
ORIGINAL ARTICLE

Iterative sampling based frequent itemset mining for big data

Xian Wu1 • Wei Fan2 • Jing Peng3 • Kun Zhang4 • Yong Yu1

Received: 27 October 2014 /Accepted: 4 March 2015 / Published online: 20 March 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Frequent pattern mining attracts extensive re-

search interests over the past two decades: including min-

ing frequent item sets from transactions, extracting

frequent sequences from bio-arrays and detecting common

subgraph from molecular structures. In the era of big data,

the explosive data volume brings new challenges to fre-

quent pattern mining: (1) Space complexity: both input

data, intermediate results and the outputted patterns could

be too large to fit into memory which prevents many al-

gorithms from executing; (2) Time complexity: many ex-

isting approaches rely on exhaustive search or complicated

data structures to mine frequent patterns which prove to be

inapplicable for big data. To deal with these two chal-

lenges. we propose ISbFIM, an Iterative Sampling based

Frequent Itemset Mining method. Rather than process the

entire data set at once, ISbFIM samples computationally-

manageable subsets and extracts frequent itemsets from

these subsets. By repeating this process for a sufficient

number of times, we can guarantee both theoretically and

empirically that the frequent itemsets can be enumerated

without running into a combinatorial explosion. ISbFIM

can be easily parallelized and applied to mine item sets,

sequences or structures. We implement a Map-Reduce

version of ISbFIM to demonstrate its scalability on big

data.

Keywords Frequent itemset mining � Big data � Iterative
sampling � Parallelization � Map-reduce

1 Introduction

Frequent pattern mining has been heavily studied in the

past two decades. The main interest for pattern mining

includes item sets, subgraphs, and sequences etc. For each

type of patterns, tremendous progresses have been made,

like Apriori [2] and FP-Growth [13] for frequent item set

mining, [3] for frequent sequences mining, and [17] for

common subgraph extraction.

In the era of big data, the data volume grows the at an

explosive speed. According to a recent report from

comScore,1 19.6 billion explicit core searches were con-

ducted in January 2014. The massive web data brings new

challenges to frequent pattern mining: (1) The input data is

so large that multiple scanning over the entire set is com-

putational unaffordable. Therefore, the exhaustive search

based algorithms like Apriori are prohibited from practical

use; (2) The intermediate results and the final outputted

& Xian Wu

wuxian@apex.sjtu.edu.cn

Wei Fan

wei.fan@gmail.com

Jing Peng

pengj@mail.montclaire.edu

Kun Zhang

kzhang@xula.edu

Yong Yu

yyu@apex.sjtu.edu.cn

1 Shanghai Jiao Tong University, Shanghai, China

2 Baidu Research Big Data Lab, Sunnnyvale, CA, USA

3 Department of Computer Science, Montclair State

University, Montclair, USA

4 Department of Computer Science, Xavier University of

Lousiana, New Orleans, USA

1 http://www.comscore.com/Insights/Press_Releases/2014/2/com

Score_Releases_January_2014_US_Search_Engine_Rankings.

123

Int. J. Mach. Learn. & Cyber. (2015) 6:875–882

DOI 10.1007/s13042-015-0345-6

http://www.comscore.com/Insights/Press_Releases/2014/2/comScore_Releases_January_2014_US_Search_Engine_Rankings
http://www.comscore.com/Insights/Press_Releases/2014/2/comScore_Releases_January_2014_US_Search_Engine_Rankings
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0345-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0345-6&domain=pdf

patterns could be too large to fit into memory. As a result,

the tree structure employed by FP-Growth can exhaust all

the memory and halt the frequent pattern extraction pro-

cess. A straight-forward solution to both problems is to

increase the threshold of frequency support which could

reduce the scale of patterns. However, in terms of feature

extraction, low support patterns prove to be discriminative

in certain tasks [12]. Furthermore, in case of big data, even

a relatively higher threshold can still return a large number

of patterns.

