
ORIGINAL ARTICLE

A multi-attribute decision-making method with prioritization
relationship and dual hesitant fuzzy decision information

Zhiliang Ren1 • Cuiping Wei1,2

Received: 2 July 2014 / Accepted: 21 March 2015 / Published online: 5 April 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Dual hesitant fuzzy sets, encompassing fuzzy

sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and fuzzy

multisets as special cases, are very useful in dealing with

uncertainty considering the membership and nonmember-

ship degrees by a set of possible values. This paper aims to

develop a prioritized multi-attribute decision-making

method to solve dual hesitant fuzzy decision problems. We

first propose a correctional score function of dual hesitant

fuzzy elements (DHFEs) for characterizing hesitant de-

grees in DHFEs more effectively. Then we apply the cor-

rectional score function and the dice similarity measure of

dual hesitant fuzzy sets (DHFSs) to solve multi-attribute

decision-making problems in which the attributes are in

different priority levels and the attribute values take the

form of DHFEs. Finally, an illustrative example is em-

ployed to show the feasibility of the proposed method in its

practical applications.

Keywords Multi-attribute decision-making � Dual
hesitant fuzzy set � Dice similarity measure

1 Introduction

Zadeh introduced fuzzy sets (FSs) [38] which have capa-

bility to model nonstatistical imprecision or vague con-

cepts. Then several extensions have been developed

including interval-valued fuzzy sets (IVFSs) [39], intu-

itionistic fuzzy sets (IFSs) [1, 2, 4, 11, 13, 14, 26], interval-

valued intuitionistic fuzzy sets (IVIFSs) [5, 12, 25], type-2

fuzzy sets (T2FSs) [39], fuzzy multisets (FMSs) [16, 17]

and hesitant fuzzy sets (HFSs) [20, 30] etc. Zhu et al. [40]

studied the interrelationship among these fuzzy sets, de-

veloped a dual hesitant fuzzy set (DHFS) and investigated

the basic operations and properties of DHFSs [41]. They

also gave the application of DHFSs in group forecasting

[40]. As a more comprehensive fuzzy set, DHFSs encom-

pass FSs, IFSs, HFSs, and FMSs as special cases with

certain conditions. For example, when DHFSs are

nonempty closed intervals, they can reduce to IVFSs or

IVIFSs. So DHFSs has drawn more and more scholars’

attention. For clustering DHFSs, Wang et al. [23] defined

the correlation measures for dual hesitant fuzzy informa-

tion and then discussed their properties in detail. Farhadinia

[9] proposed an approach for deriving the correlation co-

efficient of DHFSs. To solve multi-attribute decision-

making problems under dual hesitant fuzzy environments,

Ye [35] proposed a correlation coefficient between DHFSs

as a new extension of existing correlation coefficients for

hesitant fuzzy sets [31] and intuitionistic fuzzy sets [36],

Chen et al. [8] proposed some approaches based on the

correlation coefficient to multi-attribute decision-making

with dual hesitant fuzzy information. Wang et al. [22]

developed some aggregation operators for aggregating dual

hesitant fuzzy information and used them in multi-attribute

decision-making. Wang et al. [21] developed some gener-

alized dual hesitant fuzzy aggregation operators which

encompass some existing operators as their particular cases

and applied them to deal with multi-attribute decision-

making problems under dual hesitant fuzzy environment.

There were many applications with dual hesitant fuzzy

information in some aspects of real life. Li [15] developed
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the model to solve the multi-attribute decision-making

problems for evaluating the clothing creative design with

dual hesitant fuzzy information. Yu and Li [37] proposed a

method for multi-criteria decision-making under dual he-

sitant fuzzy environment and applied it in teaching quality

assessment. Xu [29] devised an application model for

evaluating the mechanical product design quality with dual

hesitant fuzzy information. Zhang [43] developed a model

for evaluating the computer network security with dual

hesitant fuzzy information. Except for decision-making

problem in real life, various soft computing techniques

have been applied in different engineering fields in [6, 7,

19, 24, 27, 42].

We can see, from the analysis above, that DHFS is a

very useful tool to deal with uncertainty. With regard to

multi-attribute decision-making problems with dual he-

sitant fuzzy information, many methods have been de-

veloped. But these methods are under the assumption that

the attributes are at the same priority level, and the sat-

isfactions under one attribute can be completely com-

pensated by the satisfactions under other attributes.

However, in many real applications, there exists a pri-

oritization relationship over the attributes and we do not

want to allow this kind of compensation between at-

tributes. The existing methods could not deal with this

situation. In this paper, we develop a method for solving

the prioritized multi-attribute decision-making problems

with dual hesitant fuzzy information.

