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Abstract Taking uncertainties of threats and vehicles’

motions and observations into account, the challenge we

have to face is how to plan a safe path online in uncertain

and dynamic environments. We construct the static threat

(ST) model based on an intuitionistic fuzzy set (A-IFS) to

deal with the uncertainty of a environmental threat. The

problem of avoiding a dynamic threat (DT) is formulated

as a pursuit-evasion game. A reachability set (RS) esti-

mator of an uncertain DT is constructed by combining the

motion prediction with a RRT-based method. An online

path planning framework is proposed by integrating a sub

goal selector, a sub tasks allocator and a local path planner.

The selector and allocator are presented to accelerate the

path searching process. Dynamic domain rapidly-exploring

random tree (DDRRT) is combined with the linear

quadratic Gaussian motion planning (LQG-MP) method

when searching local paths under threats and uncertainties.

The path that has been searched is further improved by

using a safety adjustment method and the RRT* method in

the planning system. The results of Mont Carlo simulations

indicate that the proposed algorithm behaves well in

planning safe paths online in uncertain and hostile

environments.

Keywords Online UAV path planning � Threat

assessment � DDRRT � LQG-MP � A-IFS

Abbreviations

A-IFS An intuitionistic fuzzy set

ST Static threat

DT Dynamic threat

RS Reachability set

DDRRT Dynamic domain rapidly-exploring random

tree

LQG-MP Linear quadratic Gaussian motion planning

NFZ No-fly zone

SH Sensing horizon

PF Particle filter

TS Time stamp

IFWA Intuitionistic fuzzy weighted averaging

TH Time horizon

DD Dynamic domain

TUDD Threat and uncertainty based dynamic domain

CD Collision detection

1 Introduction

UAVs often plan paths online in the low altitude to avoid

threats by the masking of obstacles to threats in missions,

e.g., anti-terrorist, motivating this study. A planner is also

required to deal with uncertainties to further improve its

abilities of avoiding threats and obstacles. In summary,

online planning a path under uncertainties, complicated

threats, dense obstacles and multi-constraints, becomes a

practical challenge [1–8].

The computational time of the discretization methods

grows exponentially as the problem dimensions increase

[1–3, 9–11]. The randomized RRT plans possible paths to

the goal by growing a path tree, under the guidance of

random samples in the planning space [1–3]. It is not

nearly encumbered by the dimensions and complexity of a
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planning problem because its execution is independent of

the environment [1–3, 12]. It checks constraints expedi-

ently [2]. It can be promoted by problem-specific heuristics

[13, 14]. DDRRT is chosen to be the basis of our planning

algorithm because it is efficient in obstacle-complex en-

vironments [15, 16]. The RRT-based estimators have ad-

vantages in both accuracy and efficiency when predicting

the long-term possible DT paths under uncertain and lim-

ited information [17]. Thus, we propose a RRT-based RS

estimation method with the consideration of the DT

intention.

Uncertainties are inherent to the path planning problem.

The methods, e.g., ‘‘relocalization’’, ‘‘landmark’’ and par-

tially observable Markov decision processes, etc., useful

for robot navigation under uncertainties, are difficult to be

utilized online because of the heavy computational over-

heads [18]. Inspired by the simultaneous localization and

mapping method [19], the works of path planning and

uncertainties processing are executed simultaneously.

An environmental threat is constructed by a ST model

and a motion model. Two traditional methods are often

applied to construct the ST model. One regards a threat

area to be impassable, simplifying the threat excessively.

The other method utilizes a probabilistic model. Albeit it is

practicable, it is coarse because the complicated model

parameters cannot be considered thoroughly and accurately

[5]. Besides, the probabilistic model has no special

mechanism for expressing the uncertainty of a threat.

Therefore, the A-IFS based ST model is constructed.

Threats can be mainly classified into two groups, i.e., ST

and DT. The difference between them is that DT has a

motion model while ST does not have. Thus, ST is a

subcase of the more general DT.

1.1 Dealing with uncertainties

Huynh et al. [20] proposed the ‘‘information constrained’’

linear quadratic Gaussian (icLQG) motion planning

method to control a vehicle under imperfect information.

An initial plan, including waypoints and the sensing uti-

lities at the waypoints, is approximated first. Then feedback

control inputs are iteratively computed to locally optimize

the plan in the space of distributions over position, that is,

in information space.

Van den Berg et al. [21] proposed the LQG-MP method

to deal with the uncertainties of the motion and observation

of a vehicle. They approximate the non-linear models of

the motion and observation by a local linearization using

the first-order Taylor expansion. Then the apriori prob-

abilistic distributions of vehicle states are estimated by a

linear quadratic regulator and the Kalman filter under

Gaussian noises. During the estimation, the regulator pro-

vides online feedback control inputs for the Kalman filter

which predicts the distributions of vehicle states. When

generating paths, the linear quadratic Gaussian controller is

applied as an optimizer. Finally, a set of candidate paths

are created by RRT, and the best path is selected by the

estimated distributions of vehicle states on waypoints.

LQG-MP is a useful approach for planning a path under

uncertainties. But the candidate paths are difficult to be

calculated online because of the heavy computational

overhead.

Based on the studies of [21–23], Jaillet et al. [24] pre-

sented the environment-guided RRT for dynamic and

uncertain robot systems. The costs on waypoints are cal-

culated by a LQG-MP based cost model.

Melchior et al. [25] raised the particle-RRT that extends

a tree node multiple times according to the likely envir-

onmental conditions to decrease the environmental uncer-

tainty. The newly generated nodes are regarded as

particles. The likelihoods of particles are calculated by the

distribution of the environmental conditions. Then particles

are grouped to create waypoints and the highly likely paths

are acquired. But the method is computational-complex.

Pepy et al. [26] regarded an uncertain configuration as a

spheroid centering at the estimated configuration, shaped by

the state distribution at the configuration. Burns et al. [27]

applied the Bernoullian utility to calculate the path cost, to

minimize the environmental uncertainty on a roadmap.

Fraichard et al. [28] took both uncertainties and non-holo-

nomic constraints into account when planning a path.

Guibas et al. [29] evaluated the collision probability bounds

on vertexes of a roadmap by the environmental uncertainty.

1.2 Threat assessment

Hanson et al. [30] created ST models by the fuzzy logic

theory and assessed threats by the belief network. But the

method is too complex to be utilized online. Kabamba et al.

[31] constructed the probabilistic models of radar and

missile.

Aoude and his colleague discussed the RS of DT is hard

to be predicted by the traditional probabilistic methods

when the DT motion is uncertain, flexible and intelligent

without a long-term tendency [17]. Thus, they proposed the

more suitable RRT-based estimators in [17, 32–36].

Reference [33] presented the RRT-Reach method to

estimate the RS of an uncertain DT. RRT-Reach operates

in two modes, i.e., exploration and pursuit. It operates as

RRT in the exploration mode and as the greedy RRT in the

pursuit mode. The Gaussian process is applied to predict

the DT motion patterns to guide the sampling process in the

pursuit mode. The DT avoidance problem is modeled as a

pursuit-evasion game in the zero-sum differential game

theory in [34]. The works’ background is the intelligent

transportation.
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According to the traditional DT avoidance method based

on the No-Fly Zone (NFZ) approach, if the occupied

situation of a planning space by DT is identified, UAV will

detour from the occupied spaces, as references [4, 37, 38]

discuss. However, sometimes the threat areas is difficult to

be avoided totally.

Karaman et al. [39, 40] proposed the RRT* method to

find an asymptotic optimal path. The RRT* method firstly

finds a path randomly. Then it replans and optimizes the

path gradually by excluding non-optimal solutions. We

regard the threats avoidance problem as an optimization

problem. Thus, RRT* is directly reimplemented to plan a

path under threats. However, the optimization process of

RRT* is so slow that it may not be finished before the

constraint time.

1.3 Assumptions and paper organization

We propose three background assumptions. a. UAV cannot

avoid threats by simply increasing its speed or height. b.

DT is a ground vehicle, which can adjust its path flexibly

and intelligently with an intention of intercepting UAV. c.

DT has the perfect knowledge of the UAV path planning.

The study is organized as follows. §2 describes the

research problems mathematically. §3 proposes the threat

assessment method. §4 offers an online path planning

algorithm with the implementation and analysis. In §5, our

simulation results are provided and discussed. In §6, con-

clusions are drawn.

