to PSO, GAs, and ABC. TLBO is modeled on the

transfer of knowledge within a classroom atmosphere,

where learners (students) first acquire knowledge from a

teacher (teacher phase) and then from their peers (student

phase). The population in TLBO consists of a group of

learners. There are decision variables, similar to other op-

timization algorithms. The different decision variables in

TLBO are equivalent to the different subjects offered to

students, and the students’ grades are equivalent to the

‘‘fitness’’ in other population-based optimization methods.

The flow chart for TLBO algorithm is presented in Fig. 1.

Salient features of TLBO

TLBOs have the following features.

• Similar to other population-based methods (e.g., GAs,

PSO, and ABC), TLBO uses many results to proceed to

the optimal solution.

• We do not need to tune any additional algorithm-

specific controlling parameter.

• It uses the best solution of the current iteration to

modify the existing solution in the population, which

increases the convergence rate.

• The mean value of the population is used to update the

solution.

• A good solution is accepted using a greediness approach.

• The population is not divided, unlike methods such as

the ABC algorithm.

2.2.1 Steps involved in the TLBO algorithm

The following steps of the TLBO algorithm were described

by Rao et al. [30].

Step 1: Define the optimization problem and create a so-

lution space

In the initial phase, we identify the decision vari-

able(s) in the problem to be optimized and assign them a

range (minimum and maximum of the variable) where we

will search for the optimal solution. If the solution spaces

and ranges are not properly defined, then there is a chance

that the optimization will take more time.

Step 2: Identify the fitness function

In this step, we design or identify the fitness function,

which accurately represents how well the optimized solu-

tion fits our problem using a single number. The TLBO

algorithm uses the fitness function to evaluate its candidate

solutions and obtains the optimal solution by minimizing

f (X), where f (X) is the fitness function.

Step 3: Initializing learners (or students)

Each learner (based on the population size) is initialized

using random values for each of the variables (within the

appropriate ranges).

The ith learner is represented by row vector Xi, defined as

Xi ¼ xi;1; xi;2; xi;3; . . .; xi;D
� 	

; i ¼ 1; 2; . . .;N; ð14Þ

where D is the number of decision variables, and N is the

number of learners. Each decision variable xi;j is randomly

assigned a value using

xi;j ¼ xmin
j þ randðÞ � xmin

j �min
j


 �
j ¼ 1; 2; . . .;D; ð15Þ

where xmin
j and xmax

j are the minimum and maximum values

of the jth variable of ith learner, and randðÞ is the random

number function that returns a number between 0 and 1.

Step 4: Teacher phase

(a) Compute the mean value of each of the learners’

decision variables and denote the population mean as

Xmean ¼ �x1; �x2; . . .; �xj; . . .; �xD
� 	

; where �xj ¼
PN

i¼1 xi;j

N
:

(b) Compute the fitness values of each learner X based

on the fitness function f(X). The learner with the best

fitness value (solution) is identified as the teacher

(Xteacher) for the teacher phase.

(c) Now the teacher (Xteacher) transfers their knowledge and

tries to improve the fitness of other learners (Xi) using

Xnew ¼ Xi þ randðÞ � ðXteacher � ðTFÞ � XmeanÞ ;
for i ¼ 1; 2; . . .;N; ð10Þ

where

TF ¼ round 1 þ rand ð0; 1Þ½ 
 : ð17Þ

Here, TF is the teaching factor (either 1 or 2), and

randðÞ is the random number function that returns a

number between 0 and 1.
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Note that TF is not a parameter of the TLBO algorithm.

The value of TF is not provided as input to the TLBO, but

its value is randomly chosen by the algorithm using

Eq. (17).

(d) If the previously mentioned updated solution (Xnew)

is better than the existing solution (Xi), then we

accept the new solution, otherwise we reject it.

Step 5: Student phase

In the student phase, the learners (students) enhance

their knowledge by communicating with other learners in

the classroom. Therefore, an individual learner learns if the

other individuals have more knowledge.