Yager [32, 33] studied this kind of situation with crisp

attribute values and proposed some prioritized aggregation

operators. The core of Yager’s aggregation approach is the

introduction of importance weights to enforce this pri-

oritization between attributes, that is, to determine the

weights of attributes according to the attribute satisfactions

and the prioritization relationship. In this process, one

needs to compare the weight of an attribute with its satis-

faction. It’ll be an easy work when satisfactions are crisp

values. Now, we adopt Yager’s idea in [32, 33] to aggre-

gate dual hesitant fuzzy information with prioritization

relationship. In this situation, the key problem is also to

determine the weights of attributes according to the pri-

oritization relationship and attribute satisfactions that are

represented by DHFEs instead of script values. The process

of deriving weights inevitably involves the comparisons of

DHFEs. Based on a score function and an accuracy func-

tion of a DHFE, Zhu et al. [40] proposed a comparison

method. For DHFEs having different deviations of the

mean membership values and the mean nonmembership

values, only the score function would be used to compare

those deviations, the accuracy function would not be in-

volved. So in this case, their hesitations are not considered

in the ranking process. This treatment may incur problems

at times, especially when a DHFE contains a large

hesitation degree, which will signify the decision-maker’s

high uncertainty or risk level. Under such a condition, a

simple discarding of hesitations in DHFEs may yield risky

or misleading recommendations. Therefore, it is necessary

to propose more effective comparison methods of DHFEs

for more reliable decision aid.

For refining hesitations of intuitionistic fuzzy numbers,

Huang and Li [10] proposed an objective approach to im-

prove the parameter a in the Da operator introduced by

Atanassov in [3], so that the hesitation in an intuitionistic

fuzzy number can be further refined and characterized.

Motivated by the idea in [10], we proposed a correctional

score function to compare DHFEs. The method can distin-

guish two DHFEs by considering their hesitant degrees and

emphasize the influence of nonmembership degrees. Based

on the new comparison method for DHFEs and the prioriti-

zation relationship, the weights of attributes are derived for

each alternative. Then the proposed dice similarity measure

for DHFSs is utilized to rank alternatives.

The rest of paper is organized as follows. Section 2

gives some necessary concepts. In Sect. 3, a correctional

score function of DHFEs is defined and the dice similarity

measure is extended for DHFSs. In Sect. 4, a decision-

making method is established by means of the correctional

score function and the dice similarity measure of DHFSs.

An example is presented to illustrate the developed ap-

proach in Sect. 5. Finally, some final remarks are given in

Sect. 6.

2 Preliminaries

In this section, some necessary concepts are reviewed in-

cluding IFS, HFS, DHFS and the dice similarity measure.

2.1 Intuitionistic fuzzy set and hesitant fuzzy set

Definition 1 [38]. Let X be a universe of discourse. Then

a fuzzy set is defined by

A ¼ x; lAðxÞh i x 2 Xjf g ð1Þ

which is characterized by a membership function

lA : X ! ½0; 1�, where lAðxÞ denotes the degree of mem-

bership of the element x 2 X to the set A.

Atanassov [2] extended fuzzy set to intuitionistic fuzzy

set (IFS), shown as follows.

Definition 2 [2]. An IFS F in a universe of discourse X is

given by

F ¼ x; lFðxÞ; mFðxÞh i x 2 Xjf g; ð2Þ

where 0� lFðxÞ þ mFðxÞ� 1, 8x 2 X, lF : X ! ½0; 1� and
mF : X ! ½0; 1�. The numbers lFðxÞ and mFðxÞ represent,

respectively, the membership degree and non-membership
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degree of the element x 2 X to the set F. The hesitation

degree of the element x is pFðxÞ ¼ 1� lFðxÞ � mFðxÞ.

However, when giving the membership degree of an

element, the difficulty of establishing the membership de-

gree is not because we have a margin of error, but some

possibility distribution on the possible values. For such

cases, Torra [20] proposed hesitant fuzzy set (HFS).

Definition 3 [20]. Given a fixed setX, then aHFS onX is in

terms of a function that when applied to X returns a subset of

½0; 1�. A HFS E can be expressed by mathematical symbol:

E ¼ x; hEðxÞh i x 2 Xjf g ð3Þ

where hEðxÞ is a set of some values in ½0; 1� and denotes the
possible membership degree of the element x 2 X to the set

E. For convenience, Xia and Xu [28] call h ¼ hEðxÞ a

hesitant fuzzy element (HFE).

2.2 Dual hesitant fuzzy set

Zhu [40] defined dual hesitant fuzzy set (DHFS) in terms of

two functions that returns two sets of membership values

and nonmembership values, respectively, for each element

in the domain.