2 Problem description

2.1 Online path planning under limited and uncertain

information

We consider the following uncertainties. The threats on a

possible UAV path are uncertain because they are also

decided by the real-time UAV states. The threat informa-

tion outside UAV Sensing Horizons (SHs) is unknown. The

motions and observations of UAV and DT are uncertain.

This is the first study which deals with the threats avoid-

ance problem online under uncertainties.

The available information (It) includes: the distributions

of UAV states calculated by the LQG-MP method; all

observations (o) and states (s) at the time up to and in-

cluding the present time (t); the past control inputs (u � U)

before t where U is the set of allowable control inputs. The

planning result is a feedback control sequence that can

minimize the expected cost on a path from the start time 0

to an unspecific end time (T). The planning objective

is similar to that in [20], expressed as: min
U

CuðItÞ ¼

min
U

E
R T

0
lðt; st; uðt; ItÞdtjIt

h i
where lðt; s; uÞ denotes the

instantaneous cost of the control input ut at t.

The continuous planning can hardly be finished online.

Hence, it is approximated by a discrete-time model:

min
U

CuðIkÞ ¼ min
U

E
PN

k¼0

lkðsk; ukÞjIk
� �

. N is the number of

time steps, N ¼ T=s. s is the duration of one control time

step.

2.2 UAV motion model and dynamic constraints

The equations of motion and observation of UAV are de-

fined as follows:

fðs; u;mÞ ¼

xþ sv cosu cos h

yþ sv cosu sin h

zþ sv sinu

hþ sðxh þ ~xhÞ
uþ sðxu þ ~xuÞ
vþ sðaþ ~aÞ
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hðs; nÞ ¼

xk þ ~x

yk þ ~y

zk þ ~z

arctanð�y=�xÞ þ ~h

arctanð�z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The UAV state vector s is defined as x; y; z; h;u; v½ �T where

[x, y, z] denotes a location of UAV, h and u denote the yaw

angle and pitch angle respectively, v � ½vmin; vmax� denotes

a velocity. The control input u ¼ ðav;xh;xuÞ incorporates

an acceleration (av), a yaw steering (xh) and a pitching

motion (xu). u is corrupted by the process noise

m ¼ ~av; ~xh; ~xu
� �

�N 0;

r2
av

0 0

0 r2
xh

0

0 0 r2
xu
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B
@
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C
A. The turn-

ing radius (r) is bounded by the minimum turning radius,

r� rmin. The straight path length (sl) before turning is

bounded by slmin, sl� slmin.

hðs; nÞ is the observation equation. �x ¼ xk � xk�1,

�y ¼ yk � yk�1, �z ¼ zk � zk�1. The observation noise n ¼

~x; ~y; ~z; ~h; ~u
� �

�N 0;

r2
x 0 0 0 0

0 r2
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Dynamic constraints often arise from the set of control

inputs [1–3]. They restrict the allowable velocities at each

waypoint on a path. Since the constraints are complicated,

the state transitions via control inputs are often difficult to
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be parameterized. However, the RRT-based methods can

directly handle the constraints by the piecewise constraint-

checking approach. A path tree extension can be executed

only if it satisfies all constraints. Thus, all the sub paths or

branches on the path tree are surely feasible.

2.3 Dynamic threat avoidance

The DT avoidance problem is formulated as a zero-sum

differential game with multi-constraints, free final time and

perfect UAV path planning information. The formulation

derives from [41, 42]. Let tf be the estimated earliest time

DT threatens UAV. tf ¼ þ1 indicates that UAV can reach

goal without DT threat. tf ¼ 0 means DT has already

threatened UAV. UAV aims to maximize tf while DT aims

to minimize tf . We assume that only one DT and one UAV

participate in the game (G) to clearly describe the DT

avoidance problem. G terminates when UAV reaches goal

with a practical safe and feasible path.

Let the subscript 1 and 2 denote DT and UAV respec-

tively. The payoff function of G is expressed as Jðst; ut; tÞ ¼
tf where st � S denotes the state of DT or UAV at the time t,

ut � U is the control input of DT or UAV with constraints.

We suppose that G admits a saddle point ðc�1; c�2Þ � U1 	 U2

in the set of feedback control inputs. If both players execute

that control strategy, the optimal payoff function value is

Jðst; tÞ� ¼ max
r�

2
�U2

min
r�

1
�U1

fJðst; ut; tÞg.

We cannot consider the full set of control inputs of

DT and UAV online due to the high computational

overhead. Thus, the feasible sets of control inputs ~U1 � U1

and ~U2 � U2 are approximated. The objective payoff

function value is approximate by a practical one: ~Jðst; tÞ� ¼
max
r�

2
� ~U2

min
r�

1
� ~U1

fJðst; ut; tÞg.

3 Threat assessment

3.1 Static threat model construction

We construct the ST model based on A-IFS to deal with the

uncertainty of a threat. A-IFS is characterized by a mem-

bership function, a non-membership function and a hesi-

tancy function [43]. It deals with the vagueness flexibly

according to the human empirical knowledge. It also helps

to extract more information from data. It provides plenty of

rules and aggregation operators to quantize and aggregate

information without any loss [43].

Let X be a fixed set. The A-IFS A in X is defined as: A is a

nonempty set, A ¼ fha; lðaÞ; vðaÞija � Xg, lðaÞ and vðaÞ
are the functions of membership and non-membership of A,

lðaÞ : X ! ½0; 1�, a � X ! lðaÞ � ½0; 1�, vðaÞ : X ! ½0; 1�,

a � X ! vðaÞ � ½0; 1�, lðaÞ þ vAðaÞ
 1. pðaÞ ¼ 1 � lðaÞ
�vðaÞ is the hesitancy degree of a to A or the intuitionistic

index of a in A.

The membership function is defined as the active threat

function of a threat. The nonmembership function is de-

fined as the threat-free function of UAV according to the

real-time states of UAV. Moreover, a certainty function is

proposed to deal with the uncertainty of a threat.

We take radar for an example to describe the processes

of the ST model construction and threats avoidance. The

height of the radar detection boundary hB ¼ KR � L2. KR is

the radar characteristic coefficient. L is the horizontal dis-

tance from the radar center. The area below hB is termed as

the radar blind spot [44] which can be utilized by UAV.

The static model of DT is the same as the radar model

except its hB is set to be zero. The radar membership

function is defined according to a basic damage

probabilistic model in [44], as:

lD ¼
0 h\hB

e
� R4

R4
max h� hB

(

ð1Þ

where R denotes the radial distance from the radar center.

Rmax denotes the maximum threat radius. We only consider

the threat within the Rmax.

UAV can reduce risks by applying strategies, i.e.,

turning to fly away from threats and increasing its

speed. Thus, two parameters are considered in the non-

membership function: vT denotes the speed of UAV,

aTð0
 aT 
 pÞ denotes the absolute value of the angle

between the direction of the velocity and the line from

UAV to the center of a threat. Accordingly, the non-

membership function is defined as:

VD ¼
0 vmin 
 vT\vp; 0
 aT 
 p

sin
p vT � vminð Þ

2 vmax � vminð Þ

	 


sin2 aT
2

� �
vp 
 vT\vmax; 0
 aT 
 p

8
<

:

where vp is the threshold of the UAV penetration speed.

The certainty function of the radar model is defined as:

CF ¼ 1 � 1

xNNe þ xddq

	 
xC

ð2Þ

where Ne denotes the number of threats in which UAV

exposes. dq denotes the standard deviation of the UAV

state distribution at a candidate waypoint q estimated by

LQG-MP. The weights xN þ xd ¼ 1. xC aims to bound

the influence of CF and make CF
 1. CF is defined to

reduce Ne and dq to decrease the threat and increase the

control certainty on a path.

We weight lDðaÞ;VDðaÞ½ �as: lD

0 ðaÞ;VD
0 ðaÞ

� �T¼
CFðaÞ � lDðaÞ;VDðaÞ½ �T. We make conservative assess-

ment of a threat to promote the safety of a path, i.e., l
0
DðaÞ
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has a priority over V
0
DðaÞ. If l

0
DðaÞ ¼ 1 or 0, set V

0
DðaÞ ¼ 0.

If l
0

DðaÞ þ V
0

DðaÞ[ 1, a normalization is executed to make

l
0
DðaÞ þ V

0
DðaÞ ¼ 1. The score function of A-IFS is em-

ployed to calculate the threat level of a, i.e.,

TlðaÞ ¼ lDðaÞ � VDðaÞ, if VDðaÞ[ lDðaÞ, set TlðaÞ ¼ 0.

