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Abstract Extreme learning machine (ELM) is not only

an effective classifier but also a useful cluster. Unsuper-

vised extreme learning machine (US-ELM) gives favorable

performance compared to state-of-the-art clustering algo-

rithms. Extreme learning machine as an auto encoder

(ELM-AE) can obtain principal components which repre-

sent original samples. The proposed unsupervised extreme

learning machine based on embedded features of ELM-AE

(US-EF-ELM) algorithm applies ELM-AE to US-ELM.

US-EF-ELM regards embedded features of ELM-AE as the

outputs of US-ELM hidden layer, and uses US-ELM to

obtain the embedded matrix of US-ELM. US-EF-ELM can

handle the multi-cluster clustering. The learning capability

and computational efficiency of US-EF-ELM are as same

as US-ELM. By experiments on UCI data sets, we com-

pared US-EF-ELM k-means algorithm with k-means al-

gorithm, spectral clustering algorithm, and US-ELM

k-means algorithm in accuracy and efficiency.

Keywords Data clustering � Extreme learning machine

(ELM) � Extreme learning machine as an auto encoder

(ELM-AE) � Unsupervised learning

1 Introduction

Extreme learning machine (ELM) proposed by Huang et al.

[1, 2] is an efficient learning algorithm of training single

layer feed-forward neural networks (SLFNs). Many re-

searches regard ELM as a learning method for regression

and multiclass classification [3–6]. Regularized ELM

(RELM) has been developed for classification and regres-

sion [7]. Weighted ELM (WELM) has been used for the

data with imbalanced class distribution [8]. Sparse ELM

achieves similar generalization performance in binary

classification applications [9]. Chen et al. [10] and Lin

et al. [11] present the theoretical analysis of ELM. Re-

cently, ELM has been applied to clustering, such as ELM

k-means algorithm [12], and unsupervised extreme learn-

ing machine (US-ELM) k-means algorithm [13]. Cluster-

ing is an important part of machine learning. At present,

many clustering methods have been proposed, such as

partitioning methods [14], hierarchical methods [15, 16],

density-based methods [17, 18], and graph theory methods

[19, 20].

As we know, the original data will be linear separable

through a nonlinear transformation. ELM k-means algo-

rithm uses k-means clustering in ELM feature space. US-

ELM obtains embedded matrix by constructing a new cost

function, and then uses k-means to cluster in embedded

matrix of US-ELM. However, the input weights and biases

of US-ELM are randomly generated. Therefore, the outputs

of US-ELM hidden layer are not reasonable features of the

original data. Extreme learning machine as an auto encoder

(ELM-AE) [21] can obtain main features of the original

data. At the same time, ELM-AE is not an iterative algo-

rithm. The proposed unsupervised extreme learning ma-

chine based on embedded features of ELM-AE (US-EF-

ELM) can use the features that learned from ELM-AE
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instead of the US-ELM, in combination with the US-ELM

cost function to obtain output weights.

In order to assess the performance of the proposed al-

gorithm, we compare the proposed algorithm with other

algorithms on eight UCI datasets. US-EF-ELM k-means

algorithm has achieved satisfying results on most of the

data sets. This paper is organized as follows. In Sect. 2, we

review the ELM method, and introduce the model of ELM-

AE, then describe the principle of US-ELM. In Sect. 3, we

make a detailed description of US-EF-ELM. In Sect. 4,

experimental results on UCI data sets and the performance

analysis of US-EF-ELM k-means algorithm are presented.

Finally, some conclusions and the intending work are given

in the last section.

2 Related works

The proposed US-EF-ELM is based on ELM-AE and US-

ELM. This section provides brief reviews of ELM, ELM-

AE, and US-ELM.

2.1 Extreme learning machine

ELM proposed by Huang et al. is an efficient learning al-

gorithm of SLFNs. For N distinct samples (xi; yi), i = 1,. . .,

N, xi 2 Rj and yi 2 Rm, the ELM model structure has j

input layer nodes, n hidden layer nodes, m output layer

nodes and a hidden layer activation function gðxÞ. The

outputs of hidden layer can be expressed as Eq. 1, and the

relationship between the outputs of hidden layer and the

outputs of output layer can be expressed as Eq. 2.

h ¼ gðaxþ bÞ ð1Þ
hðxiÞb ¼ yi; where i ¼ 1; 2; . . .;N ð2Þ

The above equation can be rewritten as Eq. 3:

Hb ¼ Y ð3Þ

where

H ¼

gða~1; b1; x~1Þ gða~1; b1; x~2Þ � � � gða~n; bn; x~NÞ
gða~2; b2; x~1Þ gða~2; b2; x~2Þ � � � gða~n; bn; x~NÞ

..