To deal with big data, many approaches have been

proposed to parallelize the A priori [1, 10, 19, 24, 32] and

FP-Growth [18] algorithms. They usually adopt the fol-

lowing two manners: (1) Distributing the computing

workload while restoring the data in a shared memory

environment; (2) Apply the Map-reduce framework to

partition both the computing workload and the data. The

former type requires a large shared memory to restore in-

termediate generated and final outputted itemsets which is

in-practical for big data, e.g. web search log; While the

latter one could still assign unaffordable workload to some

nodes. On one hand, frequent item set mining is NP-

hard [30]; On the other hand, if the support is set too low,

the program simply may not finish since the virtual mem-

ory can be exhausted [12].

To scale frequent itemset mining to big data, we pro-

pose an Iterative Sampling based Frequent Itemset Mining

method (ISbFIM). In order to deal with large input, ISb-

FIM samples computationally-manageable subsets and

extracts frequent patterns from these subsets with a higher

threshold. Since the input volume is reduced and the

support threshold is increased, both the time and space

complexity of frequent pattern mining on each subset is

computational affordable. Importantly, the time com-

plexity for processing each subset is the same which

avoids over-assigning workload to a single node. By it-

erating this sample-and-extract process many times, we

can guarantee that most frequent patterns in terms of the

entire data set have been enumerated. We derived a ter-

mination bound to guide how to set the size of each

sample and determine the rounds of iterations. This pro-

posed ISbFIM can not only deal with large scale data but

also is suitable for parallel implementation. We have

validated the theoretical termination bound and demon-

strated the effectiveness of the proposed approach on

multiple data sets.

2 Methodology

In this section, we will describe the proposed ISbFIM

framework. Since ISbFIM mainly targets to mine frequent

item sets, we refer patterns to itemsets in this paper.

Let N denote the number of input transactions and a
denote the threshold of frequency support. If we extract the

frequent item sets from these N transactions, the scale of

the patterns returned is given by

OðNð1�aÞNÞ

where N[3 and a is the frequency support threshold in

percentage [29]. In case of big data, e.g. web search log,

the full set of extracted patterns are too large to fit into

memory. To scale down the pattern volume, we can either

reduce the data size N or decrease the threshold a. Here we
take relatively smaller samples from the entire data set and

extract patterns with a higher threshold b within each

sample. As a result, the number of retrieved patterns in

each iteration will be much smaller. Thus they can be

processed using reasonable computing resources. More

importantly, the patterns of low frequency that are below

global threshold a can be included as well, as the higher

frequency in a sample data set could be much smaller when

considering over the entire corpus. The proposed algorithm

ISbFIM is summarized in Algorithm 1.

Algorithm 1: ISbFIM - Iterative Sampling based Frequent Pattern Mining

Input : 1: The Set of Transactions D
2: Global Support Threshold α
3: The Set of Sampled Transactions D′
4: Local Support Threshold β
5: Number of Iterations T

Output: 1: Set of Result Patterns X

1 for i ← 1 to T do
2 Let D′ = {N ′ transactions randomly selected from D without replacement};
3 Perform frequent item set extraction on D′ with the threshold β,

FP ′ = FIM(D′, β);
4 Evaluate patterns in FP ′, save the selected ones to X;
5 X = X ∪ EvaluateLocal(FP ′, D′);

6 Evaluate patterns in X on whole data set D, X = EvaluateGlobal(X, D)

In the main loop, the sample data set D0 is randomly

generated fromD, (thus it permits parallel implementation as

discussed in Sect. 3.2.2), and the frequent pattern extraction

is performed with a higher threshold b. Then selected pat-

terns are filtered according to some specific function Eval-

uate on D0. The functionality of Evaluate is defined by the

corresponding application scenario. In case of discriminant

feature selection [12], theEvaluatemethod can be defined as

a fisher score filter. After a sufficient number of iterations, the

loop terminates and all selected patterns are further filtered

by evaluating on the whole data set D.

Through the above iterative sampling method, at each

iteration, the scale of the patterns returned by the frequent

pattern extraction algorithm is reduced. Let the size of a

sample data set D0 be N 0 ¼ cN, where 0\c� 1. The scale

of the problem at each iteration becomes

OððcNÞð1�bÞcNÞ:

Thus, the reduction in computation at each iteration is as

follows:

876 Int. J. Mach. Learn. & Cyber. (2015) 6:875–882

123

RD ¼ Nð1�aÞN � ðcNÞð1�bÞcN

�Nð1�aÞN � Nð1�bÞcN

�Nð1�aÞN � Nð1�aÞcN

¼ Nð1�aÞN � Nð1�aÞcN

¼ Nð1�aÞN � ðNð1�aÞNÞc;

ð1Þ

where the first inequality follows from cN �N, and the

second inequality follows from a� b. Let

C ¼ Nð1�aÞN :

Then, the reduction in computation is at least

RD � C � Cc: ð2Þ

As c decreases (i.e., the sample set decreases), so does Cc.