If the threat levels of two threats are equal, the threat with

the bigger CF value is more dangerous.

3.2 Reachability set estimation

The DT assessment is the same as the ST assessment given

the RS. The RS estimation incorporates the processes of

motion prediction and RS searching. The DT motion pre-

dictions are applied to guide the path searching process.

3.2.1 Dynamic threat motion prediction

The particle filter (PF) [45] is utilized for the DT motion

prediction. The equations of the states transition and the

observation of DT are defined as:

sk ¼

1 s 0 0

0 1 0 0

0 0 1 s

0 0 0 1

2

6
6
6
4

3

7
7
7
5
sk�1 þ

s2=2 0

s 0

0 s2=2

0 s

2

6
6
6
4

3

7
7
7
5
xk;

ok ¼
1 0 0 0

0 0 1 0

� �

sk þ
r2
x 0

0 r2
y

" #

tk

A DT state is denoted by s ¼ ½x; _x; y; _y�T where ½x; y� de-

notes a position, _x and _y denote the velocities in the x and y

directions, respectively. xk and tk are white Gaussian

noises, xk ¼
xxk

xyk

� �

�N 0;
r2
xx

0

0 r2
xy

" # !

, tk �Nð0; 1Þ.

PF estimates the distributions of the DT states by ap-

proximating the discrete positions and weights of particles.

The PF iteration is as follows.

1. A set of initial particles fpi0g
Ns

i¼1 are randomly and

uniformly sampled around the initial DT position. The

weights of particles are set to be 1=Ns.

2. The particles fpikg
Ns

i¼1 in the kth time step are predicted

from fpik�1g
Ns

i¼1 by the states transition equation. Their

weights fxi
kg

Ns

i¼1 are calculated subject to

fxi
kg

Ns

i¼1 ¼ fxi
k�1g

Ns

i¼1Lðo0kjskÞ. Lðo0kjskÞ is the likeli-

hood function reflecting the similarity between sk and

the actual observation o0k. We express the observation

function by ok ¼ Hsk þ Qvk. Then we calculate the

weights of the particles in the kth iteration by pðwi
kÞ ¼

1

2p
ffiffiffiffiffiffiffiffiffiffi
detðQÞ

p e�ðo0
k
�HskÞT

Q�1ðo0
k
�HskÞ where detðQÞ is the de-

terminant of Q.

3. The weights are normalized. New particles are gener-

ated by ‘‘resampling’’ from the obtained particles to

avoid the particle degeneration. The DT state is

predicted by the mean of the resampled particles. Go

back to step 2.

In the resampling process, the particles with higher weights

or higher probabilities to be corrected have higher prob-

abilities to be kept. The iteration is as follows. Firstly, a

uniformly and randomly distributing number ni 2 ½0; 1� is

created. Then the first particle with the cumulative weights

axj
� ni, axj

¼ x1 þ x2 þ . . .þ xj is returned. The loop is

executed Ns times to make Ns new particles.

3.2.2 Reachability set searching

The RS of an uncertain DT is searched by the RRT-based

method under imperfect motion data. A time stamp (TS) is

explicitly added on each node of the DT or UAV path trees

as a kind of time heuristics. A TS is the predicted earliest

time of a vehicle arriving at a tree node based on the

Dubins distance. TS helps our method to identify low time

paths and approximate a more realistic RS as well as

combining a path with time.

Figure 1 shows the DT path tree (TTree) updating by the

guidance of a new observation. The crosses denote

the observed positions of DT. The blue points denote the

particles in PF. The red dotted line denotes a predict DT

path. The root of TTree is relocated to the new observation.

An extension is made from the new TTree root along the

predicted path. A new TTree node TNodenew is created as

the unique child of the root. The outdated nodes of which

the TSs are less than or equal to the TS of TNodenew are

deleted, so do the relevant edges, as the black nodes and

dash-dot lines show. Then we reconnect the remaining

parts of TTree through TNodenew and update the TSs of all

the TTree nodes.

A reachable node is defined as a UAV path tree

(PathTree) node that DT can reach by a possible path. Fig.

2 shows the interpretation of DT reached qi. The red-node

and blue-node trees denote TTree and PathTree, respec-

tively. We check whether DT is reachable to qi through

TNodej as follows.

1. The horizontal projection point (HPðqiÞ) of qi is

computed. The horizontal boundary (TBðqiÞ) of the

DT threat around HPðqiÞ is calculated depending on

Fig. 1 DT path tree updating by the guidance of a new observation
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the maximum threat radius (RDmax) of the static DT

model.

2. We search for a point qB on TBðqiÞ, satisfying: qB is a

point on TBðqiÞ; the line between qB and qi is obstacle-

free; the line between TNodej and qB is obstacle-free;

the estimated time DT reached qB is less than the TS

of qi.

DT is reachable to qi through TNodej if such qB is found. If

DT is reachable to qi, it may also threaten the neighbors of

qi. Thus, the estimator continues searching for reachable

nodes among the neighbors on the UAV path tree. We call

qi as the directly DT reachable node, the reachable

neighbors as the indirectly reachable nodes. The estimated

shortest distances between DT and its reachable nodes are

computed to assess the DT threats on the nodes.

We extend four RRT-based RS searching operators to

rapidly approximate the RS. Each possible DT path on its

path tree is regarded as a possible DT motion pattern or

strategy. Fig. 3 shows the four target-bias operators. ‘‘goal-

bias-connect’’ is the sub operator of the other three op-

erators. ‘‘multi-reach’’ is the sub operator of ‘‘multi-con-

nect’’. The dotted lines denote the pursuit directions of

TTree nodes to PathTree nodes.

‘‘Connect’’ and ‘‘Greedy-Connect’’ are two basic RRT

extension operators. ConnectðTree; qn; qsÞ extends qn one

step further to qs. The extension function is

ðu; qnew; enewÞ ¼ Extendðqn; le; qs;UÞ where qnew and enew
are the newly created tree node and branch, respectively.

u 2 U is the control input on enew, le is the length of the

extension. Greedy � ConnectðTree; qn; qsÞ extends qn steps

towards qs by ‘‘Connect’’ greedily, until the extension

reaches qs or the extension is blocked by obstacles.

1. goal � bias � connectðqi; TNodej; TTreeÞ is executed

as follows. If DT is reachable to a PathTree node (qi)

through qi’s nearest TTree node (TNodej), then

Greedy � ConnectðTTree;TNodej; qBÞ is executed. qB
is the same as that in Fig. 2. The indirectly reachable

nodes is searched among the neighbors of qi on

Fig. 2 Interpretation of DT being reachable to qi

(a) (b) (c)

(f)(e)(d)

Fig. 3 RS searching operators with target-bias based on RRT
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PathTree. Otherwise, ConnectðTTree; TNodej; qBÞ is

used to explore the planning space.

2. In reachðqi; TTreeÞ, the k-near TTree nodes

(TNodej; 1
 j
 k) of qi are found and sorted by their

TSs. goal � bias � connectðqi; TNodej; TTreeÞ are

executed in turn until TTree reaches qi by an extension

or all TNodej have been tried. Fig. 3 is an illustration

when k ¼ 3.

3. In multi � reachðTNodej;PathTree; TTreeÞ, the k-near

PathTree nodes (qi; 1
 i
 k) of a TTree node

(TNodej) are found and sorted by their TSs. Then,

goal � bias � connectðqi; TNodej; TTreeÞ are executed

in turn until a qi is reached by DT or no qi is reachable.

The operator aims to increase the probability of

capturing reachable nodes through a TTree node.

4. multi � connectðqs; TTree;PathTreeÞ is designed to

enlarge RS and keep the diversity of RS by the

guidance of random samples. It executes in two steps,

i.e., exploration and pursuit. In the exploration step, a

random sample qs is generated and the k-near TTree

nodes (TNodej 1
 j
 k) of qs are found and sorted

by the TSs, then ConnectðTTree; TNodej; qsÞ are

executed, as Fig. 3d shows. In the pursuit step,

multi � reachðTNodej;PathTree; TTreeÞ are executed

in turn, until DT is reachable to a qi or all TNodej have

been tried, as Fig. 3e shows. Fig. 3f shows a possible

result of ‘‘multi-connect’’ and qnew is identical with qB.