(a) Randomly select any two solutions Xi and Xj such

that i 6¼ j :

(b) If f(Xi), that is, the fitness value of Xi is better than

Xj, then we update Xi to Xnew using

Fig. 1 Flow chart for the

TLBO algorithm
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Xnew ¼ Xi þ randðÞ � ðXi � XjÞ ð18Þ

otherwise, we update it to

Xnew ¼ Xi þ randðÞ � ðXj � XiÞ : ð19Þ

Here, randðÞ is the random number function that returns

a number between 0 and 1.

Step 6: Iterate until the termination criteria are satisfied

We then repeat Steps 4 and 5 until our termination

conditions are satisfied, i.e., the average value of the fitness

function for all learners does not improve, or we reach the

maximum number of generations. The Xi that minimizes

f(Xi) is the final solution of the optimization problem.

2.3 SVM–TLBO hybrid regression model

We propose a hybrid SVM–TLBO regression model, which

uses SVM for predictions and TLBO for determining the

SVM parameters. SVM can use many kernels, for example,

linear, polynomial, sigmoid, wavelet, and Gaussian ker-

nels. We have considered the Gaussian kernel (radial basis)

function. This produces better financial time series fore-

casts [2, 38] because the data are complex and nonlinear.

A SVM with a Gaussian kernel has three parameters that

must be optimized. That is, C (regularization), r (kernel

width), and e (insensitive loss function radius).

We designed the proposed SVM–TLBO hybrid regres-

sion model to work in a two-dimensional solution space,

that is, to optimize C and r. We keep the e parameter

constant at a reasonable value (i.e., 0.0001), because the

number of support vectors decreases as e increases, when e
is greater than 0.01 [2]. A flow chart of the SVM–TLBO

hybrid regression model is presented in Fig. 2.

3 Proposed methodology

3.1 Dataset

We applied our forecasting model to real multicommodity

futures index (MCX COMDEX) data collected from the

MCX (http://www.mcxindia.com). MCX COMDEX is a

collection of futures contracts on 15 physical commodities

with a simple weighted average of three subindices (MCX

AGRI, MCX METAL, and MCX ENERGY), which rep-

resent the key commodity sectors within the index. The

index captures various sectors that incorporate futures

contracts drawn on metals, energy, and agricultural com-

modities that are traded in the MCX. 1332 daily trading

data points were collected from MCX COMDEX from

January 1, 2010, to May 7, 2014. The time series data

consist of daily open price, low price, high price, closing

price, and traded date. The raw daily prices were used to

calculate our financial technical indicators inputs. The time

span covers many important and significant economic

events, which we think are appropriate for training the

models. Table 1 describes the data set in terms of high,

low, mean, median, standard deviation, kurtosis (measure

of flatness of the distribution), and skewness (degree of

asymmetry of a distribution near its mean). The raw daily

closing prices are plotted in Fig. 3. The data description in

Table 1 and the plot in Fig. 3 clearly show that the data are

well-spread. Therefore, an SVM trained with these data

should be a well-generalized model.

Fig. 2 Flow chart representation of the SVM–TLBO hybrid regres-

sion model
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3.2 Preprocessing of data

We derived 17 financial technical indicators using the

collected data, and used these indicators as input into the

SVM regression model to forecast the closing price of the

futures index. The technical indicators were computed

using the formulas in Table 2. Financial technical indica-

tors are a class of metrics whose values are derived from

generic price activities in financial markets, and are ex-

tensively used by traders to predict the future price levels

of a financial instrument by looking at past patterns. These

financial technical indicators capture random price fluc-

tuations in the market and offer a smoother perspective,

because they are trend following or lagging indicators. The

17 financial technical indicators used in our study are based

on previous work by Kim and Han [15], Kim [14], Kim and

Lee 16], Tsang et al. [39], Ince and Trafalis [9], Huang and

Tsai [8], Liang et al. [19], Lai et al. [17], and Chih-Ming

[6], and from feedback from domain experts. The indica-

tors are (1) 10-day moving average, (2) 20-day bias, (3)

moving average convergence/divergence (MACD), (4)

stochastic indicator %K, (5) stochastic indicator %D, (6)

stochastic slow %D, (7) Larry William’s %R, (8) rate of

change (ROC), (9) relative strength index (RSI), (10)

commodity channel index (CCI), (11) psychological line,

(12) buying/selling momentum indicator, (13) buying/

selling willingness indicator, (14) momentum, (15) dis-

parity 5, (16) disparity 10, and (17) moving average

oscillators (MAO). After processing the 1332 raw data

points, we obtained 1307 transformed data points with

dates from February 1, 2010 to May 7, 2014. The 25 data

points from January 1, 2010 to January 31, 2010, are not

available because of the definitions of some technical

indicators. For example, the buying/selling momentum and

willingness indicators require 26 days of data.