. ..
. . .

. ..
.

gða~n; bn; x~1Þ gða~n; bn; x~2Þ � � � gða~n; bn; x~NÞ

2
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bT1
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; Y ¼

yT1

yT2

..

.

yTN

2
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3
77775
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Using ELM to obtain the output weights b can be di-

vided into three steps:

Step 1: Randomly select numerical values to set input

weights and the bias of the hidden layer

Step 2: Calculate the output matrix H

Step 3: Calculate the output weights b:

b ¼ HyY ð4Þ

where Hy represents the generalized inverse matrix of the

output matrix H.

ELM has the advantage of high training speed and better

generalization. However, the robustness of ELM is bad. To

solve this question, Deng et al. [7] propose RELM which

combines experiential risk and structural risk. RELM aims

to obtain the output weights by minimizing the regularized

least squares estimation cost function, which leads to the

following formulation:

min LRELM ¼ 1

2
bk k2þC

2
Y � Hbk k2 ð5Þ

where C is a parameter to balance experiential risk and

structural risk.

By setting the gradient of LRELM to zero, we have

bþ CHTðY � HbÞ ¼ 0 ð6Þ

When the number of training samples is larger than the

number of hidden layer nodes, the output weight matrix b
in RELM can be expressed as Eq. 7:

b ¼ I

C
þ HTH

� ��1

HTY ð7Þ

When the number of training samples is less than the

number of hidden layer nodes, the output weight matrix b
in RELM can be expressed as Eq. 8:

b ¼ HT I

C
þ HHT

� ��1

Y ð8Þ

2.2 Extreme learning machine as an auto encoder

The auto encoder is an unsupervised neural network model

which is commonly used in deep learning. The outputs of

auto encoder are equal to the inputs. ELM-AE proposed by

Kasun et al. [21] is a novel method of neural network

which can reproduce the input signal as well as auto

encoder.

The ELM-AE model consists of an input layer, a single-

hidden layer and an output layer. The model structure of

ELM-AE is shown in Fig. 1, which has j input layer nodes,

n hidden layer nodes, j output layer nodes and a hidden

layer activation function gðxÞ. ELM-AE can be divided into

three different representations.

j[ n: compressed representation
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Represent features from a higher dimensional input

signal space to a lower dimensional feature space.

j = n: equal dimension representation

Represent features from an input signal space dimension

equal to feature space dimension.

j\ n: sparse representation

Represent features from a lower dimensional input sig-

nal space to a higher dimensional feature space.

There are two differences between ELM-AE and tradi-

tional ELM. Firstly, ELM is a supervised neural network

and the outputs of ELM are labels, but ELM-AE is an

unsupervised neural network and the outputs of ELM-AE

are equal to the inputs of ELM-AE. Secondly, the input

weights of ELM-AE are orthogonal and the biases of

hidden layer of ELM-AE are also orthogonal, when the

parameters in ELM are randomly initialized. For N distinct

samples, the outputs of ELM-AE hidden layer can be ex-

pressed as Eq. 9, and the numerical relationship between

the outputs of the hidden layer and the outputs of the output

layer can be expressed as Eq. 10.

h ¼ gðaxþ bÞ; where aTa = I, bTb = 1 ð9Þ

hðxiÞb ¼ xTi ; where i ¼ 1; 2; . . .;N ð10Þ

Using ELM-AE to obtain the output weights b also can

be separated into three steps, but the calculation method of

the output weights b in ELM-AE is different from ELM.

For sparse and compressed ELM-AE representations,

output weights b are calculated by Eqs. 11 and 12:

When the number of training samples is more than the

number of hidden layer nodes,

b ¼ I

C
þ HTH

� ��1

HTX ð11Þ

When the number of training samples is less than the

number of hidden layer nodes,

b ¼ HT I

C
þ HHT

� ��1

X ð12Þ

For equal dimension ELM-AE representation, output

weights b are calculated by Eq. 13:

b ¼ H�1X ð13Þ

2.3 Unsupervised extreme learning machine

US-ELM proposed by Huang et al. makes use of least

square method to obtain the embedded matrix E 2 RN�m

(m is decided by us) which can be used to cluster. And the

clustering validity of E is better than the original samples

X 2 RN�j.
If two samples xi and xj are close to each other, then the

outputs yi and yj of US-ELM should be close to each other

as well. So US-ELMminimizes the following cost function,

Lm ¼

Pn
i¼1

Pn
j¼1

wijðyi � yjÞ2

2ðc1 � c2Þ2
¼

Pn
i¼1

Pn
j¼1

wijðy2i � 2yiyj þ y2j Þ

2ðc1 � c2Þ2

¼

Pn
i¼1

Pn
j¼1

�2wijyiyj þ
Pn
i¼1

y2i
Pn
j¼1

wij

 !