RDmax and HPðqiÞ are the same as those in Fig. 2.

‘‘multi-connect’’ utilizes ‘‘Connect’’ in the exploration

step. ‘‘Connect’’ has the guarantee of probabilistic com-

pleteness [1, 2]. Thus, ‘‘multi-connect’’ operator is also

probabilistic complete. However, computing the full RS

online is computationally complex. Thus, ‘‘multi-connect’’

and ‘‘reach’’ are called randomly subject to a certain

probability threshold. ‘‘goal-bias-connect’’ and ‘‘multi-

reach’’ do not run independently but being executed as sub

operators.

3.3 Threats aggregation

The DT assessment is similar to the ST assessment, given

the RS. The threats aggregation is required to both calcu-

late an average threat level and emphasize the roles of high

risk threats [43]. Thus, the Intuitionistic Fuzzy Weighted

Averaging (IFWA) operator [43] is utilized due to its sat-

isfaction of the requirement. IFWAx a1; a2; . . .; anð Þ ¼

x1a1 � x2a2 � . . .� xnan ¼ 1 �
Qn

i¼1

1 � lai
� �xi ;

Qn

i¼1

vxi
ai

	 


where � is an A-IFS operator, xi is the weight of a threat

ai,
Pn

i¼1

xi ¼ 1, lai is the membership degree of ai and vai is

the non-membership degree. The reliability of IFWA is

also demonstrated because the aggregation of the mem-

bership degrees in IFWA is similar to the aggregation of

the damaged probabilities of UAV, as formula 3 shows.

Pk ¼ 1 �
Yk

j¼1

1 � Pj

� �
ð3Þ

where Pk is the damaged probability of UAV after it has

exposed in threats for k times, Pj is the damaged prob-

ability of UAV at the jth exposure.

If UAV has exposed in k � 1 threats, the membership

degree of the kth threat will increase to l
0
k ¼ 1 �

1 � lkð Þ
Qk�1

i¼1

1 � lið Þ where li is the membership degree of

the ith threat.

The risk in the threats intersection area is higher than

that in the equivalent area of any single threat. We also

aggregate the threats in the intersection area by the IFWA

operator. The weight of a threat (ri) in the intersection area

is set to be 1=mr where mr is the number of threats in the

area.

3.3.1 Threats aggregation on a tree node or an edge

Figure 4 shows threats aggregation on a tree node or an

edge. The violet dotted circles denote the boundaries of the

distributions of UAV states at path tree nodes. We

straightly use the result of LQG-MP [21] to calculate the

standard variance of the apriori probabilistic distribution of

the UAV states at each tree node qi off-line. A ‘‘Threat

Boundary’’ is decided by the maximum threat radius. The

membership degree in the red area is biggest and the degree

in the dark blue area is smallest. The transition of colors

from red to dark blue denotes the decreasing of the degree.

This color expression is used in the following figures.

A set of particles pj; 1
 j
m (m = 60) are sampled

around a tree node qi, as the violet nodes in Fig. 4.

The positions distribution of the particles PosðpjÞ
�NðPosðqiÞ; d2

qi
Þ where d2

qi
denotes the variance of the

UAV state distribution at qi. Each particle pj is regarded as

a likely state of UAV. The threat level at the node qi is

defined as the mean of the threat levels of pj,

TlðqiÞ ¼
Pm

j¼1

xpjTlðpjÞ. The weight xpj is set to be 1=m.

The threats on an edge between two adjacent tree nodes

are aggregated by 1
le

R
n aðf; sðfÞÞdn where le is the length of

the edge, n is the function of the edge, f denotes a point on

n, dn is the unit arc length, aðf; sðfÞÞ is the threat at f, sðfÞ
is the UAV state. The integral is not a Riemann integral

because it utilizes ‘‘�’’ instead of ‘‘?’’. To relieve the
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computational overhead, the integral is replaced by a dis-

cretization method for the online problem. Fig. 4 shows the

threats aggregation on edgei�1;i between qi�1 and qi.

edgei�1;i is discretized into nq secondary nodes

(sqj; 1
 j
 nq). The threats on qi and sqj are aggregated by

IFWA where the weights are set to be 1/ðnq þ 1Þ, nq ¼ 10.

4 Online path planning

In an uncertain and dynamic environment, no global path

can be immediately generated based on the apriori infor-

mation [46–48]. Thus, the global planning problem is

subdivided into a series of simpler but practical sub tasks

according to the real-time feedback information and plan-

ning situations.

4.1 Model of the online path planning algorithm

Our planning model mainly incorporates a Threat Assessor

(TA) and a Path Planner (PP), as Fig. 5 shows. The dis-

tributions of UAV states are estimated by LQG-MP

beforehand, to help TA and PP to deal with the uncer-

tainties of the motion and observation of UAV. TA aims to

provide quantized results of threats assessment for PP to

handle threats. After a local path is searched, a safety

adjustment is executed to further reduce the threat on the

path. If a global path is found, the path will be optimized in

the remaining planning time. The environmental informa-

tion is updated and provided for TA and PP.

4.2 Sub goal selection

Our sub goal selection is inspired by the work in [48] which

selects sub goals by A*. But the predefined sub goals

become invalid in an uncertain and dynamic environment.

Thus, we select sub goals online according to both the

apriori information and the real-time planning situations.

We assume: the distribution of obstacles is known; the threat

information inside SHs is noise-free. We select sub goals on

the boundaries of SHs and plan local paths within SHs.

The heuristic sub goal selection process is shown by

formula 4. a. The boundary of the present SH is discretized

into 60 points to construct a point set (SG). b. The obstacle-

occupied, high risk and flight-constraints-violated points are

removed from SG. If the threat level on a point exceeds a

specified threshold (0.5 in this study), the point is regarded

as a high risk point. c. The costs CostSG of the remaining

points are calculated, and the point with the minimum cost

is chosen to be the present sub goal (SubGoal).

SubGoal ¼ min
SG

CostSG ð4Þ

s:t: SG � owinðLuÞð Þ \ SG� SGObs � SGHR � SGCVð Þ
Lu denotes a UAV location. owinðLuÞ denotes the

boundary of the present SH centering at Lu. SGobs denotes

the obstacle-occupied points. SGHR denotes the high risk

points. SGCV denotes the flight-constraints-violated points.

If the global goal (Goal) is inside the present SH, then set

SubGoal ¼ Goal.

CostSG is defined according to the key idea of the arti-

ficial potential field method. We regard obstacles and

threats as repulsion forces against path planning and

SubGoals as attraction forces for path planning. CostSG is

used to accelerate the path searching process and reduce

the threat on a path, as:

CostSG ¼ Cc1
LETSG þ Cc2

LSGTG þ Cc3

XNR

i¼1

xiRi þ Cc4
RD

ð5Þ

where Cck is the weight and
P4

k¼1

Cck ¼ 1. We denote the line

from the end of the last local path Endj to SG as LineETSG
and the line from the SG to Goal as LineSGTG. LETSG and

LSGTG partially reflect the obstacle complexities on

LineETSG and LineSGTG respectively. NR is the number of

STs intersecting with LineETSG. Ri is the maximum threat

radius of the ith ST, xi ¼ 1=NR. RD is the estimated motion

radius of DT in the shortest time UAV reached a SG. If the

DT threat area does not intersect with LineETSG, then set

RD ¼ 0, otherwise, RD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vDðtE þ ðLLETSG=vuavÞÞ

p
where

vD and vuav are the present velocities of DT and UAV,

respectively, tE is the earliest time UAV reached Endj,

LLETSG is the length of LineETSG.

LETSG ¼ Lc1
LLETSG þ Lc2

XNos1

i¼1

Hosi þ Lc3

XNos1

i¼1

Wosi
ð6Þ

Fig. 4 Radar threat assessment and safety adjustment
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where Nos1
is the number of the obstacles on LineETSG. Hosi

is the height of an obstacle on LineETSG. Wosi is the width of

the projection of an obstacle in the vertical direction

of LineETSG. Lck is the weight,
P3

k¼1

Lck ¼ 1. LSGTG ¼

Lc1
LLSGTG þ Lc2

PNos2

i¼1

GHosi þ Lc3

PNos2

i¼1

GWosi where Nos2
is the

number of the obstacles on LineSGTG. LLSGTG is the length

of LineSGTG. GHosi is the height of an obstacle on LineSGTG.