Definition 4 [40]. Let X be a fixed set, then a DHFS on X

is described as:

D ¼ x; hðxÞ; gðxÞh i x 2 Xjf g; ð4Þ

where hðxÞ and gðxÞ are two sets of some values in ½0; 1�,
denoting the possible membership degrees and non-mem-

bership degrees of the element x 2 X to the set D respec-

tively, with the conditions: 0� c; g� 1; 0� cþ þ gþ

� 1, where c 2 hðxÞ, g 2 gðxÞ, cþ 2 hþ ¼ [x2Xmax

c c 2 hðxÞjf g and gþ 2 gþ ¼ [x2Xmax g g 2 gðxÞjf g.

For convenience, the pair dðxÞ ¼ ðhðxÞ; gðxÞÞ is called a

DHFE, denoted by d ¼ ðh; gÞ, with the conditions: c 2 h,

g 2 g, cþ ¼ max c c 2 hjf g, gþ ¼ max gjg 2 gf g, 0� c;
g� 1; 0� cþ þ gþ � 1.

For comparing the DHFEs, Zhu et al. gave the following

comparison laws.

Definition 5 [40]. Let di ¼ ðhdi ; gdiÞði ¼ 1; 2Þ be any two
DHFEs, sðdiÞ ¼ 1

#hdi

P
c2hdi

c� 1
#gdi

P
g2gdi

g the score

function of di, and pðdiÞ ¼ 1
#hdi

P
c2hdi

cþ 1
#gdi

P
g2gdi

g the

accuracy function of di, where #hdi and #gdi are the

numbers of the elements in hdi and gdi respectively. Then

• If sðd1Þ[ sðd2Þ, then d1 is superior to d2, denoted by

d1 � d2;

• If sðd1Þ ¼ sðd2Þ, then if pðd1Þ ¼ pðd2Þ, d1 is equivalent
to d2, denoted by d1 � d2. Otherwise, if pðd1Þ[ pðd2Þ,
then d1 is superior to d2, denoted by d1 � d2.

Example 1 Let A ¼ fð0:3; 0:4Þ; ð0:1; 0:2Þg, B ¼
fð0:5; 0:6Þ; ð0:3; 0:4Þg and C ¼ fð0:6Þ; ð0:3; 0:4Þg be

three DHFEs. We use the Definition 5 to rank them. Ac-

cording to Definition 5 we can get:

sðAÞ ¼ 0:3þ 0:4

2
� 0:1þ 0:2

2
¼ 0:2;

sðBÞ ¼ 0:5þ 0:6

2
� 0:3þ 0:4

2
¼ 0:2;

sðCÞ ¼ 0:6� 0:3þ0:4
2

¼ 0:25. sðAÞ ¼ sðBÞ\sðCÞ, so C is

superior to A and B. Then we need to calculate the accuracy

function values of A and B. Since pðAÞ ¼ 0:3þ0:4
2

þ 0:1þ0:2
2

¼ 0:5; pðBÞ ¼ 0:5þ0:6
2

þ 0:3þ0:4
2

¼ 0:9, B is superior

to A. Finally we can get the rank of the three DHFEs is

C � B � A.

The score function in Definition 5 is the deviation of the

mean membership and the mean nonmembership. In the

case that two DHFEs A and C have different deviations of

the mean membership values and the mean nonmember-

ship values, their hesitations are not considered in the

ranking process. This treatment may cause problems

sometimes, especially when a DHFE contains a large he-

sitation, which will signify the decision-maker’s high

uncertainty or risk level. In the next section, based on Da

operator [3] and the determination method of the parameter

a in [10], we will propose a correctional score function that

considers the hesitant degree of a DHFE and compares

DHFEs more effectively.

2.3 A dice similarity measure

The dice similarity measure proposed in [34] can overcome

some disadvantages of the cosine similarity measure [18].

Therefore, the dice similarity measure will be extended for

DHFSs in the next section.

Definition 6 [34]. Let X ¼ ðx1; x2; . . .; xnÞ and Y ¼
ðy1; y2; . . .; ynÞ be two vectors of length n where all the

coordinates are positive. Then the dice similarity measure

is defined as follows:

D ¼ 2X � Y
Xk k22þ Yk k22

¼ 2
Pn

i¼1 xiyiPn
i¼1 x

2
i þ

Pn
i¼1 y

2
i

; ð5Þ

where X � Y ¼
Pn

i¼1 xiyi is the inner product of the vectors

X and Y , Xk k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x
2

p
and Yk k2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
p

are the

Euclidean norms of X and Y .

The dice similarity measure takes values in the interval

½0; 1�. However, it is undefined if

xi ¼ yi ¼ 0ði ¼ 1; 2; . . .; nÞ. In this case, let the dice

similarity measure value be zero when

xi ¼ yi ¼ 0ði ¼ 1; 2; . . .; nÞ.
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3 A correctional score function and a dice
similarity measure of DHFSs

In this section, we will propose a correctional score func-

tion of DHFE based on the Da operator [3] and the deter-

mination method of the parameter a in [10], and then

extend the dice similarity measure to DHFSs.