We linearly normalized the technical indicators so they

have a range of [0, 1]. This normalization procedure

minimizes the forecasting errors and stops variables with

larger numeric ranges from dominating those with smaller

numeric ranges. We applied this to both the input technical

indicators and the output closing prices. The technical

indicators and closing prices were normalized using

Yi ¼
Pi � Pminð Þ

Pmax � Pminð Þ ; for i ¼ 1; 2; 3; . . .; N; ð20Þ

where Yi is the normalized value,Pi is the original value,

Pmin and Pmax are the minimum and maximum values in

the original data, and N is the total number of trading days.

The normalized data were segregated into training and

test groups, approximately in the ratio of 5:1. Hence, 1085

data points were used for training with 5-fold cross-

validation, and the remaining 222 were used to test the

model. We considered three different forecasts of the

closing prices: (1) 1 day ahead; (2) 3 days ahead; and (3)

5 days ahead.

In the 1-day-ahead forecasting case, the normalized

technical indicators for each trading day from February 1,

2010 to April 30, 2014, and the normalized closing price

for the next trading day (from February 2, 2010 to May 1,

2014, 1 day ahead) were partitioned into training and

testing sets. The data were split up in a similar way for the

3 and 5-days-ahead forecasts.

3.3 Performance criteria

We evaluated the performance of the proposed model using

standard statistical metrics: root mean square error

(RMSE), normalized mean squared error (NMSE), mean

absolute error (MAE), and directional symmetry (DS) [2,

38, 43]. Detailed descriptions and definitions of these

performance criteria are given in Table 3. RMSE, MAE,

and NMSE measure the deviation between the actual and

forecasted futures index prices, so smaller values are pre-

ferred. The accuracy of the direction of the prediction is

provided by DS (in %). Larger DS values indicate a better

forecast.

3.4 Computation Techniques

We implemented Vapnik’s SVM regression technique us-

ing LIBSVM, which is a SVM tool box [5]. SVMs for

0
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2000
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4000

5000

1/1/2010 1/1/2011 1/1/2012 1/1/2013 1/1/2014

In
de

x 
Pr

ic
es

Time Period

MCX COMDEX Futures Index

Fig. 3 Closing prices of MCX COMDEX

Table 1 Description of MCX COMDEX dataset

Parameter (for entire time span) Value

High 4689.6

Low 2504.53

Mean 3539.561

Median 3692.17

Standard deviation 473.5277

Kurtosis -0.4959

Skewness -0.7378
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Table 2 Technical indicators (features)

Technical indicators (features) formulas

Notations:

i: ith day [i days (i = 1,2,…,N) counted from reference date, February 1, 2010, in the experiment]

HPi: highest price of ith day

LPi: lowest price of ith day

OPi: open price of ith day

CPi: closing price of ith day

Sl no. Technical indicator name Technical indicator description and formula

1 10-day moving average The most current 10-day average closing price of the financial instrument.

MA10;i ¼
Pi

j¼i�9
CPj

10

2 20-day bias Closing price and the moving average price deviation for the 20 days.

BIAS 20;i ¼ CPi�MA20;i

MA20;i
; where MA20;i ¼

Pi

j¼i�19
CPj

20

3 Moving average convergence/

divergence (MACD)

MACD is the change between a 26-day and a 12-day exponential moving

average (EMA). **

MACDi ¼ EMA12;i � EMA26;i;where

EMAN;i ¼ CPi � EMAN;i�1

� 
� 2= N ¼ 1ð Þð Þ þ EMAN;i�1

**EMA gives more weight to recent prices and ever-decreasing weight to older

data

4 Stochastic indicator %K Stochastic %K compares where a security’s price closed relative to its price

range

over a given period. (In this experiment, we used a period of 9 days.)