GWosi is the width of the projection of an obstacle in the

vertical direction of LineSGTG. The minimum cuboid

bounding boxes of obstacles are used to simplify the cal-

culation of CostSG.

Figure 6 shows the SubGoals selection process. A green

cross denotes a UAV location when a local planning starts.

The circles denote SH boundaries. The blue and red crosses

denote the start position and Goal of the global planning,

respectively. A star denotes a SubGoal. Because Goal is

inside the seventh SH, we set SubGoal7 ¼ Goal.

4.3 Sub tasks allocation

We improve the online planning frame in [12] for the sub

tasks allocation. Time Horizon (TH) is defined as the

maximum allocated time for a local planning. TH should

be long enough to ensure that most local planning can find

a path [12]. The definition of TH should also take the UAV

motion into account to ensure that a path is planned before

its execution.

A local planning task incorporates the sub tasks of path

searching and safety adjustment. If no local path towards

the present SubGoal is found in TH, the sub tasks allocator

will reserve the valid intermediate result and start the next

iteration based on the intermediate result. SubGoal4 and the

dashed-line circle in Fig. 6 show that the fourth local

planning does not find a local path towards SubGoal4. In

this case, the valid sub path from SubGoal3 to End4 is kept

and the fifth iteration is started based on the valid sub path.

Our algorithm classifies path tree nodes by their TSs and

neglects the nodes outside the present TH to decrease the

computational overhead.

If the planning does not time out when Goal is reached,

RRT* will optimize the path in the remaining time. The

planning process combines the strategies of optimizing and

feeding back. Thus, it has the advantages of both strategies.

4.4 Local path planning

4.4.1 Local path searching

UAV can effectively avoid threats by flying in the low

altitude to utilize the radar blind spots and the masking of

obstacles. DDRRT is efficient in obstacle-intense envi-

ronments in the low altitude [15, 16]. If the extension of a

node is blocked by obstacles, a dynamic domain (DD) is

Fig. 5 Model of the online path

planning algorithm

Fig. 6 Illustration of sub goals selection and sub tasks allocation
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added to the node to reduce the scope where the node can

be extended. This means a sample outside the DD of its

nearest tree node is directly deleted. In this way, the

sampling space reduction guides DDRRT in refining a path

to quickly avoid obstacles. To explicitly deal with threats

and uncertainties, we define a novel threat and uncertainty

based dynamic domain (TUDD) as follows.

TUDD qið Þ ¼ min kcpc qið ÞDD qið Þ; DD qið Þ
kTTl qið Þ


 �

ð7Þ

where pcðqiÞ is the probability that UAV is obstacle-free at

qi, weighted by kc. pc is used to deal with the uncertainties

of a vehicle’s motion and observation. TlðqiÞ is the threat

level on qi and kT is the influence coefficient of TlðqiÞ.
Instead of computing pc exactly, an approximation of pc

is applied to promote the computational efficiency [21, 22].

The approximation is reliable since a pc is just an indicative

probability that a collision is avoided. Computational ef-

ficiency is more crucial than the accuracy of pc during the

path searching process. A ct denotes the number of the

standard deviation that UAV can deviate from the candi-

date path before colliding with an obstacle at a qi. A ct is

computed by the smallest distance between UAV and ob-

stacles, and the distribution of UAV positions at a qi. The

distribution is obtained by LQG-MP off-line. For a n di-

mensional multivariate Gaussian distribution of UAV po-

sitions, the pc of UAV at a qi is approximated by

Cðn=2; c2
t =2Þ where C is the regularized Gamma distribu-

tion function. pc provides a lower bound of the probability

of avoiding a collision at each tree node [21, 22]. The

quality (Q) of a path (P) is defined by multiplying the pc
on all the waypionts:

Q Pð Þ ¼
Yl

i¼1

pc qið Þ ð8Þ

A ‘‘GoalZoom’’ method is applied in the sampling process

to promote the path searching ability of DDRRT, especially

when large obstacle-free spaces exist. The ‘‘GoalZoom’’

method picks, with a probability (P), samples in the sphere

centered at the SubGoal with the radius of

min8iDðqi; SubGoalÞ where ‘‘D’’ denotes the Euclidean

distance’’, qi denotes a path tree node [13].

Once a sample (qs) is created, its k-near tree nodes

(qi; 1
 i
 k) are selected, and the node (qn) with the

minimum cost distance to qs is chosen. If qs falls into the

TUDD of qn, ConnectðTree; qn; qsÞ will be executed. The

method helps the tree to select locally optimized exten-

sions. The cost distance between a qi and qs is defined as:

DC qi; qsð Þ ¼ Dc1
D qi; qsð Þ þ Dc2

Pyþ Dc3
Tls ð9Þ

where Dci is the weight and
P3

i¼1

Dci ¼ 1. D denotes the

Euclidean distance. A node’s direction is as crucial as its

location. We define it as the direction of its in-edge which

ends at the node on the path tree. 0
Py
 p is the sum of

the absolute values of angles of elevation and yaw between

the directions of qi and the line from qi to qs. We define

that the angle of elevation will increase the path cost

whereas the angle of depression will not. That guides the

planner in searching paths in the low altitude. Tls is the

threat level on the line between qi and qs, calculated as the

threats aggregation on a tree edge.

4.4.2 Safety adjustment

If a path reaches the present SubGoal, the safety adjust-

ment is executed to reduce the threat on the path. As Fig. 4

shows, the red nodes and edges are the adjusted ones. The

waypoints qi on the path are adjusted in turn. As discussed

in Sect. 3.3.1, the particles pj around a tree node qi have

been obtained.

1. The weights xpj of particles pj are reassigned to be

min 1
kT �TlðpjÞ ; 1
n o

where kT and TlðpjÞ are the same as

those in formula 7.

2. After normalization, the final xpj are obtained. A

particle stands for a likely UAV state under a control

input. The weights reassignment adds a kind of bias to

the possible control inputs to reduce the threat on a path.

3. The new state (s) of qi is estimated by

sðq0
iÞ ¼

PNs

j¼1

xpj � sðpjÞ. The new edge is also deter-

mined. If the collision probability of q
0
i or the new edge

exceeds a certain threshold (0.5 in this study) or a

constraint is violated, the adjustment on qi fails and the

method will adjust the next waypoint.

4.4.3 Path optimizing

RRT* optimizes its solution towards the asymptotically

optimal path over time [37, 39, 40]. After a path towards

Goal is searched, RRT* is used to optimize the remaining

part of the path which will not be executed in the remaining

planning time tr. The remaining path starts at a waypoint

(Rootr) which is the nearest to UAV on the path while

UAV cannot reach in tr. We denote the sub tree rooting at

Rootr as the remaining path tree which is extended by our

modified DDRRT and optimized by RRT* in tr.

In RRT*, the upper cost bound (UBðqÞ) of a tree node (q)

is defined as the actual cost of the path from q to Goal
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computed by formula 9. If no such path exists, UBðqÞ is set

to be 1. The lower bound (LBðqÞ) is defined as the pre-

dicted lowest cost distance from q to Goal, i.e.,

DCðq;GoalÞ. Once we find a new path from q to Goal and q

is the farther node of Goal on the path, UBðqÞ is set to be

LBðqÞ and the following iterations are executed along the

remaining path. For each waypoint (qi) and its father

waypoint (qi�1) on the path, if UBðqi�1Þ[UBðqiÞþ
DCðqi�1; qiÞ, then set UBðqi�1Þ to be UBðqiÞþ DCðqi�1; qiÞ.
Each children node (chj) of qi�1 except qi on the remaining

path tree will be checked. If LBðchjÞ þ DCðqi�1; chjÞ
[UBðqi�1Þ, the sub tree rooted at chj will be safely re-

moved because it cannot provide a better solution than the

newly found path. If UBðqi�1Þ
UBðqiÞ þ DCðqi�1; qiÞ, the

present execution of the path optimizing method will be

terminated and the sub tree rooted at qi will be checked

whether it can be removed.