3.1 A correctional score function

For characterizing the hesitation degree of a DHFE, a

correctional score function will be proposed to compare

DHFEs in this section. We will consider about the fol-

lowing two aspects on the comparison of DHFEs.

First, we should focus more on the negative comments

in decision-making problem. Let’s take online shopping for

instance. When customers find certain negative comments,

most people respond cautiously even if there are other

positive ones. So we should consider more about the

negative comments in decision-making problem. In this

paper, we regard nonmembership degrees of DHFEs as

negative comments and consider it more important in

comparison of DHFEs.

Second, the hesitant degrees also should be considered

in the ranking of DHFEs. In Example 1, the score function

value of DHFE C is greater than A and B, so C is superior

to other two DHFEs. In this comparison process, the he-

sitant degrees of DHFEs not considered. In order to solve

this issue, we consider to split the hesitation degree into

two parts, with one part being added to the membership

function and the remaining part being attributed to the

nonmembership function based on Da operator [3].

In order to refine hesitations in IFSs, Atanassov [3]

proposed a Da operator as follows.

Definition 7 [3]. Let a 2 0; 1½ � be a fixed number, and X

be a fixed set. For an IFS F ¼ x; lFðxÞ; mFðxÞh i x 2 Xjf g,
the operator Da is defined as: DaðFÞ ¼ x; lFðxÞhf þa �
pFðxÞ; mFðxÞ þ ð1� aÞ � pFðxÞi x 2 Xj g, where pFðxÞ is the
hesitant degree of the element x 2 X to the set F.

Since lFðxÞ þ a � pFðxÞþ mFðxÞ þ ð1� aÞ � pFðxÞ ¼ lF
ðxÞ þ mFðxÞ þ pFðxÞ ¼ 1, it is apparent that Da effectively

reduces an IFS F to a fuzzy set with a membership function

lFðxÞ þ a � pFðxÞ.
The nature of this Da operator is to divide the pFðxÞ into

two parts, and attribute part of the pFðxÞ to the membership

function and the remainder to the nonmembership function.

a serves as a key parameter to determine how much of the

hesitation will be attributed to the membership and non-

membership functions, respectively.

Huang and Li [10] gave an improved formula for de-

termining the value of a,

a ¼ 1

2
þ lFðxÞ � mFðxÞ

2
þ lFðxÞ � mFðxÞ

2
pFðxÞ

¼ lFðxÞ þ
pFðxÞ
2

þ lFðxÞ � mFðxÞ
2

pFðxÞ:

By implementing a lot of example analysis, Huang and

Li [10] illustrated that the above formula takes both score

function [the deviation function lFðxÞ � mFðx)] and hesita-

tion functions into account and yields an attribution rule that

is consistent with ‘‘following-the-herd’’ principle: When the

number of ‘‘support’’ votes exceeds that of ‘‘opposition’’

[corresponding to the case that lFðxÞ � mFðxÞ[ 0], a larger

percentage of the hesitation function pFðxÞ will be at-

tributed to the membership function (corresponding to a

larger a); When ‘‘opposition’’ outnumbers ‘‘support’’ in a

vote (corresponding to the case that lFðxÞ � mFðxÞ\0],

more of the hesitation function will be attributed to the

nonmembership function (corresponding to a smaller a).
We use this idea to deal with the hesitations of DHFEs.

Let d ¼ ðh; gÞ be a DHFE, h and g be two sets of some

values in ½0; 1�, respectively. We call 1
#h

P
c2h c the mean

membership value and 1
#g

P
c2g c the mean nonmembership

value of d. The mean hesitation degree of d is

1� 1
#h

P
c2h c� 1

#g

P
c2g c, denoted by p. Then the mean

membership and mean nonmembership can construct an

intuitionistic fuzzy value, that is a basic element of an IFS.

So we adopt the idea of the Da operator and the method of

determining parameter a in [10] to refine hesitations in

DHFSs and consider the nonmembership more important.

Based on the above analysis, a correctional score function

of DHFEs is defined as follows.

Definition 8 Let d ¼ ðh; gÞ be a DHFE, h and g be two

sets of some values in 0; 1½ �, respectively. Then the cor-

rectional score function of d is proposed as follows:

SDa dð Þ ¼ 1þ Sh hð Þ � Sg gð Þ
2

; ð6Þ

where Sh hð Þ ¼ 1
#h

P
c2h cþ ap, Sg gð Þ ¼ 1

#g

P
c2g

cþ 1� að Þp, p ¼ 1� 1
#h

P
c2h c� 1

#g

P
c2g c and

a ¼ 1
2
þ

1
#h

P
c2h c�

1
#g

P
c2g c

2
þ

1
#h

P
c2h c�

1
#g

P
c2g c

2
p. ShðhÞ and

SgðgÞ is called the correctional membership value and the

correctional nonmembership value, respectively.