Thus, the reduction in computation can be substantial. On

the other hand, if a sample set is too small, it may bring in

noisy patterns in term of the entire data set. Therefore, in

practise, c is chosen so that frequent pattern mining can be

accomplished using available computational resources.

2.1 Required iterations

The local frequency b is usually set higher than the global

frequency a. For example, supposeN ¼ 10;000 and a ¼ 1%.

If we set c ¼ 0:01, thus N 0 ¼ cN ¼ 100, and b ¼ a, the local
frequency threshold is only 1. As a result, all possible com-

binations will be returned as candidate patterns. For those that

appear only once or twice, there will not be sufficient exam-

ples to predict their frequency on the entire data set. By setting

b higher, e.g., b ¼ 10 %, we will havemore data as evidence

to evaluate the pattern’s occurrence. The local frequency b
should be chosen so that the following condition

aN � bN 0

is met.

After choosing the sample size N 0 and b according to

available computational resources, the next step is to de-

termine the required number of iterations T . This problem

can be formulated as follows. Let FIM ðD0; bÞ denote the

set of patterns extracted from one sample set D0. Also let g
denote the coverage threshold. If g ¼ 0:9, the problem is to

determine the number of iterations T so that 90% of fre-

quent patterns (� a) in D will be selected as local frequent

ones (� b) by ISbFIM. By choosing a proper g, solving the

following inequality obtains the desired number of T .

j FIM ðD; aÞ \
ST

i¼1 FIM ðD0; bÞj
j FIM ðD; aÞj � g ð3Þ

In the following, we discuss how to solve the above

inequality. In the main loop of Algorithm 1, a data set D0 is
randomly sampled without replacement from D and

frequent pattern extraction is performed on D0. For any

pattern xi with a frequency a in data set D, the probability

that xi will not be selected as a local frequent pattern in one

sample set D0 can be calculated as follows:

Pðxi 62 FIM ðD0; bÞÞ ¼ Pðbx\bÞ

¼
XbN

0�1

i¼0

PðbxN 0 ¼ iÞ

¼
XbN

0�1

i¼0

aN
i

� �
� N�aN

N 0�i

� �

N
N 0

� �

ð4Þ

where bi denotes the support in percentage of the pattern xi
in D0.

Let p ¼ Pðxi 62 FIM ðD0; bÞÞ. If we iterate d 1
1�p

e times,

the probability that this pattern xi is selected as a frequent

pattern is at least

1� p
1

1�p ’ 1� 1=e ¼ 0:632:

Thus, if there are L unique patterns in D with frequency

exceeding a, i.e., FIM ðD; aÞ ¼ fp1; p2; . . .; pLg, then after

d 1
1�p

e iterations, the average number of distinct frequent

patterns selected will be (at least) about 0:632L.

In order for ISbFIM to mine at least 90 % of L patterns,

we first solve the following to obtain t

1� pt
1

1�p ¼ 0:9:

This implies that pt
1

1�p ¼ 0:1: Taking logarithm, we obtain

t lnðp 1
1�pÞ ¼ lnð0:1Þ. Since

p
1

1�p ’ e�1;

we have t ’ � lnð0:1Þ ¼ 2:3. Therefore, after T ¼ d 2:3
1�p

e
iterations, on average we will obtain at least 90 % of L

frequent patterns in D:

Notice that since N, N 0, a, and b are chosen a priori, one

can calculate the required number of iterations T . For ex-

ample, if N ¼ 2;000, a ¼ 0:1, N 0 ¼ 50, b ¼ 0:2, and

g ¼ 0:9, we have p ¼ 0:977 according to Eq. (4). Thus, the

required number of iterations is T ¼ d 2:3
0:023e ¼ 100.