RRT* generates a series of solutions to get a less costly

path. The pruning of tree nodes can improve the compu-

tational efficiency of RRT* [37, 39, 40].

4.5 Algorithms implementation

Algorithm 1 is the RS estimation algorithm. ‘‘PFPredic-

tion’’ is the DT motion prediction function by PF. ‘‘Up-

date’’ is the TTree updating function. RandNum is a

uniformly and randomly distributing number in [0,1].

‘‘reach’’ and ‘‘multi-connect’’ are the RS searching op-

erators. qdr is a directly DT reachable node. ‘‘RSCal’’ aims

to search for indirectly reachable nodes among the neigh-

bors of qdr on PathTree. ‘‘DistCal’’ aims to estimated the

nearest distance set DS between DT and its reachable nodes

by the DT motion state DTState and the predicted earliest

time trs DT reaches the nodes in RS.

Algorithm 1 RS Estimation Algorithm
Require:

a new PathTree node, qnew; a DT observation, DTObs; probabilistic threshold, Pitd; TTree;

PathTree

Ensure:

TTree; RS; the nearest distance between DT and the nodes in RS, DS

1: TNodenew = PFPrediction( DTObs );

2: Update( TTree, TNodenew, DTObs );

3: if 0 ≤ RandNum ≤ Pitd then

4: [TTree, qdr, tdr] = reach( qnew, TTree );

5: else

6: qs=GenerateSample();

7: [TTree, qdr, tdr] = multi-connect(qs, TTree, PathTree);

8: end if

9: if tdr = ∞ then

10: [RS, trs] = RSCal(PathTree, TTree, qdr, tdr);

11: end if

12: while RS = Null do

13: DS = DistCal( PathTree, TTree, trs, DTState );

14: end while

15: return (TTree, RS, DS);

Algorithm 2 UAV Online Path Planning Algorithm in Uncertain and Hostile

Environments
Require:

environmental information, Env; planning start location, SL; Goal; DT start location, DL

Ensure:

PathTree; UAV flyable path: Path

1: PathTree.init(SL), TTree.init(DL);

2: while !Reach(Goal) && Tp ≤ THp do

3: select SubGoal, initialize sub task;

4: while !Reach(SubGoal) && Tlp ≤ THlp do

5: [qnew, qn]=TreeExplore(Env, PathTree);

6: if qnew == null then

7: qn.TUDD = min{DD, qn.TUDD};
8: else

9: for sti ≤ NumofST do

10: qnew.ST (sti) = TtCal(PathTree, Dist(qnew, ST (sti)), ST (sti).Model,

qnew.UavState);

11: end for

12: [TTree, RS, DS] = RSE(qnew, DTObs, Pitd, TTree, PathTree);

13: RS.DT = TtCal(PathTree, DS, DTModel, RS.UavState);

14: RS.Threat = IFWA(RS.ST , RS.DT );

15: qnew.TUDD = TUDDCal(pc, qnew.Threat);

16: update Env and PathTree;

17: end if

18: end while

19: SubPath = FindPath(PathTree, SubGoal);

20: SubPath = SafetyAdjustment(Env, PathTree, SubPath);

21: Path = Path + SubPath;

22: end while

23: while Tp ≤ THp do

24: Rootr = FindFreePathNode(Path, UavState, Tp);

25: [PathTree, Path] = RRT*(PathTree, Env, Rootr);

26: end while

27: if !reach(Goal) then

28: Emergency Strategy;

29: end if

30: return (PathTree, Path);

Algorithm 2 shows the pseudocode of our path planning

method. Tp is the duration of the present planning and THp

is the allocated total planning time. Tlp is the duration of

the present local planning and THlp is the TH. ‘‘TreeEx-

plore’’ is the improved heuristic DDRRT for the PathTree

extension. qn indicates an unsuccessfully extended

PathTree node. DD denotes the predefined dynamic do-

main. ‘‘TtCal’’ aims to calculate the threat level on a node.

‘‘IFWA’’ is the threats aggregation function. ‘‘RSE’’ de-

notes the RS estimator introduced in algorithm 1.

‘‘TUDDCal’’ aims to calculate the TUDD subject to for-

mula 7. In the PathTree updating process, the TSs of all the

PathTree nodes are updated. ‘‘SafetyAdjustment’’ is the

safety adjustment function. ‘‘FindFreePathNode’’ aims to

find Rootr, as discussed in Sect. 4.4.3. The remaining part

of the path is optimized in THp � Tp by RRT*.

4.6 Algorithm analysis

The result of RRT or DDRRT does not converge to the

optimal path [1–3, 15, 16]. RRT* optimizes a path towards

the asymptotically optimal one over time, by improving the

topological structure of the path tree [40]. Our method
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avoid threats explicitly in the path searching process under

uncertainties. It reduces the threat on a local path by the

safety adjustment. If a path towards Goal is found, it is

optimized by RRT* in the remaining planning time.

Therefore, our result is an improved one without the

guarantee of the optimization.

The randomized path planning methods do not have any

running time upper-bound, i.e., a complete plan is not

surely returned within an acceptable time [40]. Let n be the

number of samples. The asymptotic time complexities of

both RRT and RRT* are Oðn log nÞ in terms of the number

of simple operations, such as comparisons, additions, and

multiplications [40]. Collision Detection (CD) is a time-

costly high-level function in a RRT-based method [1, 15,

16]. DDRRT reduces the number of CD called by the

sampling space reduction to accelerate its path searching

process [15, 16]. Our method adopts a similar sampling

space reduction method to DDRRT in the path searching

process. Thus, the time complexity of our path searching

process is not higher than Oðn log nÞ. The time complexity

of our path planning method is not higher than Oðn log nÞ.
RRT, RRT* and DDRRT are probabilistically complete

[1, 15, 16, 40]. The probabilities that the planners fail to

return a solution, if one exists, decay to zero as the number

of samples approaches infinity. Our method is still

probabilistically complete since it does not destroy this

completeness. Like RRT-reach, our RS estimator has no

guarantee of the probabilistic completeness for the sake of

computational efficiency. As discussed in Sect. 2.2, our

method has advantage in planning under complex and

dynamic constraints.

5 Simulation results

5.1 Simulation environments setting

We perform experiments to verify that our algorithm can

be applied online in an uncertain and hostile environment.

The RS estimator is executed in parallel with the UAV path

planner. We make 100 Monte Carlo simulations for each

method in each scenario. The experiments are done on

computers with Intel Pentium 4, 2.5 GHz CPU, 1GB RAM,

Windows XP OS and Matlab R2010a.

The environments are created according to the real

world planning system. The duration of one path tree ex-

tension step s ¼ 1 second. One extension step length le ¼
v � s where v is the velocity of a vehicle. The radius of DD

is set to be an optimal value 10 � le [15, 16]. In the 2D

environment, we set the UAV motion parameters as:

vmin ¼ 0:5 units/s, vmax ¼ 1:5 units/s, av ¼ 0:02 units/s2,

rmin ¼ slmin ¼ 5 units; the DT velocity vD = 1 unit/s; TH=

15 seconds; UAV starts at [10, 90], ends at [95, 5]; DT

starts at [10,10]; the maximum threat radius of radar

Rmax ¼ 38 units; the maximum static threat radius of DT

RDmax ¼ 10 units; the radius of SH is 33 units; the vp in the

non-membership function is 1 unit/s. In the 3D environ-

ment, the motion parameters of UAV and DT are set to be

five times of those in the two dimensional scenario; the

radar characteristic coefficient KR ¼ 0:003; TH=25 sec-

onds; UAV starts at [950, 80 ,80], ends at [50, 950, 100];

DT starts at [950,950,0]; Rmax = 380 units; RDmax ¼ 50

units; vp = 5 units/s; the radius of SH is 150 units.

The heuristic parameters are set as follows. We use the

asymptotic k-near neighbors searching method in [40], the

lower bound of k is set to be 3. In the GoalZoom heuristics,

P ¼ 0:3. In Algorithm 1, Pitd ¼ 0:5. In formula 2, xN ¼
0:7, xd ¼ 0:3, xC ¼ 1. In formula 5, Cc1

¼ Cc3
¼ 0:3,

Cc2
¼ Cc4

¼ 0:2. In formula 7, kc ¼ 1, kT ¼ 5. In formula

9, Dc1
¼ 0:5, Dc2

¼ 0:1, Dc3
¼ 0:4. The weights of the

formula 6 in the 2D scenario are set as: Lc1
¼ 0:7, Lc2

¼ 0,

Lc3
¼ 0:3; in the 3D scenario: Lc1

¼ 0:7, Lc2
¼ Lc3

¼ 0:15.