%Ki ¼ ðCPi�LLPÞ
ðHHP�LLPÞ � 100, where LLP is the lowest low price and HHP is the

highest high price over the last N periods

5 Stochastic indicator %D Moving average of %K (three-period simple moving average)

%Di ¼
P2

j¼0
%Ki�j

3

6 Stochastic slow %D Moving average of %D (three-period simple moving average)

%SDi ¼
P2

j¼0
%Di�j

3

7 Larry William’s %R Larry William’s %R is a momentum indicator that measures overbought/

oversold

levels. (In this experiment, we used a period of 9 days).

%Ri ¼ ðHP�CPiÞ
ðHP�LPÞ � 100

where LP is the lowest price and HP is the highest price over the last N periods

8 Rate of change (ROC) Ratio of current closing price to the price a certain number of periods (n period)

ago. (In this experiment, we used a period of 10 days). ROCi ¼ CPi

CPi�n
� 100

where CP i-n is the Closing Price of (i - n)th day

9 Relative strength index (RSI) RSI is a momentum oscillator that compares the magnitude of recent gains to

the magnitude of recent losses.

(In this experiment, we used a period of 5 days).

RSIi ¼
AGi

AGi þ ALi
� 100;

where

Gi ¼
CPi�1 � CPi ; if CPi [CPi�1

0

(
and

Li ¼
CPi�1 � CPi ; if CPi\CPi�1

0

(

AGi ¼
4

5
� AGi�1 þ 1

5
� Gi and ALi ¼

4

5
� ALi�1 þ 1

5
� Li
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financial time series forecasting commonly use the poly-

nomial kernel k x; yð Þ ¼ x:yþ 1ð Þd

 �

or the Gaussian ker-

nel ðk x; yð Þ ¼ exp �1=r2ð Þ x�yj jj j2

 �

. d is the degree of the

polynomial kernel and r2 is the width (bandwidth) of the

Gaussian kernel. We used the Gaussian kernel (radial ba-

sis) function, because it performs well under general

smoothness assumptions. Additionally, the Gaussian kernel

has fewer parameters than the polynomial kernel. The

polynomial kernel produces inferior results when compared

with the Gaussian kernel, and requires more training time

[2, 21, 38, 43]. We used an Intel Core i7 CPU, 4 GB

memory PC for our simulations.

Traditional procedures for optimizing the parameters of

the SVM model and the kernel function use grid search

[13] or cross-validation [10] methods. However, both of

these methods are computationally expensive and data in-

tensive [12]. Grid search is a local search technique that

Table 2 continued

Sl no. Technical indicator name Technical indicator description and formula

10 Commodity channel

index (CCI)

CCI measures the variation of a security’s price from its statistical mean.

(In this experiment, we used a period of 24 days).

CCIi ¼
TPi �MATPi

0:015 � MDi

;

whereTPi ¼
HPi þ LPi þ CPi

3
;

MATPi ¼
Pi

j�i�23 TPj

24
;

MDi ¼
Pi

j¼i�23 TPj �MATPj

24

where TPi is the typical price for the ith day, MATPi is the 24-day simple

moving average of the typical price for the ith day, and

MDi is the 24-day mean deviation for the ith day

11 Psychological line Psychological line is the volatility indicator based on the number

of time intervals that the market was rising during the preceding period.

(In this experiment, we used a period of 13 days).

PSYi ¼ TDUi

13
� 100%, where TDUi is the total number of days with regard to

the rise in stock price in the previous 13 days

12 Buying/selling

momentum indicator

Buying/selling momentum indicator (26 days)

BSMIi ¼
Pi

j¼i�25
HPj�OPjð ÞPi

j¼i�25
OPj�LPjð Þ

13 Buying/selling

willingness indicator

Buying/selling willingness indicator (26 days)

BSWIi ¼
Pi

j¼i�25
HPj�CPj�1ð ÞPi

j¼i�25
CPj�1�LPjð Þ

14 Momentum Momentum measures the amount that a security’s price has changed over

a given period (4 days),

MOi ¼ CPi � CPi�4

15 Disparity 5 Measures the distance between the current price and the moving

average over 5 days,

DIS5;i ¼ CPi

MA5;i
;

where MA5,i is the 5-day moving average for the ith day

16 Disparity 10 Measures the distance between the current price and the moving

average over 10 days,

DIS10;i ¼ CPi

MA10;i
;

where MA10,i is the 10-day moving average for the ith day

17 Moving average

oscillators (MAO)