2.2 Evaluate method

In Algorithm 1, we employ two methods EvaluateLocal

and EvaluateGlobal to filter non-informative patterns both

in the local and global mining. The functionality of

EvaluateLocal and EvaluateGlobal is defined by the actual

application scenario.

2.2.1 Unlabeled data sets

For unlabelled data sets, the task is to select the global

frequent patterns. The EvaluateLocal method will perform

Int. J. Mach. Learn. & Cyber. (2015) 6:875–882 877

123

nothing but send out all local frequent patterns; On the

other hand, the EvaluateGlobal method will aggregate and

de-dup all the local frequent patterns and calculate their

frequency in terms of the entire data sets. For those that fail

to reach the global supporting threshold, EvaluateGlobal

will abandon them and keep the remaining ones as the final

results.

2.2.2 Labeled data sets

In case of discriminant frequent pattern mining, the first

step decides if a frequent pattern is capable of providing

discriminative separation locally on the sample set D0. The
second step determines if the locally discriminant patterns

are also discriminant globally on the entire data set D. In

the following, we use positive and negative to denote the

binary label on each transaction. For any frequent pattern x

in the sample set D0, Nx
0 and Nx

1 represent the number of

positive and negative documents containing x, respectively.

The following criterion is employed to locally measure x.

IGðxÞ ¼ HðD0Þ � HðD0jxÞ; ð5Þ

where

HðDÞ ¼ �
X

i2f0;1g

Ni

N 0 log
Ni

N 0

HðDjxÞ ¼ �Nx

N 0

X

i2f0;1g

Nx
i

Nx
log

Nx
i

Nx

� N �x

N 0

X

i2f0;1g

N �x
i

N �x
log

N �x
i

N �x
:

Those patterns satisfying IGðxÞ[Threshold will be re-

garded as ‘‘locally discriminant’’. However, as the sample

set D0 is generated randomly, these locally discriminant

patterns may not necessarily be discriminant when mea-

sured on the entire data set. Therefore, for all locally se-

lected patterns, their ability will be re-evaluated on the

entire data set D.

2.3 Discussion

The proposed ISbFIM algorithm replaces the one pass al-

gorithm that extracts all frequent patterns at once, with an

iterative sampling method. We have shown that with suf-

ficient iterations, most desired number of frequent patterns

in the entire data set can be extracted by the proposed

ISbFIM algorithm. Besides, many patterns that are below

the threshold a can be enumerated by ISbFIM as well

(Sect. 3.2.1). The lowest possible frequency can be:

bN 0

N
;

which is much smaller than a.

There is one assumption in ISbFIM: in order to extract a

globally frequent pattern, it needs to pass the Evaluate

method in at least one local sample set.

Since each iteration process is independent, the pro-

posed algorithm can be easily implemented in parallel

using the straight forward ‘‘divide and process’’ and Map-

Reduce model. Therefore, this algorithm can be accelerated

easily.

3 Experiment

We evaluate the proposed ISbFIM algorithm from two

perspectives: (1) We examine how precise the termination

criterion is. That is, we examine how well our formal

analysis matches with experimental results; (2) We im-

plement ISbFIM according to the Map-Reduce model and

evaluate its performance in a parallel environment.

3.1 Data sets

We use seven data sets for evaluation which are listed in

Table 1. The first four consists of customer reviews which

are labeled either positive or negative according to their

sentiment orientation; The rest three are selected from

frequent itemset mining dataset repository2 which are un-

labeled data sets.

3.2 Experimental results

3.2.1 Termination criterion

In this experiment, we examine the accuracy of the re-

quired number of iterations T for ISbFIM to terminate. As

described in Sect. 2.1, if the sampling process in ISbFIM is

performed over T times, more than g percents of frequent

patterns will be extracted. Take the data set Pang02 for

example, if we set the sample size N 0 ¼ 100, the global

Table 1 Seven data sets used in experiments

Name Number of Instance Source

Blitzer07 2000 [7]

Pang02 2000 [23]

Pang04 10,660 [22]

Jindal08 100,000 [16]

Mushroom 8124 http://fimi.ua.ac.be/data/

Retail 88,162 http://fimi.ua.ac.be/data/

IBM 100,000 http://fimi.ua.ac.be/data/

2 http://fimi.ua.ac.be/data/.