It is obvious that the correctional score function

SDaðdÞ 2 ½0; 1�. For two DHFEs d1 and d2, if

SDaðd1Þ[ SDaðd2Þ, then d1 is superior to d2, denoted by

d1 � d2:

From Definition 8, we can see the hesitation degree p of d

is divided by the parameter a into two parts, one to the mean

membership and the remainder to the nonmembership of d.

According to Definition 5, s dð Þ ¼ 1
#h

P
c2h c� 1

#g

P
g2g g is
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the score function of d . So a ¼ 1
2
þ sðdÞ

2
þ sðdÞ

2
p

¼ 1
#h

P
c2h cþ p

2
þ sðdÞ

2
p. It is apparent that the a value varys

with not only the score function value sðdÞ but also the mean

hesitant degree p, and a increases in p for a given positive

score function value and decreases in p for a given negative

score function value.

So the correctional score function of DHFE can charac-

terize the hesitation of DHFEs. In addition, if a DHFE has

bigger nonmembership value, then it could have worse

correctional score function value. Therefore, the correctional

score function pays more attention to the nonmembership

value. We give an analysis using the following example.

Example 2 Let A ¼ fð0:3; 0:4Þ; ð0:1; 0:2Þg, B ¼ fð0:5;
0:6Þ; ð0:3; 0:4Þg and C ¼ fð0:6Þ; ð0:3; 0:4Þg be three

DHFEs as in Example 1. We calculate their correctional

score function values and rank them.

From Definition 8, we get the mean hesitant degree of A

is pA ¼ 0:5, then aA ¼ 1
2
þ

0:3þ0:4
2 �0:1þ0:2

2

2
� ð1þ pAÞ ¼ 0:65.

By splitting the hesitant degree, we get ShðhAÞ ¼ 0:675 and

SgðgAÞ ¼ 0:325. So SDaðAÞ ¼ 1þ0:675�0:325
2

¼ 0:675.

By a similar way, we get pB ¼ 0:1, aB ¼ 0:61, ShðhBÞ
¼ 0:611, SgðgBÞ ¼ 0:389 and SDaðBÞ ¼ 1þ0:611�0:389

2
¼

0:611;

pC ¼ 0:05; aC ¼ 0:6312, ShðhCÞ¼0:6316,SgðgCÞ¼0:3684

and SDaðCÞ¼1þ0:6316�0:3684
2

¼0:6316. Obviously, SDaðAÞ[
SDaðCÞ[SDaðBÞ, and the rank of the three DHFEs is

A�C�B.

The result is different from Example 1, which is ana-

lyzed as follows.

1. B and C have the same mean nonmembership value,

but the mean membership value of C is bigger, so

C � B in Examples 1 and 2. The result satisfies

people’s cognition.

2. Using the correctional score function SDa , we get

A � C, while using the method in Definition 5, the

result is C � A. We can see, for the method in

Definition 5, only the score function is used to compare

A and C, since they have different deviations of the

mean membership values and the mean nonmember-

ship values, the accuracy function is not entertained.

So in this case, their hesitations are not considered in

the ranking process. Comparing with the method in

Definition 5, the correctional score function refines the

mean hesitant degrees of A and C, and splits the mean

hesitant degrees to the mean membership values and

the mean nonmembership value, respectively.

3. The comparison results of A and B are also different in

the above two methods. The reason is that, comparing

with A, B has bigger nonmembership value and the

membership value is not big enough, and the correc-

tional score function considers more about the influ-

ence of the nonmembership value and allots little mean

hesitant degree to the mean membership degree of B.

In Figs. 1 and 2, we give the further analysis on the

change of the new correctional function value with the

change of mean nonmembership value or mean member-

ship value for the two DHFEs A and B.

In Fig. 1, the correctional score function values of A and

B are decreasing with the increasing of their mean non-

membership values, respectively.

In Fig. 2, the correctional score function values of A and

B are increasing with the increasing of their mean mem-

bership values, respectively.

Obviously, the correctional score function satisfies

people’s cognition:

1. ADHFEhas better score functionvaluewhen it has bigger

membership value and smaller nonmembership value

2. A DHFE has worse score function value when it has

bigger nonmembership value and the membership

value is not big enough

We can also note that when a ¼ 1
2
in Definition 8, the

correctional score funtion of DHFEs is equal to the score

function in Definition 5. So the correctional score function

is a generalization of the score function in Definition 5 and

is more effective for compare DHFEs.