5.2 Planning results

The elements in Figs. 7 and 8 are interpreted as follows.

The blue and red diamonds denote the start location and the

Goal of planning, respectively. The red curve indicates a

UAV path smoothed by the Dubins curve. A colored area

denotes a radar threat area masked by obstacles. The blue-

branch and magenta-branch trees denote the UAV and the

DT path trees, respectively. A red star denotes a directly

DT reachable node. A red circle centering at a red star

denotes an estimated DT reachable range which includes

both the directly and indirectly DT reachable nodes. A

green star denotes a SubGoal. A blue circle denotes a SH

boundary in the 2D scenario. A cyan cross denotes a UAV

location when selecting a SubGoal in the 3D scenario. The

obstacle environments derive from the puzzles of Bug Trap

and Labyrinth [1, 2, 15, 16] which can test a sampling

based planning algorithm. It is rather complicated due to

the following reasons: the environment includes narrow

hallways and traps composed by complex obstacles (con-

vex and nonconvex); it invalidates the traditional Euclidean

distance based heuristics. Moreover, the planning is re-

quired to deal with uncertainties and avoid threats espe-

cially DT. Meanwhile, it must plan paths online under

limited and real-time threat information.

Figure 7 shows the simulation results in a 2D environ-

ment. Figure 7 verifies that our Safe-RRT is effective,

because of the following reasons: the UAV path tree is

inclined to search low risk path in the low-threat or threat-

free areas; the result path keeps an appropriate distance

from obstacles to avoid collision. The high path searching
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Fig. 7 The two dimensional simulation results
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Fig. 8 The three dimensional simulation results
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ability of our Safe-RRT in obstacle-complex environments

is also verified. That is because the result path is able to get

through narrow hallways with a small number of tree

branches. The ability can benefit the threats avoidance

ability of Safe-RRT by utilizing the masking of obstacles to

threats. The planner also avoids DT by utilizing the

masking of obstacles, e.g., it utilizes obstacle in the lower

right corner of Fig. 7b to avoid DT.

Figure 7a, b, c show the intermediate and final results of

Safe-RRT. They show both the process of UAV path

planning and the updating processes of DT path tree and

DT path. The sub goal selections conform to formula 4.

The black lines in Fig.7a and b denote the DT pursuing

path which is searched online. DT is not required to finish

the whole path due to its limited velocity. Our DT motion

simulation satisfies the requirement of the DT avoidance

model in Sect. 2.3, because: the DT path is flexible and

intelligent with a strong bias of threatening UAV; DT tries

to pursue the UAV path tree nodes by diversely extending

its path tree. Meanwhile, the large DT path tree can better

estimate the RS to assess the DT threat from the UAV path

planning point of view.

Figure 7d shows a plan of the Threat Assessment based

DDRRT method (TADDRRT). TADDRRT has the same

planning process as our algorithm. It is the reimplemen-

tation of DDRRT in hostile environments. It does not

consider the uncertainties of UAV motion and observation.

Its result path is closer to obstacles causing a higher col-

lision probability than that of Safe-RRT. Thus, our con-

sideration of the uncertainties is appropriate. If we pre-

expand obstacles as traditional methods do, albeit the path

can keep away from obstacles, the narrow hallways may be

blocked by the expansion. TADDRRT has no heuristics of

‘‘GoalZoom’’, ‘‘k-neighbors’’ and ‘‘RRT*’’. Meanwhile, it

underestimate the certainty degrees of threats, further un-

derestimate threats, because it sets the standard deviations

of the distributions of UAV states to be zero in formula 2.

Thus, the result of TADDRRT is more inclined to get

through high risk areas near threat centers than those of

Safe-RRT. Thus, the result path of TADDRRT is more

risky than those of Safe-RRT. That testifies our improve-

ments based on TADDRRT are effective. Figure 7e shows

the last part of path is zigzag. That is because the RS in the

last iteration is big, Safe-RRT creates more tree nodes to

avoid DT more explicitly. That also testifies the good

threats avoidance ability of Safe-RRT. Figure 7f shows that

the fourth SubGoal in the lower right corner is not reached

in TH. Safe-RRT starts the fifth local planning based on the

result of the fourth iteration.

Figure 8 shows our planning results in a 3D environment.

The good abilities of path searching, threats avoidance and

uncertainties processing of our planner are certified. The

effectiveness of our RS estimator is also verified.

Figure 8a and b are two intermediate results of our

planner at the one-fourth and three-fourths planning time of

a plan, showing the processes of UAV path planning and

DT pursuing UAV. The paths can keep appropriate dis-

tances from obstacles. That verifies our dealing with the

uncertainties of UAV motion and observation is effective.

The good threats avoidance ability of Safe-RRT is also

certified by Fig. 8a and b. That is because of the following

reasons: the paths can avoid radar threats by utilizing the

radar blind spots and the masking of obstacles to threats in

the low altitude; there are many DT reachable areas in Fig.

8b, however, Safe-RRT can still find some relatively safe

areas to avoid threats. Figure 8a and b show that the DT

path tree grows towards the UAV path tree with strong

bias. DT can flexibly and intelligently adjust its path to

pursue UAV. The observations verify the DT motion

simulation is reliable and our RS estimator is effective.

Figure 8c is a detail of Fig. 8a, showing the DT pursuing

UAV by enlarging its path tree. That certifies the reliability

of our DT motion simulation and the effectiveness of the

RS estimation. Figure 8c also shows our planner can find a

path in the narrow hallway in the middle of Fig. 8a with a

small amount of branches. That verifies the good path

searching ability of our planner. Figure 8d is a detail of Fig.

8b, showing that UAV avoids DT by the masking of ob-

stacles. The red circles denote the DT reachable ranges.

Fig. 8d especially shows that the planner can utilize the

masking of the obstacle at the top right of Fig. 8b to avoid

DT. That verifies our DT avoidance method is effective.

5.3 Results and analyses

The comparisons are made between Safe-RRT and

TADDRRT, NFZ-DDRRT, RRT*, as the statistical results

in Table 1. The TUDDs of the nodes in RS are set to be

zero in NFZ-DDRRT according to the discussion in Sect.

1.2. NFZ-DDRRT is reimplemented with the same ST

avoidance ability as TADDRRT. All approaches share our

planning framework.

PST is the path searching time. NCDC is the number of

collision detection called in the path searching process.

ESR = NTN/NCDC is the extension success rate of path

tree nodes. NTN is the number of the UAV path tree nodes.

TSI is the time of one path searching iteration, TSI = PST/

NCDC. PST, NCDC and TSI reflect the time complexity of

the path searching phase of a RRT-based algorithm. ESR

reflects the reliability of the heuristic sampling space re-

duction to some extent. FR is the failure rate, an execution

fails if no path towards Goal is returned in the available

planning time which is set to be 80 and 160 s in the 2D and

3D scenarios, respectively. PC is the path cost computed by

formula 9. Q(P) is the path quality calculated by formula

8. PST, NCDC, ESR and TSI are the technical indicators in
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the path searching process. Other technical indicators are

collected after a whole planning ends.

The PST and NCDC of our Safe-RRT are the lowest in

both the 2D and 3D environments, verifying its best path

searching ability. That also verifies the effectiveness of our

heuristics in Safe-RRT comparing to TADDRRT. The

ESRs of Safe-RRT and TADDRRT are higher than the

other two methods, demonstrating our sampling space re-

duction is effective. The TSI of Safe-RRT is higher than

TADDRRT because Safe-RRT devotes extra time to han-

dle uncertainties. The highest TSI of Safe-RRT also con-

tributes to the best Q(P). The PC of Safe-RRT is the best.

The PC of TADDRRT is inferior to Safe-RRT, because: it

is less heuristic than Safe-RRT; its path is more risky than

Safe-RRT because it underestimates threats, as discussed in

Sect. 5.2. The PC of NFZ-DDRRT is far worse than

TADDRRT because it tries to totally detour from DT

causing a longer and possibly more risky path. RRT* has

the worst PC because its optimizing time is not satisfied.