878 Int. J. Mach. Learn. & Cyber. (2015) 6:875–882

123

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/

frequency a ¼ 0:1, the local frequency threshold b ¼ 0:2

and the percent g ¼ 0:7, we can estimate the required it-

erations T ¼ 810 via Eq. (3). In this manner, instead of

directly extracting patterns from the entire data set with the

threshold 10 %, we iteratively sample 100 documents and

extract patterns with a higher threshold 20 % for 810 times.

We can guarantee that more 70 % frequent patterns can be

extracted. As a result, the scale of frequent pattern ex-

traction is reduced significantly by using smaller sample

size but higher support.

We calculate the theocratical bound T and compare

them the actual bound. First, we set the sample size N 0 ¼ N
20

and local frequency b ¼ 2a. Next, we let g equal tox 0.7,

0.75, 0.8, 0.85 and 0.9, respectively and calculate the

corresponding T . We run the proposed ISbFIM algorithm

on six data sets Blitzer, Pang02, Pang04, Retail,Mushroom

and IBM and record the actual times of iterations when g of
frequent patterns are extracted. Please note that these six

data sets diff in the density of frequent item sets. Therefore

we employ different global support thresholds to extract

frequent item sets. For example, Pang02 is a dense set thus

we set the threshold to be 10% while IBM is a sparse data

set thus we set the threshold to be 0.1%.

Figure 1 summarizes the analytical and actual iteration

times. In all settings of g, the theoretical estimate is bigger

than the actual measurement. Therefore, if the sampling

process is performed for T times, more than g percent of

frequent patterns can be extracted. Thus, the analytical

estimate is proven to be correct in practise.

3.2.2 Parallelization

It is easy to implement ISbFIM in parallel. We imple-

ment ISbFIM according to the Map-Reduce model [11].

Figure 2 illustrates the detailed flow. The component

Sample Sets Generator samples T (Calculated Theoretical

Bound) data sets from the whole corpus and send them to

mappers. Each mapper receives a single sample set at a

time and extract local frequent patterns from it. Then the

mapper will enumerate all the extracted patterns and send

out the ones that pass the Evaluate filter. The reducer

merges any duplicate patterns.

We implemented the parallel ISbFIM with Hadoop

(Version 0.23)3 and ran it on the data set Jindal08 with the

following setting: N 0 ¼ 2000; a ¼ 0:001; b ¼ 0:004 and

g ¼ 0:9. The number of iterations is 2489. We virtualize 16

nodes on an IBM x3950 sever and different nodes are

configured with a dual core 2.9G CPU and 2G memory and

is connected via gigabyte ethernet. The experiment is

performed on 1, 4, 8, 16 nodes, respectively and the run-

ning time is displayed in Fig. 3. From this figure, we can

)70reztilB()40gnaP()20gnaP(

(Retail) (Mashroom) (IBM)

Fig. 1 Comparison of analytical and actual termination bounds on six data sets

3 http://hadoop.apache.org/.

Int. J. Mach. Learn. & Cyber. (2015) 6:875–882 879

123

http://hadoop.apache.org/

see that the running time is approximately inversely pro-

portional to the size of the cluster, demonstrating that

ISbFIM is suitable for parallel acceleration.

4 Related works

The proposed work spans across several important research

areas in frequent pattern mining: (1) distributed frequent

pattern mining, (2) discriminant frequent pattern mining

and (3) frequent pattern sampling.

4.1 Distributed frequent pattern mining

Anastasiu et al. [5] summarized existing works on mining

frequent patterns from big data; among which, Park et al

[1], Agrawal and Shafer [24, Cheung et al. [10] and Zaki

et al. [32], etc. proposed parallelized version of Apriori

algorithm. These approaches either requires shared mem-

ory computing environment or multiple scanning over the

entire data set. Therefore they are not suitable for big data,

e.g. web search log.

Li et al. [18] proposed PFP which parallelizes FP-

Growth [13] with the Map-Reduce framework. In the

‘‘Map’’ stage, they divide the entire data set into small

subsets and perform FP-Growth on each subset; In the

‘‘Reduce’’ stage, they distribute the built FP-trees accord-

ing to the identities of items. However, in case of big data,

PFP could allocate excessive data on one reducer which

will halt the whole process. Therefore, [18] suggests use

PFP to only select top K frequent patterns in case of big

data. As to the proposed ISbFIM, each node takes

equivalent and manageable work load and the failure on

one node will not halt the whole process. Other parallelized

version FP-growth like [31] require shared memory com-

puting environment thus not practical for map-reduce

framework. Besides, the shared memory could be ex-

hausted in case of big data.