Price oscillator that displays the difference between two moving averages

of different lengths (5 and 10 days),

MAOi ¼ MA5;i�MA10;i

MA5;i
;

where MA5,i and MA10,i are the 5- and 10-day moving averages for the ith day
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often becomes trapped in local optima, and it is sometime

hard to determine its search interval [21]. In this study, we

used grid search to find the best values for C and r2 using

cross-validation. We considered different pairs of (C, r2)

and then selected those that minimized the error, which we

then used in our comparisons. In the simulation ex-

periment, we used C values in the range 0.01 to 35,000, and

r2 values between 0.0001 and 32 (Table 4). After deter-

mining the final (C and r2) values for all three forecasting

cases (i.e., 1, 3, and 5 days ahead), we trained the model

again to generate the final forecasting model. The index

prices obtained for the standard SVM regression model are

shown in Figs. 4a–c.

We wrote our own code to implement TLBO for the

proposed SVM-TLBO hybrid regression model. The TLBO

algorithm was defined in two dimensions, to optimize r2

(bandwidth) of the Gaussian kernel parameter and

C (regularization parameter) of the SVMs. In our ex-

perimental runs of the TLBO algorithm, there were no

significant changes to r2 and C after 25–30 iterations, when

using a population size (learners/students) of 15. Rao and

Patel [29], Pawar and Rao [26], Rao et al. [28], and Rao

and Waghmare [33] also observed that TLBO only requires

a small population and few iterations (generations). With

this in mind, we fixed the maximum number of iterations

for the TLBO to 30, with a population size 15 (Table 4).

We observed that the value of our objective function de-

creased when the algorithm went from the teacher to stu-

dent phases within the same iteration, and reduced with the

number of iterations. Similar observations were made by

Rao et al. [31]. When defining the solution space for

TLBO, the range of C was set to 0.01–35,000, and the

range of r2 was set to 0.0001–32 [20]. The hybrid re-

gression model algorithm ran as per the flow chart provided

in Fig. 2, and the simulation results are shown in Fig. 4 and

Table 8. In these results, the kth test day means the

(1085 ? k)th day fromour reference date (February 1, 2010),

becausewe have taken the first 1085 days of data for training,

and used the remaining 222 days for testing. We compared

the results of our proposed SVM–TLBO hybrid regression

approach with standard SVM regression and the

PSO ? SVM model of Lin et al. [21]. We used a sequential

optimization (SMO)-based algorithm to train the SVM re-

gression, because it is fast and efficient for large data sets.

4 Results and discussion

The RMSE results of the SVM regression model in the

training and testing phases, and the final values of C and

r2 are presented in Table 5 for all three forecasting

cases.

The results for the proposed SVM–TLBO hybrid re-

gression model, and the optimal parameters are summa-

rized in Table 6.

4.1 Comparisons of results

The RMSE, MAE, and NMSE values presented in Table 7

show that the SVM–TLBO hybrid regression model out-

performed the standard SVM regression and PSO ? SVM

hybrid approaches in all three forecasting cases. With re-

gard to the DS performance metric, SVM–TLBO per-

formed better than the standard SVM and PSO ? SVM

models in two forecasting cases (3 and 5 days ahead), but

standard SVM performed better for the 1-day-ahead fore-

cast. Financial market practitioners evaluate forecasting

Table 3 Performance metrics

Performance metrics Definition

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1

yi � pið Þ2
s

NMSE 1

r2 n

Xn

i¼1

yi � pið Þ2

where :

r2 ¼ 1

n� 1

Xn

i¼1

yi � �yð Þ2

�y ¼
Xn

i¼1

yi

MAE 1
n

Pn

i¼1

yi � pij j

DS 100

n

Xn

i¼1

di

di ¼
1 if ðyi � yi�1Þ ð pi � pi�1Þ � 0

0 otherwise

�

n is the total number of data, yi is the actual output value, and pi is the

predicted output value of the ith sample data

Table 4 (a) SVM and (b) TLBO parameters used in our experiments

(a) SVM Parameters Parameter Value

C (regularization parameter) 0.01 to 35,000

r2 (bandwidth) 0.0001 to 32

e 0.0001 (Fixed)