The better FRs certify Safe-RRT and TADDRRT are far

more robust than the other two methods.

Table 2 compares our Heuristic sub goal selection

Method (HM) with the traditional Euclidean Distance

Based Method (EDBM). The difference between HM and

EDBM derives from the principle described in formula 5:

HM not only takes the distances into account, but also

considers the problems of obstacles avoidance and threats

avoidance, EDBM just considers the distances. Both

methods are integrated into our path planning system. TTA

is the total radar threat amount calculated by adding the

radar membership degrees on all the waypoints and sec-

ondary waypoints on a path. We discretize a sub path be-

tween two adjacent waypoints into 10 secondary waypoints

when computing TTA. HM has lower PST, NTN, NCDC,

TTA, PC and FR than EDBM, verifying that our sub goals

can lead the planner rapidly finding a low cost and low

threat path while avoiding the local optimum to some ex-

tent. The higher ESR demonstrates HM is able to select sub

goals in less obstacle-occupied spaces. Thus, HM is more

informative and effective than EDBM.

Table 3 compares the ST avoidance ability of Safe-RRT

with those of TADDRRT and RRT*. ATP is the aggre-

gated radar threat on the result path. It is calculated by

aggregating the radar threats on all waypoints on the path

using IFWA. NHTW is the number of high radar threat

waypoints of which the threat levels exceed 0.5. Our

method has less ATP, TTA and NHTW than TADDRRT,

verifying our heuristic improvements can promote the ST

avoidance ability. The result of RRT* is far inferior to

those of Safe-RRT and TADDRRT, because its long op-

timizing time is not satisfied.

Our Extended RRT based RS estimator (ExRRT) is

compared with RRT-Reach and RRT in Table 4. We sup-

pose RRT-Reach [33] is provided with the same information

Table 1 Comparisons of Safe-

RRT with the traditional

methods

Dim Algorithm PST(s) NCDC ESR TSI(s) Q(P) PC FR

2D Safe-RRT 7.92 1156 0.5087 0.0069 0.2474 135.43 0.033

TADDRRT 9.51 1606 0.5367 0.0059 0.1049 149.94 0.045

NFZ-DDRRT 11.54 1913 0.4135 0.0060 0.0677 179.91 0.064

RRT* 14.11 2662 0.4189 0.0053 0.0661 215.33 0.055

3D Safe-RRT 13.57 1213 0.5441 0.0112 0.3571 1565.21 0.013

TADDRRT 13.39 1313 0.5453 0.0102 0.2255 1635.05 0.011

NFZ-DDRRT 16.38 1906 0.4654 0.0086 0.1633 1883.22 0.087

RRT* 23.28 4477 0.3761 0.0052 0.1422 1962.63 0.081

Table 2 Comparisons on

different subgoal selecting

methods

Dim Method PST(s) NTN NCDC ESR TTA PC FR

2D HM 7.92 588 1156 0.5087 33.23 135.43 0.033

EDBM 11.07 710 1628 0.4361 39.17 167.73 0.082

3D HM 13.57 660 1213 0.5441 60.59 1565.21 0.013

EDBM 19.49 784 1746 0.4490 75.26 1728.38 0.053

Table 3 Comparisons on the static threats avoidance abilities of

various algorithms

Dim Algorithm ATP TTA NHTW

2D Safe-RRT 0.1211 33.23 4

TADDRRT 0.1976 35.79 6

RRT* 0.2536 47.54 13

3D Safe-RRT 0.0821 60.59 15

TADDRRT 0.1313 85.59 22

RRT* 0.1675 121.51 49
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of DT motion prediction as ExRRT. The probabilistic

threshold, determining the execution probabilities of the

modes of exploration and pursuit, is set to be 0.5 in RRT-

Reach as ExRRT. RRT is totally random. The results of the

three estimators are applied to our planning system.

ADTP is the aggregated actual DT threat on the UAV

path calculated in the same way as ATP. TDTA is the total

actual DT threat amount on the UAV path calculated in the

same way as TTA. ETDTA is the estimated total DT threat

amount on the UAV path. ETDTA/TDTA reflects the re-

liability and accuracy of a RS estimator. TFP is the time

that a UAV path tree node is first pursued by DT. PD is the

path duration. It is meaningless to simply compare TFP,

since the PDs of different methods vary a lot. Therefore,

TFP/PD is applied to reflect the effectiveness of an esti-

mator. RSS is the RS size. Because the RS estimation is

from the UAV path planning point of view, an earlier TFP/

PD or a bigger RSS indicates the higher effectiveness of an

estimator.

ExRRT contributes to less ADTP and TDTA, verifying

it is more effective in helping the planner to avoid DT. The

biggest ETDTA/TDTA verifies that ExRRT is the most

effective and accurate. The earliest TFP/PD and the largest

RSS prove that ExRRT is the most effective. ExRRT is

superior to the RRT-Reach and far better than RRT in both

environments.

Table 5 compares our A-IFS based threat model with

the probabilistic model. In the probabilistic model, the

nonmembership degree is set to be zero and the certainty

value is set to be one. PSR is the penetration success rate

computed by aggregating the damaged probabilities of

UAV on all the waypoints by formula 3. All the two

models are integrated into our planning system. The less

PST and NCDC verify that our model can accelerate the

path searching process. That is because the functions of

nonmembership and certainty can help the path tree to

quickly pass through threat areas. The probabilistic model

is inclined to guide the path tree in detouring from threats.

That causes the longer result path and the longer path

planning time. That further results in a bigger PC. The

higher PSR verifies that our model is more effective in

helping the planner to avoid threats. The better Q(P) tes-

tifies the advantage of our consideration of uncertainties of

UAV motion and observation in the A-IFS based model.

Accordingly, our model is more suitable for planning a

path in an uncertain and hostile environment.

6 Conclusions

To deal with the uncertainties of environmental threats and

to ensure the safety of the low altitude flight, we propose an

online safe path planning algorithm for UAV. We consider

the uncertainties of threats and vehicles’ motions and ob-

servations during the planning process. A threat model is

constructed based on A-IFS. It is verified to be more ef-

fective than the probabilistic one to describe an uncertain

threat. The RS estimator of an uncertain DT is constructed

based on the RRT extension and the particle filter predic-

tion. Comparing with the traditional approaches, it is a

more accurate method which is able to estimate more

possible paths of DT with the intention of intercepting

UAV. An online path planning method is proposed to avoid

threats and obstacles when both the UAV motion and ob-

servation is uncertain. Our sub goal selection method is

verified to be more effective than EDBM in accelerating

the path searching process and creating a low cost path.

Our planer is verified to be able to avoid threats and ob-

stacles under uncertainties more effectively than the tra-

ditional methods. The major contributions are as follows:

Table 4 Comparisons of

various DT reachability set

estimators

Dim Method ADTP TDTA ETDTA ETDTA/TDTA TFP/PD RRS

2D ExRRT 0.0855 22.97 19.31 0.8407 0.1883 46

RRT-Reach 0.1245 24.39 14.05 0.5761 0.2672 34

RRT 0.1746 34.55 11.42 0.3305 0.3558 19

3D ExRRT 0.0622 43.26 36.39 0.8412 0.1859 72

RRT-Reach 0.1076 50.66 39.48 0.7793 0.2287 65

RRT 0.1468 60.19 31.50 0.5233 0.3206 57

Table 5 Comparison of the

A-IFS based ST model with the

probabilistic model

Dim Model PST(s) NCDC PC FR PSR Q(P)

2D A-IFS 7.92 1156 135.43 0.033 0.8187 0.2474

probabilistic 8.64 1262 151.34 0.035 0.7782 0.1116

3D A-IFS 13.57 1213 1565.21 0.013 0.8726 0.3571

probabilistic 17.23 1469 1672.16 0.013 0.8135 0.2654
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1. A static threat model and a threat assessment method

are proposed based on A-IFS to deal with the

uncertainty of a threat.

2. The DT intention is taken into account in designing the

RS estimator of DT to deal with the uncertainties of the

DT motion and observation.

3. A fast online path planning algorithm is proposed to

avoid threats and obstacles when both the UAV motion

and observation is uncertain.

The future work is to solve the UAVs cooperation problem.
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