Hill et al. [14] developed a frequent subgraph mining

algorithm over Map-Reduce which can handle the cases

when the graph database cannot be loaded into main

memory; Aridhi et al. [6] further provided a density based

partition algorithm to enhance the default partition of

general Map-Reduce framework. In this manner, the

computing workload can be evenly distributed to each

node which prevents certain nodes from running into

exhausting situation. The difference between Aridhi et al.

[6], Hill et al. [14] and our approach is the targeted

problem. [6] targets the frequent subgraph mining while

the proposed approach mainly targets the frequent item

sets extraction. [20] enabled querying subgraph over a

large database with Map-Reduce framework which fo-

cused on searching subgraphs instead of mining frequent

subgraphs.

4.2 Discriminant frequent pattern mining

Discriminant frequent pattern mining targets to detect the

frequent patterns that are discriminative given the labeling

on the documents. Previous methods such as [8] that mine

discriminant patterns typically employ a two-step batch

process: (1) extracts frequent patterns whose support or

frequency is above some reasonably large threshold, and

(2) performs feature selection. However, when the fre-

quency threshold is set too high, such approach cannot find

those highly discriminant patterns whose frequency is

lower than the given threshold. When the threshold is too

low, candidate enumeration cannot finish before virtual

memory is exhausted.

DDPMine [9] performs a branch-and-bound search for

mining discriminant patternswithout generating the complete

pattern set. Since DDPMine needs to enumerate the whole

data set to mine a single pattern, it’s not suitable for big data

due to the large volume of input data and output patterns.

Fig. 2 The parallel

implementation of ISbFIM

Fig. 3 Running time of ISbFIM in a parallel environment

880 Int. J. Mach. Learn. & Cyber. (2015) 6:875–882

123

The MbT approach (Model based search Tree), proposed

by [12], is closest to the proposed method in this paper. MbT

employs a ‘‘divide and conquer’’ process to combine fre-

quent pattern mining and discriminant pattern recognition in

a single framework. As a result, the complexity can be re-

duced significantly. However, MbT cannot not be easily

paralleled which prohibits its application on big data.

4.3 Frequent pattern summary

To reduce the number of acquired frequent patterns, ap-

proaches such as Yan et al. [27], Thoma et al. [25],Wang and

Parthasarathy [26] and Jin et al. [15] aim to find a succinct set

of patterns that can work as well as the whole set in classi-

fication or clustering tasks. In the case that a pattern is sub-

graph [28] and [4] use structure similarity or randomwalk to

find a set of patterns with high discriminant scores.

The above approaches and ISbFIM differ in targeted

outputs: these approaches aim to detect representative

frequent patterns, while ISbFIM targets to extract and scan

frequent patterns. Besides, those approaches are tailored

for specific tasks (clustering, classification, structure min-

ing etc), therefore it is hard to apply them to general tasks.

Minato et al. [21] proposed a fast item set enumeration

algorithm to find the minimum support to satisfy the

LAMP condition. They target to find a maximal support to

satisfy a given threshold condition. Their approach is

customized for LAMP problem thus it is not easy to extend

it to general frequent item set mining problem.

5 Conclusion

In this paper, we introduce ISbFIM to tackle two big data

challenges in frequent pattern mining: (1) Efficiency: the

large volume of input data prevents exhaustive search or

complicated data structures from practise use; (2) Scal-

ability: the massive intermediate and outputted patterns

cause out-of-memory problems for many state-of-art ap-

proaches. In order to deal with a very large pool of pattern

candidates mined from big data, we developed an iterative

sampling procedure and derived a termination bound. This

algorithm not only reduces the problem scale for each task

but also is natural for parallel implementation. We have

validated the theoretical termination bound and demon-

strated the effectiveness of the proposed approach on

multiple data sets.