3.2 The dice similarity measure of DHFSs

For using the dice similarity measure in decision-making

problems with dual hesitant fuzzy information, we extend

the dice similarity measure in Definition 6 to DHFSs.

Fig. 1 The change between correctional function value and mean

nonmembership value
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Definition 9 Let X ¼ ðx1; x2; . . .; xnÞ be a fixed set, D1 ¼
xi; dD1

ðxiÞh i xi 2 Xjf g and D2 ¼ xi; dD2
ðxiÞh i xi 2 Xjf g be

two DHFSs, where dD1
ðxÞ ¼ ðhD1

ðxÞ; gD1
ðxÞÞ and

dD2
ðxÞ ¼ ðhD2

ðxÞ; gD2
ðxÞÞ, and w ¼ ðw1; w2; . . .;wnÞ be a

weighting vector with wi [ 0 and
Pn

i¼1 wi ¼ 1. Then the

dice similarity measure of DHFSs is defined as follows:

PDðD1;D2Þ ¼
Xn

i¼1

wi

2SDaðdD1
ðxiÞÞSDaðdD2

ðxiÞÞ
SDaðdD1

ðxiÞÞ2 þ SDaðdD2
ðxiÞÞ2

where dD1
ðxiÞ and dD2

ðxiÞ are DHFEs, SDaðdD1
Þ 2 ½0; 1�,

SDaðdD2
Þ 2 ½0; 1�.

Obviously, the above dice similarity measure of DHFSs

has the same properties with the dice similarity measure in

Definition 5. In the next section, we will use the dice

similarity measure of DHFSs to rank alternatives.

4 An approach for multiple attribute decision
making with dual hesitant fuzzy information

In this section, we shall utilize the correctional score

function and the dice similarity measure of DHFSs to de-

velop an approach for solving prioritized decision-making

problems with dual hesitant fuzzy information.

For a multi-attribute decision-making problem, let A ¼
A1; A2; . . .;Amf g be a discrete set of alternatives, G ¼

fG1;G2; . . .;Gng be a collection of attributes. Suppose that

there is a prioritization between the attributes expressed by

the linear ordering G1 � G2 � � � � � Gn, indicating at-

tribute Gj has a higher priority than Gs, if j\s. If the

decision makers provide several membership values or

nonmembership values for the alternative Ai under the

attribute Gj with anonymity, these values can be considered

as a DHFE dij. In the case that two decision makers provide

the same value, then the value emerges only once in dij no

matter membership or nonmembership. So we can con-

struct a dual hesitant fuzzy decision matrix H ¼ ðdijÞm�n,

where dij are in the form of DHFEs.

For the prioritized multi-attribute decision-making, we

first consider to obtain the priority induced importance

weights of each of the attribute with respect to alternative

Ai. With the correctional score function, for each attribute

we let GjðAiÞ ¼ SDaðdijÞ, the degree of satisfaction of Ai

under Gj.

Then we obtain for each Gj its un-normalized impor-

tance weights Tij with respect to alternative Ai:

Ti1 ¼ 1; Tij ¼
Yj�1

k¼1
GkðAiÞðj ¼ 2; . . .; nÞ:

Using this we obtain the normalized importance

weights:

wij ¼
TijPn
j¼1 Tij

; ðj ¼ 1; 2; . . .; nÞ:

Once we get the normalized priority based importance,

the next step is to ranking the alternatives by using the dice

similarity measure.

We assume Ai ¼ ðdi1; di2; . . .; dinÞði ¼ 1; 2; . . .;mÞ are
the DHFSs corresponding to alternative xi and

A	 ¼ ðd	1 ; d	2 ; . . .; d	nÞ, where dj ¼ ð1; 0Þðj ¼ 1; 2; . . .; nÞ,
is an DHFS corresponding to the ideal alternative. Then, by

considering attribute weights, we can obtain the dice simi-

larity measures according to Definition 9 between A	 and Ai:

PDðA	; AiÞ ¼
Xn

j¼1

wj

2SDaðd	j ÞSDaðdijÞ
SDaðd	j Þ

2 þ SDaðdijÞ
2
: ð7Þ

The bigger the value of PDðA	;AiÞ, the closer the al-

ternative Ai is to the ideal alternative A	. Therefore, ac-
cording to the dice similarity measure, the best alternative

can be selected.