2ðc1 � c2Þ2

¼ 2ŶTðD�WÞŶ
2ðc1 � c2Þ2

¼ ŶTLŶ

ðc1 � c2Þ2
ð14Þ

where D is a diagonal matrix, L is a Laplacian matrix,

Ŷ ¼ ½ y~i y~j �T .
US-ELM aims to obtain the output weights by

minimizing the least squares regularization cost function,

which leads to the following formulation:

min LUS�ELM ¼ bk k2þC TrðbVTHTLHbÞ
¼ TrðbTðI þ CHTLHÞbÞ
subject: to: ðHbÞTHb ¼ I

ð15Þ

where Tr(�Þ denotes the trace of a matrix.

If the number of the US-ELM output layer nodes for m,

then choosing the output weights b whose columns are the

eigenvectors corresponding to the first m smallest eigen-

values is an optimal solution to Eq. 15. However, there is

always a constant eigenvector 1 in Laplace eigenvector

space and this eigenvalue corresponding eigenvector is the

smallest eigenvalue 0. Thus we choose eigenvectors

j

2

1
2

n

b2

bn

1

2

j

b1a11

a21

a12

a22

a1n

a2n

aj2

aj1

ajn

Input layer Single-hidden layer Output layer

1

xi

Fig. 1 The model structure of ELM-AE
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corresponding to first m smallest eigenvalues except for the

0 to compose the output weights b.
When the number of training samples is more than the

number of hidden layer nodes,

ðI þ CHTLHÞv ¼ cHTHv ð16Þ
b ¼ ½~v2; ~v3; . . .; ~vn0þ1�; where ~vi ¼ vi= Hvik k ð17Þ

When the number of training samples is less than the

number of hidden layer nodes,

ðI þ CLHHTÞ u ¼ cHHTu ð18Þ

b ¼ HT ½~u2; ~u3; . . .; ~un0þ1�; where ~ui ¼ ui
�
HHTuik k ð19Þ

3 Unsupervised extreme learning machine based
on embedded features of ELM-AE

US-ELM can obtain the output weights by constructing a

different cost function instead of the ELM cost function

without supervised information. However, the randomly

generated input weights and biases will lead a result that

the outputs of US-ELM hidden layer cannot represent

features of the original samples very well. ELM-AE is an

artificial neural network algorithm which is able to recon-

struct the input signal. In order to achieve the reconstruc-

tion, ELM-AE obtains the main features of the original

samples, as auto encoder does. ELM-AE can find principal

components which represent the original samples and the

learning process of ELM-AE without iteration. We can

make use of features of ELM-AE instead of the outputs of

US-ELM hidden layer, and then use the US-ELM cost

function to obtain the output weights. We call it US-EF-

ELM.

For N distinct samples (xi; yi), i = 1,. . ., N, xi 2 Rj and

yi 2 Rm, the model structure of US-EF-ELM is shown in

Fig. 2, with j input layer nodes, n hidden layer nodes,

m output layer nodes and a hidden layer activation function

g(x). First of all, we make use of ELM-AE to calculate the

output weights b1. The transpose of b1 is the input weights
of US-EF-ELM. The outputs of US-EF-ELM hidden layer

H can be expressed as

j

2

1

1

2

n

The model of ELM-AE
1

2

jj

2

1

1

2

n

1

2

m

The model of US-EF-ELM

xi xiEi xi

Fig. 2 The model structure of US-EF-ELM

Table 1 The details of UCI

data sets
Data sets Cluster Dimension N

Ionosphere 2 34 351

Breast Cancer Wisconsin (Diagnostic) 2 30 569

Musk (Version 1) 2 166 476

Musk (Version 2) 2 166 6598

Abalone 3 8 4177

ISOLET 26 617 7797

EEG Eye State 2 14 14,980

PEMS-SF 7 138,672 440
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When n 6¼ j and N\n;

b1 ¼
In

C1

þ HT
ELM�AEHELM�AE

� ��1

HT
ELM�AEX

ð20Þ

When n 6¼ j and N\n;

b1 ¼ HT
ELM�AE

IN

C1

þ HELM�AEH
T
ELM�AE

� ��1

X
ð21Þ

When n ¼ j; b1 ¼ H�1
ELM�AEX ð22Þ

H ¼ gðX � bT1 Þ ð23Þ

US-EF-ELM aims to obtain the output weights by

minimizing the US-ELM cost function, and leads to the

following formulation:

min
bT2H

THb2¼I
LUS�SL�ELM ¼ b2k k2þC2TrðbT2HTLHb2Þ

¼ TrðbT2 ðI þ C2H
TLHÞb2Þ ð24Þ

So we choose the eigenvectors corresponding to the first

m smallest eigenvalues except for the 0 to compose output

weights b2.