References

1. Agrawal R, Shafer JC (1996) Parallel mining of association rules.

IEEE Trans Knowl Data Eng 8:962–969

2. Agrawal R, Srikant R (1994) Fast algorithms for mining asso-

ciation rules in large databases. In: Proceedings of the 20th In-

ternational Conference on Very Large Data Bases, VLDB ’94,

pp 487–499

3. Agrawal R, Srikant R (1995) Mining sequential patterns. In:

Proceedings of ICDE ’95, pp 3–14

4. Al Hasan M, Zaki MJ (2009) Output space sampling for graph

patterns. Proc VLDB Endow 2:730–741

5. Anastasiu DC, Iverson J, Smith S, Karypis G (2014) Big data

frequent pattern mining. In: Aggarwal CC, Han J (ed) Pattern

Frequent. Publishing, Mining, Springer International, pp 225–259

6. Aridhi S, d’Orazio L, Maddouri M, Nguifo EM (2015) Density-

based data partitioning strategy to approximate large-scale sub-

graph mining. Inf Syst 48:213–223

7. Blitzer J, Dredze M, Pereira F (2007) Biographies, bollywood,

boom-boxes and blenders: Domain adaptation for sentiment

classification. In: Proceedings of ACL ’07. Prague, Czech

Republic, Association for Computational Linguistics, pp 440–447

8. Cheng H, Yan X, Han J, wei Hsu C (2007) Discriminative fre-

quent pattern analysis for effective classification. In: International

Conference on Data Engineering, pp 716–725

9. Cheng H, Yan X, Han J, Yu PS (2008) Direct discriminative

pattern mining for effective classification. In: Proceedings of

ICDM ’08. IEEE Computer Society, Washington, DC, USA,

pp 169–178

10. Cheung DW, Han J, Ng VT, Fu AW, Fu Y (1996) A fast dis-

tributed algorithm for mining association rules. In: Proceedings

of the fourth international conference on on Parallel and dis-

tributed information systems. IEEE Computer Society, Wash-

ington, DC, USA, pp 31–43

11. Dean J, Ghemawat S (2008) Mapreduce: simplified data pro-

cessing on large clusters. Commun ACM 51:107–113

12. Fan W, Zhang K, Cheng H, Gao J, Yan X, Han J, Yu P, Ver-

scheure O (2008) Direct mining of discriminative and essential

frequent patterns via model-based search tree. In: Proceeding of

KDD ’08. ACM, New York, NY, USA, pp 230–238

13. Han J, Pei J, Yin Y (2000) Mining frequent patterns without

candidate generation. In: Proceedings of the 2000 ACM SIG-

MOD International Conference on Management of Data, ACM,

New York, NY, USA, SIGMOD ’00, pp 1–12, doi:10.1145/

342009.335372

14. Hill S, Srichandan B, Sunderraman R (2012) An iterative

mapreduce approach to frequent subgraph mining in biological

datasets. In: Proceedings of the ACM Conference on Bioinfor-

matics, Computational Biology and Biomedicine, ACM, New

York, NY, USA, BCB ’12, pp 661–666, doi:10.1145/2382936.

2383055

15. Jin R, Abu-Ata M, Xiang Y, Ruan N (2008) Effective and effi-

cient itemset pattern summarization: regression-based approach-

es. In: Proceeding of KDD ’08. ACM, New York, NY, USA,

pp 399–407

16. Jindal N, Liu B (2008) Opinion spam and analysis. In: Pro-

ceedings of WSDM ’08. ACM, New York, NY, USA,

pp 219–230

17. Kuramochi M, Karypis G (2001) Frequent subgraph discovery.

In: Proceedings of the 2001 IEEE International Conference on

Data Mining, IEEE Computer Society, Washington, DC, USA,

ICDM ’01, pp 313–320

18. Li H, Wang Y, Zhang D, Zhang M, Chang EY (2008) Pfp:

Parallel fp-growth for query recommendation. In: Proceedings of

the 2008 ACM Conference on Recommender Systems, ACM,

New York, NY, USA, RecSys ’08, pp 107–114, DOI 10.1145/

1454008.1454027

19. Lin MY, Lee PY, Hsueh SC (2012) Apriori-based frequent

itemset mining algorithms on mapreduce. In: Proceedings of the

6th International Conference on Ubiquitous Information

Int. J. Mach. Learn. & Cyber. (2015) 6:875–882 881

123

http://dx.doi.org/10.1145/342009.335372
http://dx.doi.org/10.1145/342009.335372
http://dx.doi.org/10.1145/2382936.2383055
http://dx.doi.org/10.1145/2382936.2383055