From the above discussion, we utilize the following

steps to solve the prioritized multiple attribute decision

making problems:

Step 1. Calculate the un-normalized importance weights

Tijði ¼ 1; 2; . . .;m; j ¼ 2; . . .; nÞ for alternative Ai:

Ti1 ¼ 1; Tij ¼
Yj�1

k¼1

GkðAiÞðj ¼ 2; . . .; nÞ ð8Þ

Step 2. Calculate the normalized importance weights

wijði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ:

wij ¼
TijPn
j¼1 Tij

ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ ð9Þ

Fig. 2 The change between correctional function value and mean

membership value
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Step 3. By Eq. (7), calculate the dice similarity mea-

sures PDðA	;AiÞði ¼ 1; 2; . . .;mÞ between the ideal alter-

native A	 and the alternative Aiði ¼ 1; 2; . . .;mÞ.
Step 4. Rank the alternatives Aiði ¼ 1; 2; . . .;mÞ and

select the best one(s) according to the values

PDðA	;AiÞði ¼ 1; 2; . . .;mÞ.

5 Illustrative example

In this section, the proposed approach is demonstrated by an

example of teacher evaluation and the result is compared

with the results using the correlation coefficient of DHFSs in

[35] and the aggregation operator of DHFSs in [22].

Here we consider a selection problem of choosing the

best teacher in a Chinese university. This evaluation has

been raised great attention from the school, university

president, dean of management school. Human resource

officer sets up the panel of decision makers which will take

the whole responsibility for this evaluation. There are five

candidates Aiði ¼ 1; 2; 3; 4; 5Þ according to the follow-

ing four attributes: � G1 is the morality; ` G2 is the re-

search capability; ´ G3 is the teaching skill; ˆ G4 is the

education background. The prioritization relationship for

the attributes is as below: G1 � G2 � G3 � G4. The five

possible candidates Aiði ¼ 1; 2; 3; 4; 5Þ are to be

evaluated using the dual hesitant fuzzy values by three

decision makers under the above four attributes. The dual

hesitant fuzzy decision matrix is constructed as in Table 1.

In order to select the most desirable candidate, we utilize

the above steps in Sect. 4 to solve the problem, which can

be described as following:

Step 1. Utilize Eq. (8) to calculate the values of Tijði ¼
1; 2; 3; 4; 5; j ¼ 2; 3; 4Þ as follows:

ðTijÞ5�5 ¼

1 0:6466 0:1361 0:053
1 0:8 0:622 0:2246
1 0:7894 0:2968 0:203
1 0:3648 0:2071 0:0763
1 0:7 0:3934 0:1312

2

6
6
6
6
4

3

7
7
7
7
5
:

Step 2. Utilize Eq. (9) to calculate the values of wijði ¼
1; 2; 3; 4; 5; j ¼ 1; 2; 3; 4Þ as follows:

ðwijÞ5�5 ¼

0:5448 0:3522 0:0742 0:0288
0:3778 0:3023 0:0742 0:0849
0:4368 0:3448 0:235 0:0887
0:6054 0:2231 0:1297 0:0461
0:4495 0:3147 0:1768 0:059

2

6
6
6
6
4

3

7
7
7
7
5
:

Step 3. Utilize Eq. (7) calculate the values of

PDðA	;AiÞði ¼ 1; 2; 3; 4; 5Þ as follows:
PDðA	;A1Þ ¼ 0:7156; PDðA	;A2Þ ¼ 0:745; PDðA	;A3Þ

¼ 0:9268; PDðA	; A4Þ
¼ 0:7032;PDðA	;A5Þ ¼ 0:8459:

Step 4. Rank the candidates Ai i ¼ 1; 2; 3; 4; 5ð Þ in ac-

cordance with PDðA	;AiÞ and we get

A3 � A5 � A2 � A1 � A4. Thus the most desirable candi-

date is A3.

In step 3 of our proposed decision method, we use the

dice similarity measure for DHFSs to rank alternatives. It’s

true that the ranking method can be replaced by the cor-

relation coefficient method in [35] and the DHFWA ag-

gregation operator in [22]. The correlation coefficient and

the DHFWA aggregation operator are as follows (all pa-

rameters in these formulas are explained in detail in [35]

and [22]):

qDHFSðA; BÞ ¼
CDHFSðA;BÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CDHFSðA;AÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CDHFSðB;BÞ

p

Table 1 Dual hesitant fuzzy

decision matrix
G1 G2 G3 G4

A1 fð0:5; 0:6Þ; 0:3g f0:2; ð0:7; 0:8Þg fð0:3; 0:4Þ; ð0:5; 0:6Þg fð0:5; 0:6; 0:7Þ; 0:3g
A2 f0:8; 0:2g fð0:6; 0:7; 0:8Þ; 0:2g fð0:1; 0:2Þ; 0:3g f0:2; ð0:6; 0:7; 0:8Þg
A3 fð0:7; 0:8Þ; 0:2g fð0:2; 0:3; 0:4Þ; 0:5g fð0:4; 0:5Þ; 0:2g fð0:2; 0:4Þ; ð0:5; 0:6Þg
A4 fð0:3; 0:4Þ; 0:6g fð0:4; 0:5Þ; ð0:3; 0:4Þg fð0:3; 0:4Þ; 0:6g fð0:4; 0:5Þ; 0:5g
A5 f0:7; 0:3g fð0:4; 0:5Þ; ð0:3; 0:4Þg f0:3; ð0:5; 0:6; 0:7Þg f0:5; ð0:4; 0:5Þg