Kernel type Radial basis (Gaussian)

(b) TLBO parameters

TLBO parameter Parameter value

Population size (learners/students) 15

MAX iteration 30

Optimization category Minimum
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(a)One-day-ahead forecast
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(b)Three-days-ahead forecast
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(c) Five-days-ahead forecast

Fig. 4 Actual and predicted futures index prices using the SVM regression, PSO ? SVM hybrid model, and SVM–TLBO hybrid regression

models, for the a 1-day-ahead forecast, b 3-days-ahead forecast, and c 5-days-ahead forecast

Table 5 Model performance

and final parameter settings

using the standard SVM

regression model

Forecasting cases Final value Training error Testing error

C r2 RMSE RMSE

1-day-ahead forecast 100 0.01 0.0601 0.0992

3-days-ahead forecast 10000 0.0001 0.0614 0.0922

5-days-ahead forecast 0.1 1 0.0613 0.1403

Table 6 Model performance

and optimal parameters

achieved by proposed SVM-

TLBO hybrid regression model

Forecasting cases Optimal value Training error Testing error

C r2 RMSE RMSE

1-day-ahead forecast 2376.1150 2.1725 0.0363 0.0440

3-days-ahead forecast 25.5730 0.0234 0.0333 0.0408

5-days-ahead forecast 198.8539 0.1818 0.0434 0.0599
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models using both minimum forecast error and directional

accuracy [18]. The aim is to get a directional accuracy of

over 50 % [43]. In our study, the DS values for the SVM–

TLBO hybrid and standard SVM methods were greater

than 50 % in all cases. The DS values for the PSO ? SVM

hybrid approach was greater than 50 % for the 1-day-ahead

and 3-days-ahead forecasts, but it was 48.15 % for the

5-days-ahead forecasts. The number in bold is the best

performance.

Figure 4 shows the actual futures index prices, and the

prices predicted using standard SVM regression, the

PSO ? SVM hybrid model, and the proposed SVM–TLBO

hybrid regression model for the three types of forecasts.

Table 8 represents the forecasting results in terms of index

prices for a few data samples using the standard SVM,

PSO ? SVM hybrid, and SVM–TLBO hybrid regression

model. It can be clearly seen from Table 8 that the index

prices from the proposed SVM–TLBO hybrid model were

more accurate than standard SVM, and were much better

than the PSO ? SVM hybrid model.

5 Conclusions and future work

In this research, we examined the feasibility of applying

the newly developed novel TLBO algorithm to select op-

timal free parameters for an SVM regression model of fi-

nancial time-series data. We used multicommodity futures

index data collected from MCX. Our experimental results

show that our proposed SVM–TLBO hybrid regression

model effectively found the optimal parameters, and pro-

duced better predictions than the standard SVM method.

The proposed model improved the MAE result by 65.87 %

(for the 1-day-ahead forecast), 55.83 % (for the 3-days-

ahead forecast), and 67.03 % (for the 5-days-ahead fore-

cast), when compared with standard SVM regression. The

proposed model also improved the RMSE result by

55.64 % (1 day ahead), 55.74 % (3 days ahead), and

57.3 % (for 5 days ahead), when compared with standard

SVM regression. There were similar improvements in

terms of MAE and RMSE when we compared the proposed

SVM–TLBO hybrid regression method with the

PSO ? SVM hybrid model. Moreover, our experiments

demonstrate that the proposed SVM–TLBO hybrid re-

gression model is more efficient than the standard SVM

and PSO ? SVM hybrid models for financial time series

forecasting. The proposed model avoids user-specified

control parameters, which are required when using opti-

mization methods such as PSO, GAs, and ACO.

In our current model, we selected the technical indica-

tors (features) using previous research in this area and

expert feedback. We could enhance the accuracy of the

forecast by including efficient macroeconomic features. T
a
b
le
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The proposed model can also be applied to other domains

in the future, to validate and extend the model.
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