Management and Communication, ACM, New York, NY, USA,

ICUIMC ’12, pp 76:1–76:8

20. Luo Y, Guan J, Zhou S (2011) Towards efficient subgraph search

in cloud computing environments. In: Proceedings of the 16th

International Conference on Database Systems for Advanced

Applications, Springer-Verlag, Berlin, Heidelberg, DASFAA’11,

pp 2–13, http://dl.acm.org/citation.cfm?id=1996686.1996690

21. Minato S, Uno T, Tsuda K, Terada A, Sese J (2014) A fast

method of statistical assessment for combinatorial hypotheses

based on frequent itemset enumeration. Machine Learning and

Knowledge Discovery in Databases—European Conference,

ECML PKDD 2014, Nancy, France, September 15–19, 2014.

Proceedings, Part II, pp 422–436

22. Pang B, Lee L (2004) A sentimental education: sentiment ana-

lysis using subjectivity summarization based on minimum cuts.

In: Proceedings of ACL ’04, Association for Computational

Linguistics, Stroudsburg, PA, USA

23. Pang B, Lee L, Vaithyanathan S (2002) Thumbs up?: sentiment

classification using machine learning techniques. In: Proceedings

of the ACL-02 conference on Empirical methods in natural lan-

guage processing -, vol 10. Association for Computational Lin-

guistics, Stroudsburg, PA, USA, pp 79–86

24. Park JS, Chen MS, Yu PS (1995) Efficient parallel data mining

for association rules. In: Proceedings of CIKM ’95. ACM, New

York, NY, USA, pp 31–36

25. Thoma M, Cheng H, Gretton A, Han J, peter Kriegel H, Smola A,

Song L, Yu PS, Yan X, Borgwardt K (2009) Near-optimal su-

pervised feature selection among frequent subgraphs. In. In

SIAM Int’l Conf. on Data Mining

26. Wang C, Parthasarathy S (2006) Summarizing itemset patterns

using probabilistic models. In: Proceedings of KDD ’06. ACM,

New York, NY, USA, pp 730–735

27. Yan X, Cheng H, Han J, Xin D (2005) Summarizing itemset

patterns: a profile-based approach. In: Proceedings of KDD ’05.

ACM, New York, NY, USA, pp 314–323

28. Yan X, Cheng H, Han J, Yu PS (2008) Mining significant graph

patterns by leap search. In: Proceedings of SIGMOD ’08. ACM,

New York, NY, USA, pp 433–444

29. Yang G (2004) The complexity of mining maximal frequent

itemsets and maximal frequent patterns. In: Proceedings of the

tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, New York, NY, USA, KDD

’04, pp 344–353

30. Yang G (2006) Computational aspects of mining maximal fre-

quent patterns. Theor Comput Sci 362(1–3):63–85

31. Zaı̈ane OR, El-Hajj M, Lu P (2001) Fast parallel association rule

mining without candidacy generation. In: Proceedings of the

2001 IEEE International Conference on Data Mining, IEEE

Computer Society, Washington, DC, USA, ICDM ’01,

pp 665–668

32. Zaki M, Parthasarathy S, Ogihara M, Li W (1997) Parallel

Algorithms for Discovery of Association Rules. Data Mining

and Knowledge Discovery pp 343–373, doi:10.1023/A:1009773

317876

882 Int. J. Mach. Learn. & Cyber. (2015) 6:875–882

123

http://dl.acm.org/citation.cfm?id=1996686.1996690
http://dx.doi.org/10.1023/A:1009773317876
http://dx.doi.org/10.1023/A:1009773317876

	Iterative sampling based frequent itemset mining for big data
	Abstract
	Introduction
	Methodology
	Required iterations
	Evaluate method
	Unlabeled data sets
	Labeled data sets

	Discussion

	Experiment
	Data sets
	Experimental results
	Termination criterion
	Parallelization

	Related works
	Distributed frequent pattern mining
	Discriminant frequent pattern mining
	Frequent pattern summary

	Conclusion
	References