When N[ n; ðIn þ C2H
TLHÞv ¼ cHTHv;

b2 ¼ ½~v2; ~v3; . . .; ~vn0þ1�; where ~vi ¼ vi= Hvik k
ð25Þ

When N\n; ðIN þ C2LHH
TÞu ¼ cHHTu;

b2 ¼ HT ½~u2; ~u3; . . .; ~un0þ1�; where ~ui ¼ ui
�
HHTuik k

ð26Þ

The outputs E of US-EF-ELM can be calculated by

following formulation:

E ¼ Hb2 ð27Þ

Then we can adopt the k-means algorithm to perform

clustering in the embedded spaces of US-EF-ELM E. The

following algorithm is a summary of the proposed US-EF-

ELM.

Algorithm. US-EF-ELM algorithm.
Inputs:

The samples X∈RN× Rj, the parameters C1 and C2.
Outputs:

The outputs E∈RN× Rm.
Method:
Step 1: Initiate an ELM-AE network of n hidden neurons, and calculate the outputs
of the hidden layer HELM-AE ∈RN× Rn.
Step 2: Make use of Equation 21-22 to calculate the output weights of ELM-AE 1β .

Step 3: Construct the graph Laplacian matrix L from X.
Step 4: Initiate an US-EF-ELM network of n hidden neurons. The input weight matrix is 
the transpose  of 1β . Then calculate the outputs of the hidden layer H∈RN× Rn.
Step 5: Make use of Equation 25-26 to calculate the output weights of US-EF-ELM 2β .
Step 6: Return the embedded spaces of US-EF-ELM E∈RN× Rm: 2E Hβ= .

4 Experiments and results

In this section, the performance of the US-EF-ELM

k-means clustering algorithm is compared with classical

methods (k-means algorithm and spectral clustering algo-

rithm) and the US-ELM k-means clustering algorithm.

4.1 Data sets

The data sets used in the experiments are all from the UCI

Machine Learning Repository, which include Ionosphere,

Breast Cancer Wisconsin (Diagnostic), Musk (Version 1),

Musk (Version 2), Abalone, ISOLET, EEG Eye State, and

Table 2 The performance comparison of the proposed US-EF-ELM

Data sets Accuracy k-means SC US-ELM k-means US-EF-ELM k-means

Ionosphere Max 71.23 66.38 83.48 85.76

Mean 70.93 ± 1.99 64.42 ± 0. 22 66.51 ± 12.64 69.05 ± 10.58

Breast Cancer Wisconsin (Diagnostic) Max 92.79 93.15 92.9701 93.50

Mean 92.79 ± 0 93.15 ± 0 83.41 ± 15.10 93.38 ± 0.08

Musk (Version 1) Max 56.30 56.09 67.86 70.38

Mean 54.07 ± 0.76 56.09 ± 0 54.55 ± 3.41 54.61 ± 3.48

Musk (Version 2) Max 74.48 54.15 85.77 86.078

Mean 54.92 ± 4.04 54.15 ± 0 81.21 ± 7.27 81.698 ± 6.34

Abalone Max 52.74 53.27 53.91 58.20

Mean 52.54 ± 0.19 52.41 ± 2.58 53.61 ± 0.95 51.45 ± 2.95

ISOLET Max 60.18 38.99 64.7557 66.12

Mean 53.10 ± 3.45 34.91 ± 2.81 57.03 ± 3.38 57.79 ± 3.40

EEG Eye State Max 55.11 55.11 59.80 58.68

Mean 55.11 ± 0 55.11 ± 0 54.14 ± 2.20 58.64 ± 0.01

PEMS-SF Max 35.68 24.09 37.73 49.77

Mean 31.46 ± 2.05 22.12 ± 1.64 32.24 ± 2.30 37.48 ± 3.34
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PEMS-SF. The details of those data sets are given in

Table 1.