¼
Pn

i¼1
1
ki

Pki
s¼1 hArðsÞðxiÞhBrðsÞðxiÞ þ 1

li

Pli
t¼1 gArðtÞðxiÞgBrðtÞðxiÞ

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
1
ki

Pki
s¼1 h

2
ArðsÞðxiÞ þ 1

li

Pli
t¼1 g

2
ArðtÞðxiÞ

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
1
ki

Pki
s¼1 h

2
BrðsÞðxiÞ þ 1

li

Pli
t¼1 g

2
BrðtÞðxiÞ

� �r
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and

DHFWAwðd1; d2; . . .; dnÞ

¼ 

n

j¼1
ðwjdjÞ ¼ [cj2hj;gj2gj 1�

Yn

j¼1

ð1� cjÞwj

( )

;

(

�
Yn

j¼1

ðgjÞwj

( ))

Using the weights obtained in Step 2 and the two

methods, we rank the candidates.

Using the correlation coefficient of DHFSs, we can get

the following results:

qWDHFSðA	;A1Þ ¼ 0:6008; qWDHFSðA	;A2Þ
¼ 0:7878; qWDHFSðA	;A3Þ ¼ 0:8155;

qWDHFSðA	;A4Þ ¼ 0:5634; qWDHFSðA	;A5Þ ¼ 0:7841

By ranking the candidates Aiði ¼ 1; 2; 3; 4; 5Þ ac-

cording to the values of qWDHFSðA	;AiÞ, we get

A3 � A2 � A5 � A1 � A4. The most desirable candidate is

A3.

When using the aggregation operator and the compar-

ison method of DHFEs in [22], we can get the following

result:

DHFWAwðA1Þ ¼ fð0:3951; 0:3989; 0:402; 0:4039;
0:4058; 0:4107; 0:4643; 0:4677; 0:4704; 0:4721;

0:4738; 0:4781Þ; ð0:4199; 0:4257; 0:4402; 0:4462Þg:

Because the aggregation values are lengthy, we just give

the above one as representation. Then we can get the score

values of each candidate Aiði ¼ 1; 2; 3; 4; 5Þ:
sðA1Þ ¼ 0:0039; sðA2Þ ¼ 0:3395; sðA3Þ ¼ 0:3438; sðA4Þ

¼ �0:1445; sðA5Þ ¼ 0:2026:

So we get the ranking order A3 � A2 � A5 � A1 � A4.

Thus the most desirable candidate is A3.

Compared with the alternative ranking methods, our

proposed approach gets the same optimal alternative

though the rank of alternatives is slightly different. But the

dice similarity measure has more pithier procedure and is

easier to calculate.

It is necessary to point out that the weighted correlation

coefficient in [35] and the DHFWA operator and compar-

ison method for DHFEs in [22] is proposed to solve the

dual hesitant fuzzy decision-making problems with the

assumption that the attributes are at the same priority level.

In the methods proposed in [35] and [22], the weighting

vector is given for all the alternatives. Compared with these

hesitant fuzzy decision-making methods, the characteristic

of the proposed dual hesitant fuzzy decision-making ap-

proach could be interpreted as it being able to deal the dual

hesitant fuzzy decision-making problem with the

prioritization relationship between attributes. So, for dif-

ferent alternatives, we derive different weighting vectors

according to the proposed comparison method for DHFEs,

the attribute satisfactions and prioritization relationship.

6 Conclusion

In this paper, we investigated the dual hesitant fuzzy multi-

attribute decision-making problem with prioritization re-

lationship between attributes. We proposed a correctional

score function of DHFE. Then, we utilized the correctional

score function and the dice similarity measure to develop

an approach to solve the dual hesitant fuzzy multiple-at-

tribute decision-making problem in which the attributes are

in different priority level. Finally, a practical example

about talent introduction was given to illustrate the de-

veloped approach and demonstrate its practicality and

effectiveness.

As we can see, the comparison method based on the

correctional score function lacks sufficient theoretical sup-

port. We should make further study on the correctional score

function. In addition, DHFSs are a suitable technique of

denoting uncertain information that is widely spread in daily

life. There are latent applications of our approach in the field

of data mining, information retrieval and pattern recognition,

and so forth. These may be topics for future research.
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