4.2 Experimental setup

We do experiments in a work station with a core i7 DMI2-

Intel 3.6 GHz processor and 18 GB RAM running

MATLAB 2012B. We run k-means algorithm, spectral

clustering (SC) algorithm, US-ELM k-means algorithm,

and US-EF-ELM k-means algorithm 100 times, and then

run SC algorithm 10 times on last five datasets.

The number of US-ELM hidden nodes and US-EF-ELM

hidden nodes is set to 2000 for all data sets, and activation

functions of US-ELM and US-EF-ELM are sigmoid func-

tion. The kernel of SC algorithm is the Gaussian kernel.

The parameter C in US-ELM and the parameters C1 and C2

in US-ELM are chosen from [10-4 10-3 10-2 10-1 100 101

102 103 104].

4.3 Quality of the clustering results

This paper uses clustering accuracy (ACC) [22] to measure

the quality of the clustering results. For N distinct samples

xi 2 Rj, yi and ci are the inherent category label and the

predicted cluster label of xi, the calculation formula of

ACC is

Fig. 3 Clustering performance on UCI data sets as a function of the

dimension of the embedded space. a Clustering performance on

Ionosphere. b Clustering performance on Breast Cancer Wisconsin

(Diagnostic). c Clustering performance on Musk (Version 1).

d Clustering performance on Musk (Version 2). e Clustering perfor-

mance on Abalone. f Clustering performance on ISOLET. g Clustering
performance on EEG Eye State. h Clustering performance on PEMS-

SF
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ACC ¼
XN
i¼1

dðyi;mapðciÞÞ
,

N ð28Þ

where mapð�Þ maps each cluster label to a category label by

the Hungarian algorithm [23] and this mapping is optimal,

let dðyi; ciÞ equal to 1 if yi = ci or equals to 0 otherwise.

The higher values of the ACC, the better the clustering

performance.

The comparison of these algorithms is shown in Table 2,

and the dimensions of the embedded space of US-ELM and

US-EF-ELM are selected based on Fig. 3. It is obvious that

the US-EF-ELM k-means algorithm has achieved gratify-

ing results on most of the data sets. The first three data sets

are small, next five data sets are larger. SC algorithm

performs better on small data sets. US-ELM k-means

algorithm and US-EF-ELM k-means algorithm perform

better on larger data sets.

The embedded space of US-ELM and US-EF-ELM

makes an obvious effect on clustering performance. Fig-

ure 3 shows the best clustering performance of US-ELM

and US-EF-ELM in different dimensions of the embedded

space. We can get the following conclusion from Fig. 3:

(1) the best cluster performance of US-EF-ELM is better

than US-ELM; (2) the US-EF-ELM is better than US-

ELM in a wide range of embedding dimensions; (3)

Huang et al. [13] shows that the US-ELM attains its best

performance with a very low dimensional embedding, but

the US-ELM and US-EF-ELM attain their best perfor-

mance with a high dimensional embedding on ISOLET

and Musk (Version 2) data sets. Performing k-means in a

Fig. 3 continued
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relatively lower dimensional space is just for our

reference.

4.4 Computational efficiency

The training time comparison of these algorithms is

shown in Table 3. It is obvious that the k-means algo-

rithm has the best computational efficiency. In terms of

the process of US-EF-ELM k-means algorithm, the

training time of US-EF-ELM is longer than US-ELM. The

embedded space dimension of US-EF-ELM is different

from US-ELM, so the training time of US-ELM k-means

algorithm is longer on some datasets. From experimental

results on PEMS-SF dataset, we can conclude that the

computational efficiency of US-EF-ELM is significantly

lower than US-ELM when samples have high dimension.

The process of ELM-AE has taken a long time when

samples have high dimension. The training time of SC

algorithm is longest on large datasets. Though the training

time of US-EF-ELM k-means algorithm is longer than

US-ELM on most of the datasets, US-EF-ELM is still

efficient.

5 Conclusions

In this paper, US-EF-ELM is presented, and US-EF-ELM

k-means algorithm gets better clustering performances

compared to US-ELM k-means algorithm on UCI data-

sets. Besides the good performance of US-EF-ELM

k-means algorithm, the proposed algorithm is also com-

putational efficient. US-EF-ELM is a learning algorithm

of SLFNs, and can be a learning algorithm of multi layer

feed-forward neural networks. The new algorithm makes

use of ELM-AE to train the weights in each layer and

then uses the US-ELM cost function to obtain the output

weights. However, it is difficult to determine the model

structure. Future research is to find a suitable model

structure of the algorithm.
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